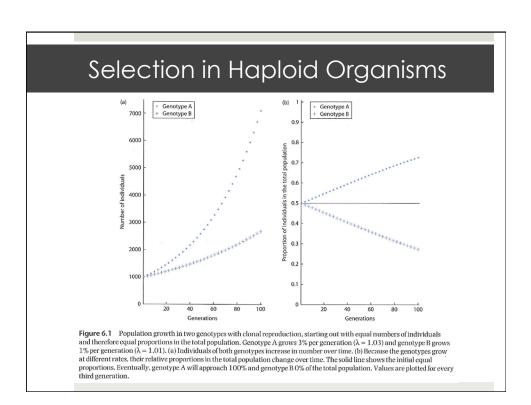




- genes, individuals, populations ?
 - in general, selection is at the level of the individual (phenotype) but it is only the population that evolves
- ♦ but see Dawkins, "The Selfish Gene"
- phenotypes versus genotypes?

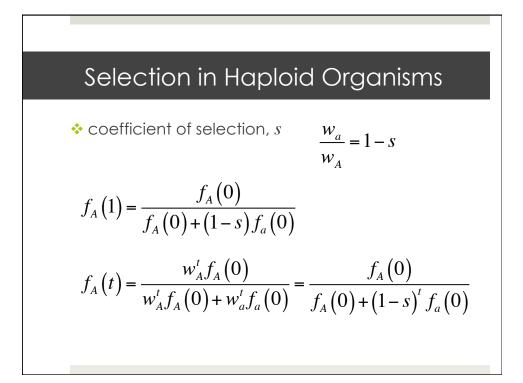
- $\boldsymbol{\diamond}$ how do allele frequencies change over time ?
 - \diamond haploid/asexual versus diploid/sexual models
 - discrete generation versus continuous models



 selection in asexual, haploid organisms depends only on relative population growth
 competition between strains

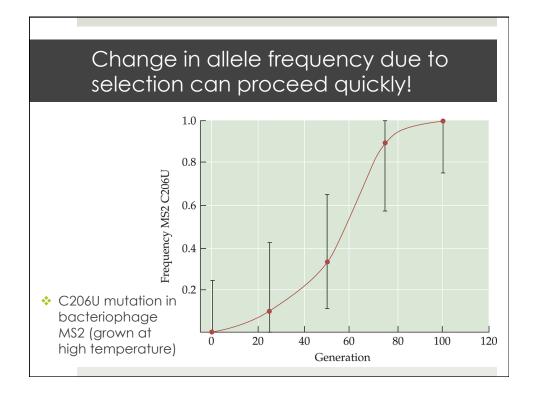
Selection in Haploid Organisms

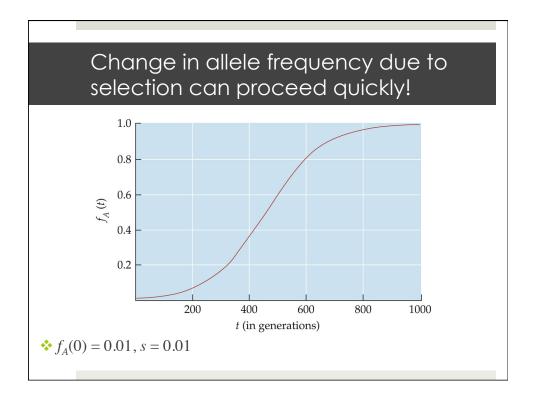
strain A versus strain a $\diamond N_A, N_a$ - number of cells of each strain $N_{A(1)} = W_A N_{A(0)}$ $N_{a(1)} = W_a N_{a(0)}$ \diamond if $W_A \neq W_a$, then the populations grow at different rates and the relative proportion of cell types

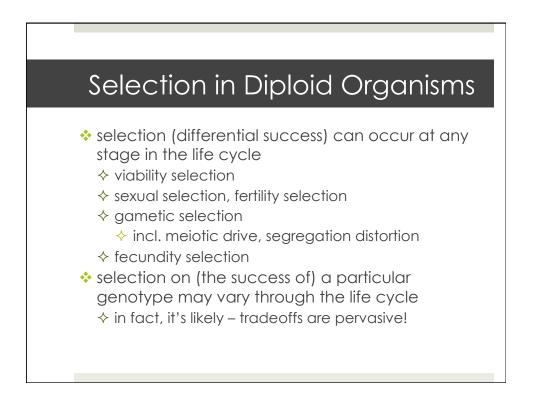

changes over time

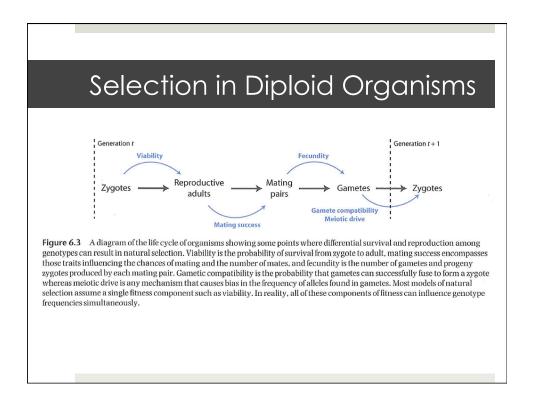
Selection in Haploid Organisms

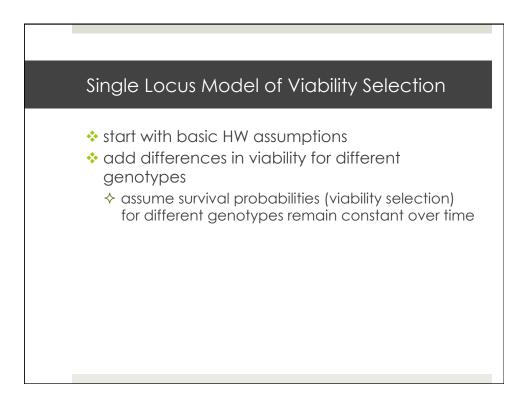
frequency of type A after one generation:


$$f_{A}(1) = \frac{w_{A}N_{A}}{w_{A}N_{A} + w_{a}N_{a}}$$
$$= \frac{w_{A}f_{A}(0)}{w_{A}f_{A}(0) + w_{a}f_{a}(0)}$$
$$= \frac{f_{A}(0)}{f_{A}(0) + (w_{a}/w_{A})f_{a}(0)}$$




Selection in Haploid Organisms


- What are we assuming so far?
 - ♦ ratio of growth rates remains constant over time
 - ♦ populations continue to grow indefinitely?
 - what happens when the population reaches the carrying capacity of the environment (K) or overshoots K and subsequently crashes?
- basic models of selection ignore population size and consider only changes in allele frequencies

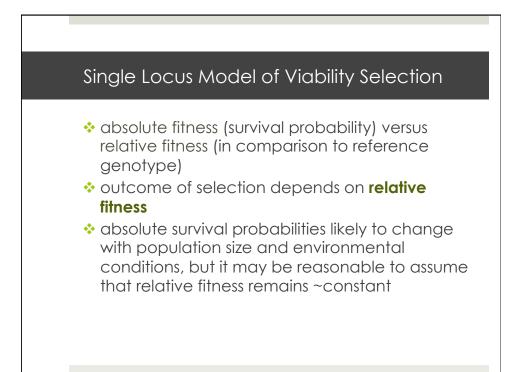

$$\Delta f_A = f_A(1) - f_A(0) = \frac{f_A(0)}{f_A(0) + (1 - s)f_A(0)} - f_A(0)$$

Absolute v. Relative Fitness

 absolute fitness (survival probability) versus relative fitness (in comparison to reference genotype)

Ospreys

AA:0.75, *Aa*:0.75, *aa*:0.50


AA:1.0, *Aa*:1.0, *aa*:0.67

vs. Oysters

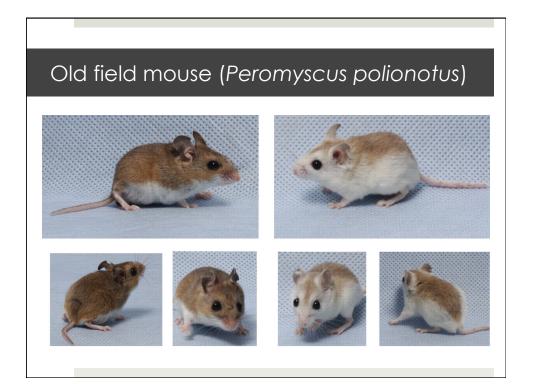
AA:0.00075, Aa:0.00075, aa:0.00050 AA:1.0, Aa:1.0, aa:0.67

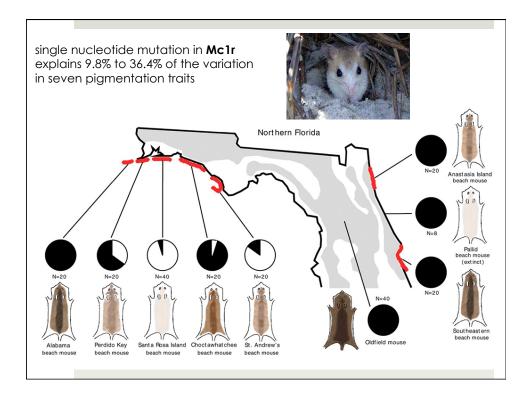
Assumptions of the basic natural selection model with a di-allelic locus

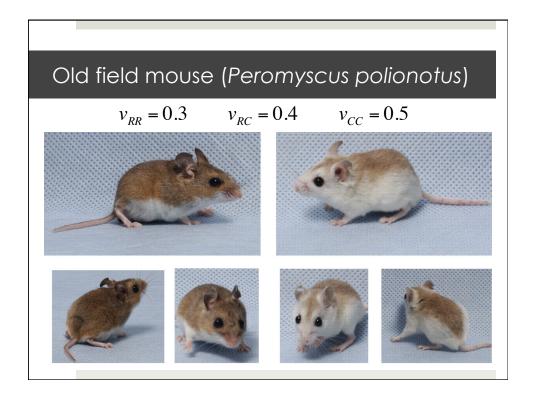
Genetic

- Diploid individuals
- ♦ One locus with two alleles
- ♦ Obligate sexual reproduction
- Reproduction
 - ♦ Generations do not overlap
 - ♦ Mating is random
- Natural selection
 - Mechanism of natural selection is genotype-specific differences in survivorship (fitness), termed viability selection
 - Relative fitness values are constants that do not vary with time, over space, or in the two sexes
- Population
 - ♦ Infinite population size so there is no genetic drift
 - ♦ No population structure
 - ♦ No gene flow
 - ♦ No mutation

Substitution of the series of


Change in Allele Frequency w/ Viability Selection (Diploid Model)


new genotype frequencies


$$f'_{AA} = \frac{v_{AA}f_A^2}{\overline{v}} \qquad f'_{Aa} = \frac{2v_{Aa}f_Af_a}{\overline{v}} \qquad f'_{aa} = \frac{v_{aa}f_a^2}{\overline{v}}$$

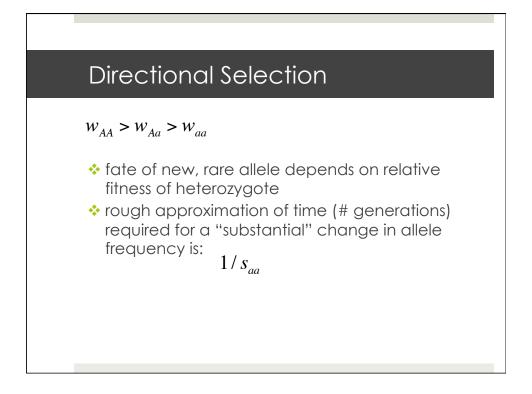
 $\boldsymbol{\diamond}$...and new frequency of A alelle

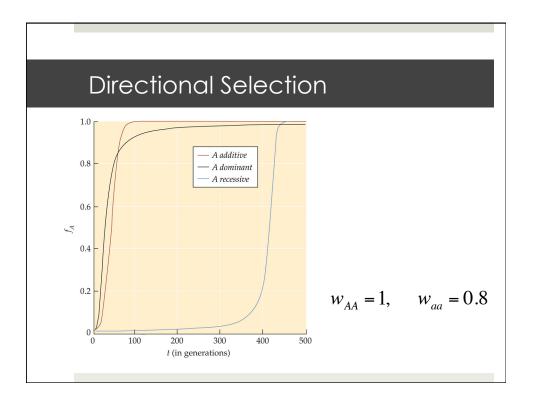
$$f_A' = \frac{v_{AA} f_A^2 + v_{Aa} f_A}{\overline{v}}$$

Special Cases

* additive fitness (Box 7.4)

$$s_{aa} = 2s_{Aa}$$
 $f'_A = \frac{f_A - sf_A f_a}{1 - 2sf_a}$

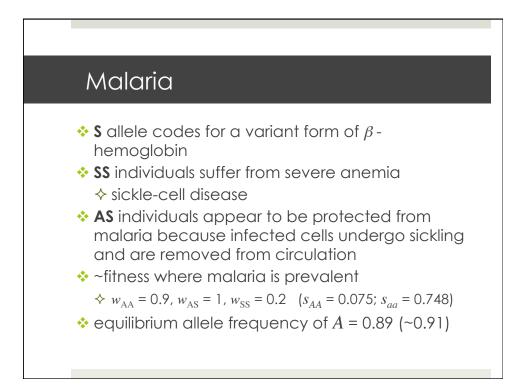

✤ "genic selection" (Box 7.5)


$$w_{Aa} = w_{AA} (1-s), \qquad w_{aa} = w_{AA} (1-s)^2$$

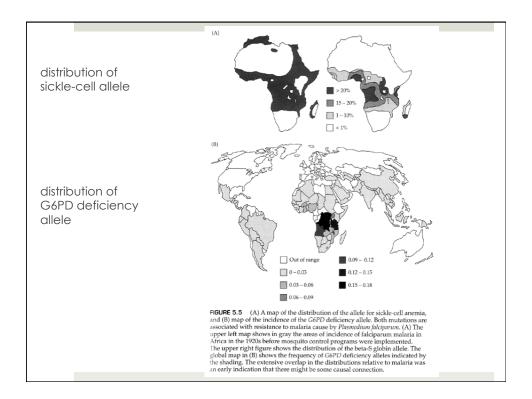
♦ completely equivalent to haploid selection

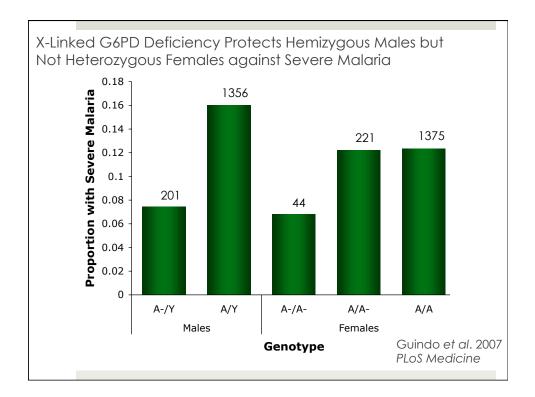
$$f_A' = \frac{f_A}{f_A + (1-s)f_a}$$

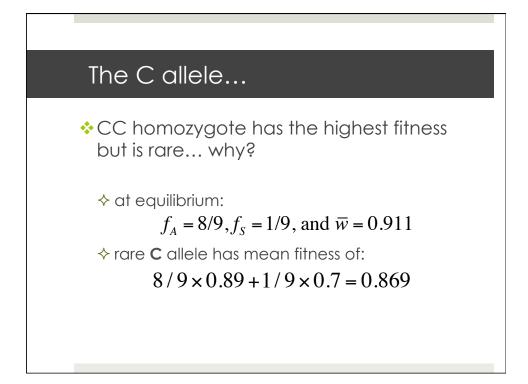
Table 6.4 The general categories of relative fitness values for via <i>s</i> and <i>t</i> are used to represent the decrease in viability of a genoty $1 (1 - w_{xx} = s)$. The degree of dominance of the A allele is repres (sometime called codominance) when $h = \frac{1}{2}$.	ype compared to sented by <i>h</i> with a	the maximum fitne	ess of n
Category		ot)po sposine ne	
Category	WAA	W _{Aa}	Waa
	W _{AA}	W _{Aa}	uu
Selection against a recessive phenotype	W _{AA} 1 1 - s	W _{Aa} 1 1 - s	W _{aa} 1 - s 1
	1	1	
Selection against a recessive phenotype Selection against a dominant phenotype	1	1 1 - s	1 – s 1

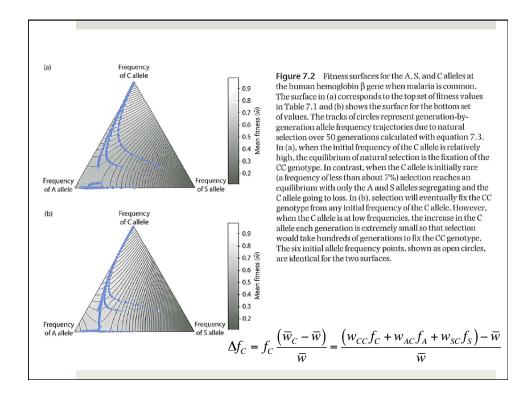


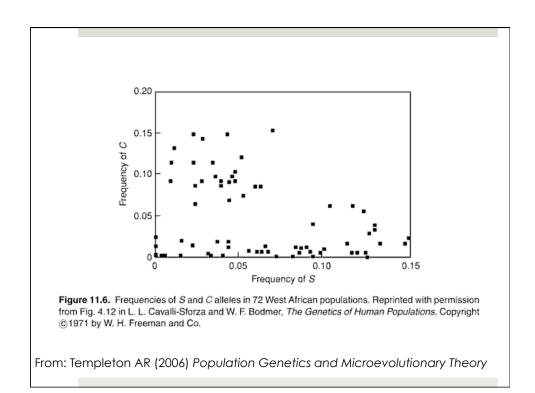
Heterozygote Advantage


- heterosis (hybrid advantage)
- overdominance (hybrid phenotype outside the range of the two homozygous phenotypes)
- one form of "balancing selection"
- results in stable polymorphism (assuming infinite population, etc.)
- equilibrium allele frequency:

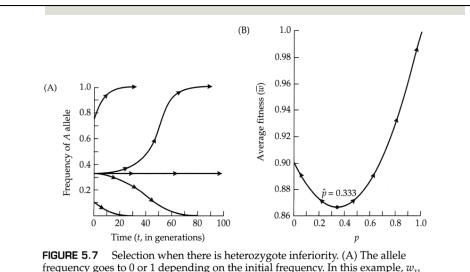

$$\hat{f}_A = \frac{S_{aa}}{S_{AA} + S_{aa}}$$

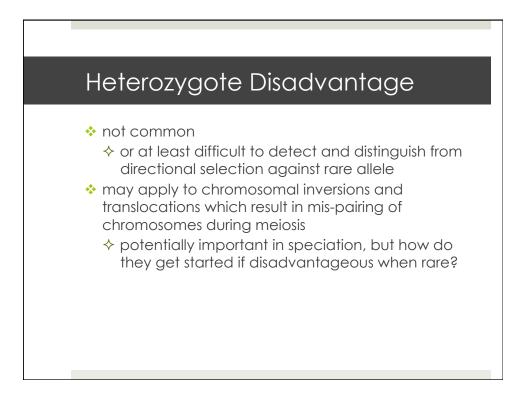

Malaria

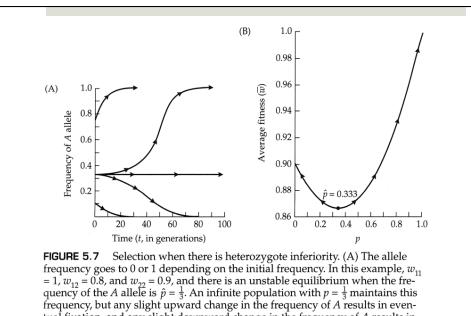

- glucose-6-phosphate dehydrogenase (G6PD) is an X-linked gene that helps control oxidative damage in erythrocytes
- G6PD A- has reduced activity but appears to protect carriers from severe malaria

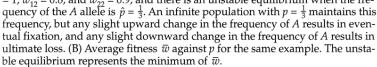


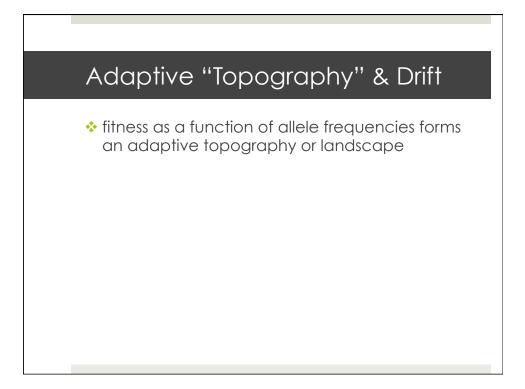


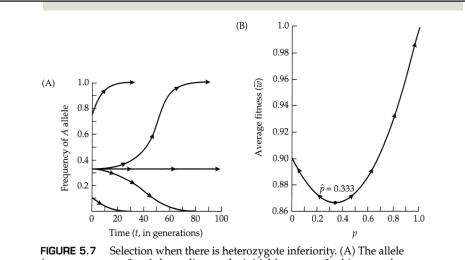

The C al	1 - 1 -					
	lele					
					• .	
CC home	ozygote h	as the	e higi	nest t	itness	5
but is rare	whv?		•			
001131016	···· vviiy ·					
	tes for the six genoty					
Table 7.1 Relative fitness estima Africa where malaria is common. Hardy–Weinberg expected genot risk of mortality for individuals win malaria.	Values from Cavallo-S type frequencies. Valu	oforza and B les from Heo	odmer (197 drick (2004) and assume	1) are based are estimat	d by deviation ed from rela	on from tive
Africa where malaria is common. Hardy–Weinberg expected genot risk of mortality for individuals wit	Values from Cavallo-S type frequencies. Valu	oforza and B les from Heo	odmer (197 drick (2004) and assume	(1) are based are estimat e 20% overa	d by deviation ed from rela	on from tive
Africa where malaria is common. Hardy–Weinberg expected genot risk of mortality for individuals wir malaria.	Values from Cavallo- ype frequencies. Valu th AA, AC, AS, and CC AA	Sforza and B les from Hec C genotypes	odmer (197 drick (2004) and assume Relative f	(1) are based are estimat e 20% overa itness (w)	d by deviatic ed from rela all mortality	on from tive from
Africa where malaria is common. Hardy–Weinberg expected genot risk of mortality for individuals wit malaria. Genotype From Cavallo-Sforza and Bodmer Relative to w _{CC}	Values from Cavallo-S type frequencies. Values th AA, AC, AS, and CC AA (1971) 0.679	Sforza and B les from Hec 2 genotypes AS 0.763	odmer (197 drick (2004) and assume Relative f SS 0.153	 '1) are based are estimat 20% overa itness (w) AC 0.679 	d by deviatio ed from rela ill mortality SC 0.534	on from tive from CC 1.0
Africa where malaria is common. Hardy–Weinberg expected genot risk of mortality for individuals wit malaria. Genotype From Cavallo-Sforza and Bodmer	Values from Cavallo-S type frequencies. Values th AA, AC, AS, and CC AA (1971)	Sforza and B les from Hec C genotypes AS	odmer (197 drick (2004) and assume Relative f SS	1) are based are estimat e 20% overa itness (w) AC	d by deviatic ed from rela ill mortality SC	on from tive from CC
Africa where malaria is common. Hardy–Weinberg expected genot risk of mortality for individuals wit malaria. Genotype From Cavallo-Sforza and Bodmer Relative to w _{CC}	Values from Cavallo-S type frequencies. Values th AA, AC, AS, and CC AA (1971) 0.679	Sforza and B les from Hec 2 genotypes AS 0.763	odmer (197 drick (2004) and assume Relative f SS 0.153	 '1) are based are estimat 20% overa itness (w) AC 0.679 	d by deviatio ed from rela ill mortality SC 0.534	on from tive from CC 1.0
Africa where malaria is common. Hardy–Weinberg expected genot risk of mortality for individuals wit malaria. Genotype From Cavallo-Sforza and Bodmer Relative to w _{CC} Relative to w _{AS}	Values from Cavallo-S type frequencies. Values th AA, AC, AS, and CC AA (1971) 0.679	Sforza and B les from Hec 2 genotypes AS 0.763	odmer (197 drick (2004) and assume Relative f SS 0.153	 '1) are based are estimat 20% overa itness (w) AC 0.679 	d by deviatio ed from rela ill mortality SC 0.534	on from tive from CC 1.0

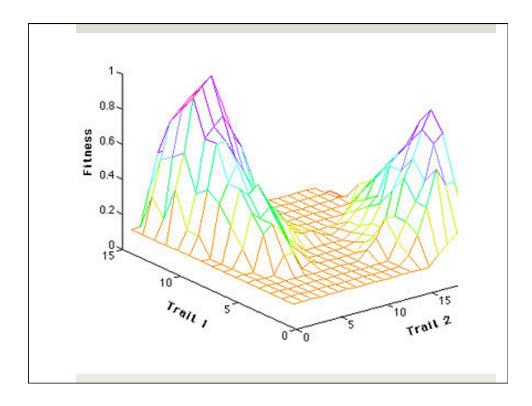


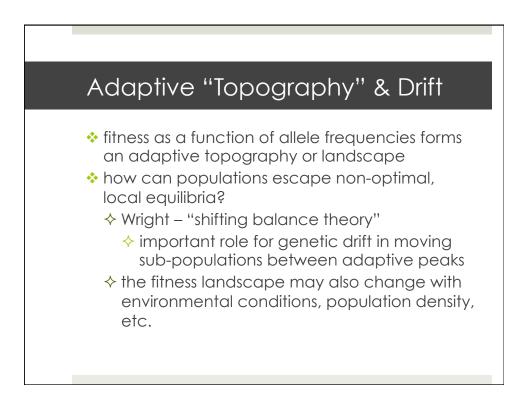


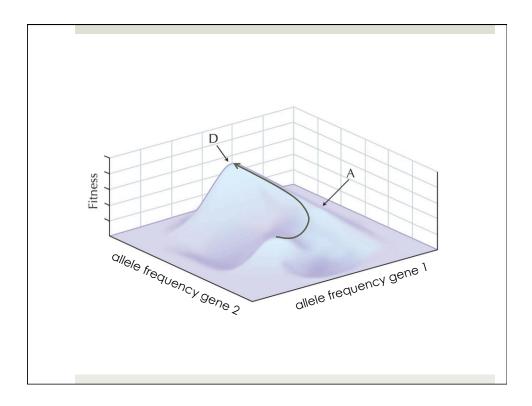


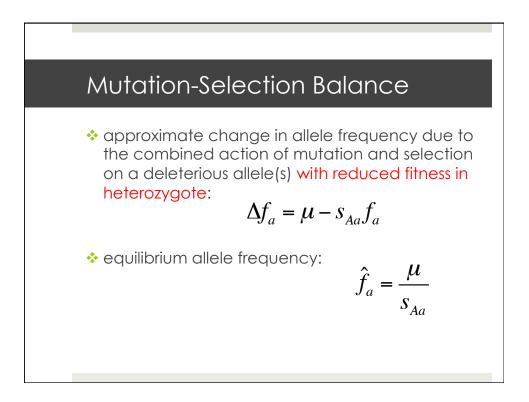

frequency goes to 0 or 1 depending on the initial frequency. In this example, $w_{11} = 1$, $w_{12} = 0.8$, and $w_{22} = 0.9$, and there is an unstable equilibrium when the frequency of the *A* allele is $\hat{p} = \frac{1}{3}$. An infinite population with $p = \frac{1}{3}$ maintains this frequency, but any slight upward change in the frequency of *A* results in eventual fixation, and any slight downward change in the frequency of *A* results in ultimate loss. (B) Average fitness \bar{w} against *p* for the same example. The unstable equilibrium represents the minimum of \bar{w} .











frequency goes to 0 or 1 depending on the initial frequency. In this example, $w_{11} = 1$, $w_{12} = 0.8$, and $w_{22} = 0.9$, and there is an unstable equilibrium when the frequency of the *A* allele is $\hat{p} = \frac{1}{3}$. An infinite population with $p = \frac{1}{3}$ maintains this frequency, but any slight upward change in the frequency of *A* results in eventual fixation, and any slight downward change in the frequency of *A* results in ultimate loss. (B) Average fitness \bar{w} against *p* for the same example. The unstable equilibrium represents the minimum of \bar{w} .

 approximate change in allele frequency due to the combined action of mutation and selection on a deleterious allele(s) with reduced fitness only in homozygote:

$$\Delta f_a = \mu - s_{aa} f_a^2$$

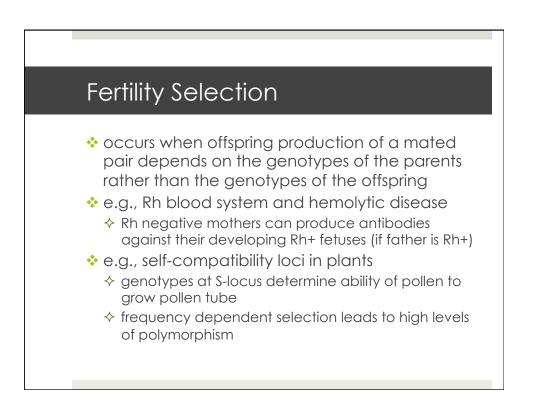
equilibrium allele frequency:

$$\hat{f}_a = \sqrt{\frac{\mu}{s_{aa}}}$$

Mutation-Selection Balance

- the deleterious "a" allele in above equations is actually a heterogeneous set of non-functional alleles
- \mathbf{v}_{μ} is the rate of mutation from "normal, functional" allele to dysfunctional allele

Fertility Selection


- occurs when offspring production of a mated pair depends on the genotypes of the parents rather than the genotypes of the offspring
- e.g., Rh blood system and hemolytic disease
 - Rh negative mothers can produce antibodies against their developing Rh+ fetuses (if father is Rh+)

Fertility Selection

Father	Mother	Frequency	Offspring viability
RR	rr	$f_{RR}f_{rr}$	1–2 <i>s</i>
Rr	rr	$f_{Rr}f_{rr}$	1 <i>-s</i>
RR, Rr	RR, Rr	$(1-f_{rr})^2$	1
rr	RR, Rr, rr	f_{rr}	1

Rh allele frequencies

Population	Rh(D) Neg	Rh(D) Pos	Rh(D) Neg alleles
Basque people	21–36%[13]	65%	approx 60%
other Europeans	16%	84%	40%
African American	approx 7%	93%	approx 26%
Native Americans	approx 1%	99%	approx 10%
African descent	less 1%	over 99%	3%
Asian	less 1%	over 99%	1%

