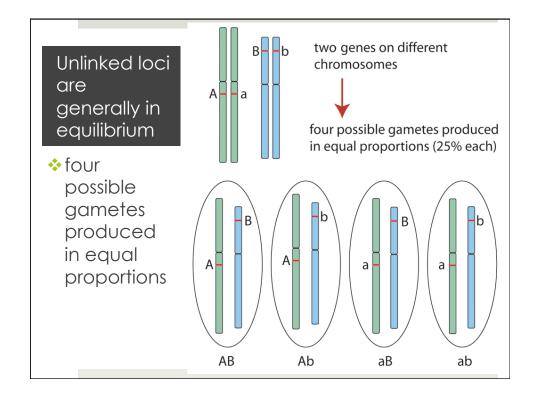

Chapter 6 – Linkage Disequilibrium & Gene Mapping (Recombination)

Linkage Disequilibrium

Genealogical Interpretation of LD

Association Mapping

Linkage and Recombination

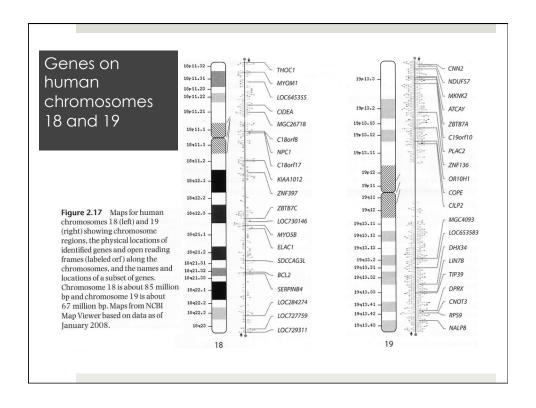

- "linkage equilibrium"
 - → refers to cases in which the alleles of different genes are in random association
 - expected when genes are on different chromosomes
 - → gamete frequencies (genes "A" and "B"):

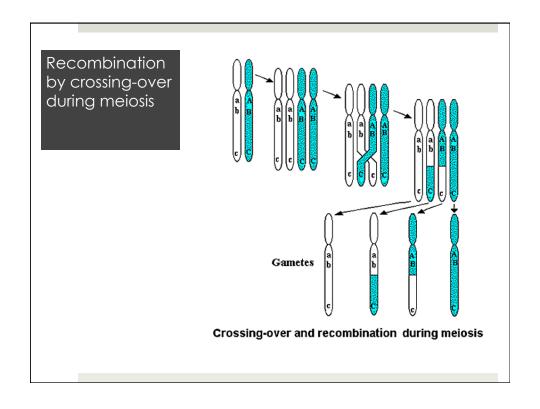
 \diamond AB: $f_A f_B$

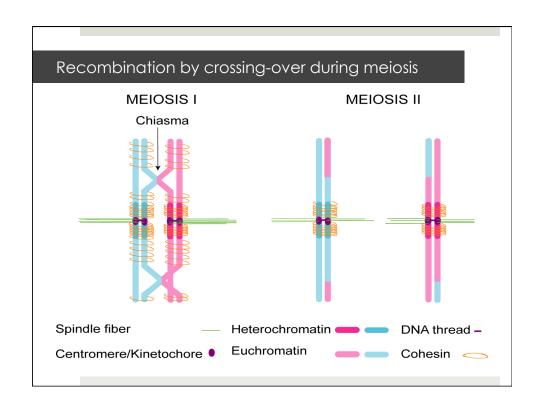
 \diamond Ab: $f_A f_b$

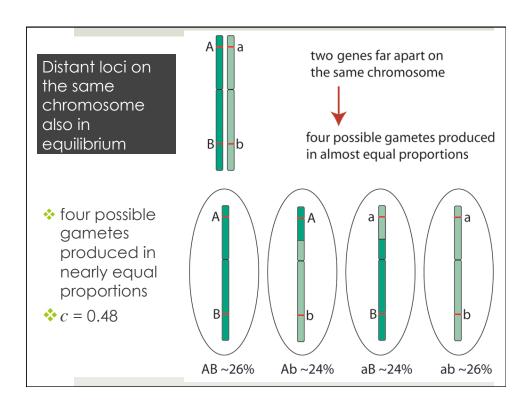
 \diamond aB: $f_a f_B$

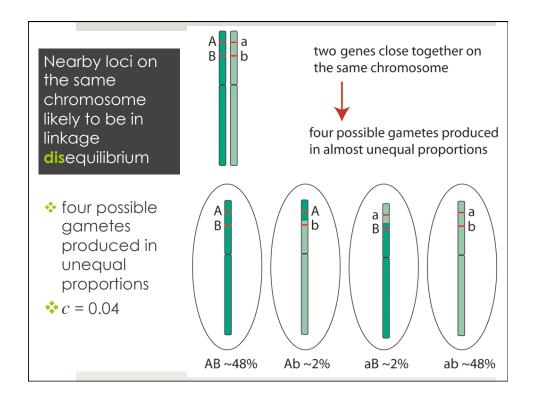
 \diamond ab: $f_a f_b$




HWE example for unlinked genes


- 9 possible two-locus genotypes:
 - ♦ AABB = 0.0196
 AABb = 0.1568
 AAbb = 0.3136
 ♦ AaBB = 0.0168
 AaBb = 0.1344
 Aabb = 0.2688
 Aabb = 0.0288
 Aabb = 0.0576

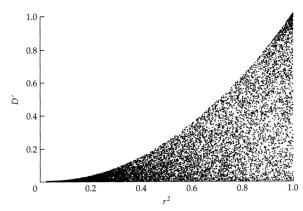

HWE example for unlinked genes


 $f_A = 0.7, f_Q = 0.3$ $f_B = 0.2, f_D = 0.8$ AA Aa 0.49 0.42 0.09 0.04 0.0196 0.0168 0.0036 genotypes for each 0.32 0.1568 0.1344 0.0288 locus yields the same 0.0576 0.64 0.3136 0.2688 result as randomly combining two-locus AB Ab aВ ab gametes 0.14 0.56 0.06 0.24 0.14 **0.0196 0.0784** 0.0084 AΒ 0.56 **0.0784 0.3136 0.0336 0.1344** Ab aВ 0.06 **0.0084 0.0336 0.0036 0.0144** 0.24 0.0336 0.1344 0.0144 ab

Frequency of recombination, r

- ❖ AB/ab genotype produces gametes:
 - \Rightarrow AB with frequency (1-c)/2
 - \Rightarrow ab with frequency (1-c)/2
 - \Rightarrow Ab with frequency c/2
 - $\Rightarrow aB$ with frequency c/2
- ❖ Ab/aB genotype produces gametes:
 - \Rightarrow AB with frequency c/2
 - \Rightarrow ab with frequency c/2
 - \Rightarrow Ab with frequency (1-c)/2
 - \Rightarrow aB with frequency (1-c)/2

Linkage Disequilibrium


- $D = f_{AB}f_{ab} f_{Ab}f_{aB}$
 - ♦ if more AB and ab chromosomes, then positive
 - → if more Ab and aB chromosomes, then negative
 - → positive or negative is essentially arbitrary
- Note: linkage disequilibrium also possible without physical linkage (i.e., genes on different chromosomes)

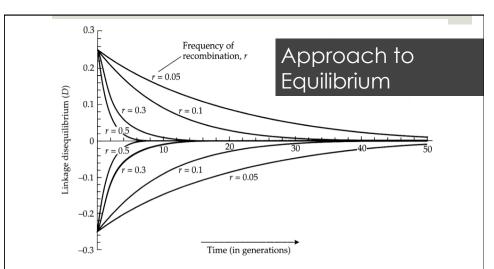
 - → population admixture, selection, selfing

Linkage Disequilibrium

- scaling D w.r.t. allele frequencies
- D_{min} = the larger of $-f_A f_B$ and $-f_C f_D$
- \bullet D_{max} = the smaller of $f_A f_b$ and $f_a f_B$
- linkage often expressed as:
 - $D' = D/D_{max}$ [if positive] or D/D_{min} [if negative]
 - $\Rightarrow \rho^2 = D^2/(p_A q_a p_B q_b)$ [for two loci with two alleles each]
 - \diamond "rho-squared" (r^2 in Neilsen & Slatkin) ranges from 0 to 1
- **Please note! ρ^2 (also written r^2) is a completely different measure from the frequency of recombination, c, which is sometimes written as r

Possible Values of D ' and ho^2

Relationship between D' and r^2 for 10,000 random, uniformly distributed values of the gametic frequencies.


Approach to Equilibrium

gamete (= chromosome) frequencies approach random expectations with each successive generation

- chromosomes
- \diamond in the nth generation, $D_{t(n)} = (1 c)^n D_{t(0)}$

Chanae	in D w/	Random	Matina
0 0			

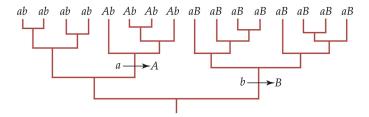

		Gametes Produced			
Genotype	Frequency	AB	Ab	аB	ab
AB/AB	f_{AB}^2	1	0	0	0
AB/Ab	$2f_{AB}f_{AB}$	1/2	1/2	0	0
AB/aB	$2f_{AB}f_{aB}$	1/2	0	1/2	0
AB/ab	$2f_{AB}f_{ab}$	(1-c)/2	c/2	c/2	(1-c)/2
Ab/Ab	f_{Ab}^2	0	1	0	0
Ab/aB	$2f_{Ab}f_{aB}$	c/2	(1-c)/2	(1-c)/2	c/2
Ab/ab	$2f_{Ab}f_{ab}$	0	1/2	0	1/2
aB/aB	f_{aB}^2	0	0	1	0
aB/ab	$2f_{aB}f_{ab}$	0	0	1/2	1/2
ab/ab	f_{ab}^2	0	0	0	1

FIGURE 2.10 Linkage disequilibrium between genes gradually disappears when mating is random, provided there is no countervailing force building it up. The rate of approach to linkage equilibrium depends on the recombination frequency between the genes. The disappearance of linkage disequilibrium is gradual even with free recombination ($r = \frac{1}{2}$). In these examples, the frequencies of both alleles at both loci equal $\frac{1}{2}$, and the initial linkage disequilibrium is either at its maximum (D = 0.25) or minimum (D = 0.25) value, given these allele frequencies.

History of Linkage

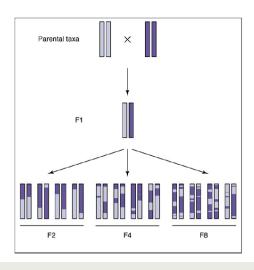
- within a single random breeding population, linkage disequilibrium reflects the history of mutations
- consider the case with no recombination and starting with only ab gametes...

Processes producing linkage disequilibrium

- new mutations
 - → occur on a particular genetic background
- founding events (i.e., genetic drift)
- selection

 - selection for coadapted genes and reduced recombination
 - ♦ e.g., chromosomal inversions
- * extreme inbreeding e.g., selfing plants
- admixture of differentiated populations

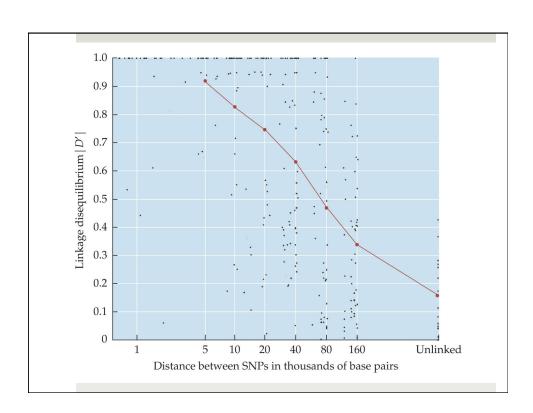
Population Admixture Example

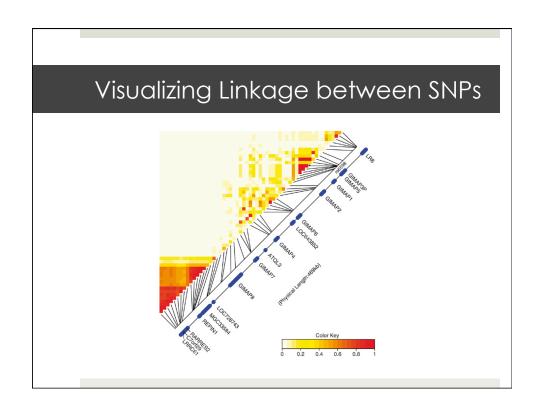

- **\$** Subpop1: $p_A = 0.05$, $p_B = 0.05$
- \Rightarrow Subpop2: $p_A = 0.95$, $p_B = 0.95$

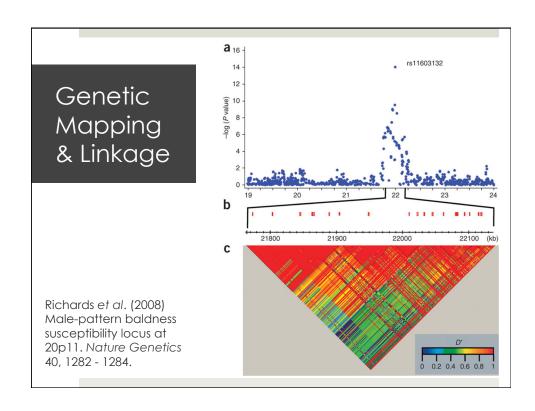
D'=	0.81
$r^2 =$	0.66

TABLE 2.2	Linkage Di	sequilibrium from	Admixture of Subp	opulations
Chromosome	Frequency	Subpopulation 1	Subpopulation 2	Equal mixtu

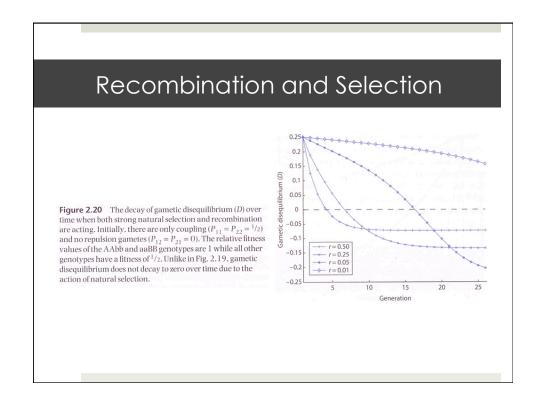
Chromosome	rrequency	Subpopulation 1	Subpopulation 2	Equal Illixture
AB	P_{AB}	0.0025	0.9025	0.4525
Ab	P_{Ab}	0.0475	0.0475	0.0475
аВ	P_{aB}	0.0475	0.0475	0.0475
ab	P_{ab}	0.9025	0.0025	0.4525
	$D = P_{AB}P_{ab} - P_{Ab}P_{aB}$	0	0	0.2025
	D_{min}	-0.0025	-0.0025	-0.2500
	D_{max}	0.0475	0.0475	0.2500


Recombination in an admixed population




Length of haplotypes blocks

- Key point! regions exhibiting linkage disequilibrium are generally quite short in large natural populations


 - → a few tens of kb in humans and dogs
 - length varies with local recombination rates and timing and strength of natural selection
- Why is this significant for population genetics?

