The Neutral Theory of Molecular Evolution

Kimura (1968)
< initially viewed as a challenge to Darwinian
evolution

e.g., King & Jukes 1969 Science 164:788-798.
many genetic polymorphisms have no
effect on fitness and are therefore
selectively neutral
neutral polymorphisms are maintained by
the combined effects of mutation and drift

< mutations intfroduce new alleles as others are
lost through drift

Origins of the “Selectionist-Neutralist”

Debate

the only “mutations” early biologists saw were ones that
had phenotypic effects

1953 - structure of DNA (Watson & Crick / Franklin)
1960-70" s - protein electrophoresis

< revealed allelic diversity for many genes

1968 - Motoo Kimura - the neutral theory

< motivated by allozyme (amino acid) variation

discovery of “junk DNA"

< 98.5% of human genome is non-coding

DNA sequencing has revealed substantial silent and non-
coding variation, suggesting that much genetic variation
is selectively neutral (or nearly so!)
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Infinite Alleles/Sites Model

what is the expected level of genetic

diversity (heterozygosity) given mutation

and drift in a finite population?

suppose a gene is 200 base pairs long,

coding for 300 amino acids

<> there are 4790 = 10°42 possible sequences
(sorta...)

thus, we can reasonably assume that each

new mutation generates a unique allele...

Infinite Alleles/Sites Model

it follows that alleles with the same
sequence are identical by descent
autozygous - a genotype with two alleles
that are identical by descent

allozygous - a genotype with alleles that are
not identical by descent (is this possible?)

< arbitrarily declare all alleles unique at =0

autozygous = homozygous under the infinite
alleles model
< thus, the level of heterozygosity can be

predicted from the expected level of
autozygosity
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Infinite Alleles/Sites Model

F', = probability that two randomly chosen
alleles are IBD

< same as autozygosity if we randomly choose
alleles to form genotypes

<~ in this model, mutations generate new alleles
and “erase” IBD

Infinite Alleles Model

in a random-breeding population of
constant size, an equilibrium is reached
where the increase in autozygosity (~IBD)
due to loss of alleles by drift is exactly
countered by the increase in heterozygosity
produced by new mutations

solving for F, = F, , yields:

|

o -
1+4Nu
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Infinite Alleles Model

1 1 1
I1+4Nu 1+4N,u 1+6

given the assumption of infinite alleles, any
genotype that is not autozygous is
heterozygous, so

F=

A

A=1-f= Nt _ O

144N 1 1+6

Neutral Expectations for Genetic Diversity
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FIGURE 4.7  Plot of average homozygosity and average heterozygosity for
the infinite-alleles model. Intermediate values of heterozygosity are maintained
over only a small range of 6 = 4N, u.
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F=

< although an ideal population is expected to
reach an “equilibrium” value of F, the
population is not really at equilibrium, but
rather in a “dynamic steady state” because
there is a continual furnover of alleles
< the most common allele is periodically
replaced by another, other alleles are lost,
and new alleles are produced by mutation

< DNA sequencing
revealed
surprisingly high
levels of neutral
genetic variation

FIGURE 1.15 Haplotypes of alleles in
the Adh region of Drosophila melanogaster
from the East Coast of North America.
Each line in the network connects two
haplotypes differing by a single molecu-
lar difference. An additional 20 haplo-
types, differing by more than one
change from those in the network, are
not shown. Squares indicate the Adh-F
allele, circles the Adh-S allele. (From
Berry and Kreitman 1993.)




DNA Sequence-based Measures of

Genetic Variation

S = number of segregating sites

[T = average number of pairwise
differences between sequences

IT analogous to heterozygosity

can derive theoretical expectations for
both measures for an idealized, random

breeding population (and also assuming
an “infinite sites” model)...

Segregating sites

expected number of segregating sites:

I 1 1 1
E(S)=0(1+—+—+—+...+—

2 3 4 k-1
where 6 = 4Ny and k = the number of
sequences in the sample
u ("*mu”) is the per locus mutation rate =

mutation rate per site per generation x
length of sequence
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Coalescent theory often provides “easy”

derivations of classical theory

e.g., number of segregating sites in a sample

<-is a function of the total length (in
generations) of the coalescent tree E(T) times
the mutation rate per locus per generation

iﬂ}) = ilE(T) ili(jj_vl) - 4N§%

i=2

E(T)=E

Coalescent theory often provides “easy”

derivations of classical theory

e.g., number of segregating sites in a sample

<-is a function of the total length (in
generations) of the coalescent tree E(T) tfimes
the mutation rate per locus per generation

2__ kl_

n

E [total _ treelength] = ikE [tk] =

k=2 k= 2
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Average number of pairwise differences

- total number of nucleotide mismatches

total number of pairwise comparisons
in an idealized population, the expected value

of [Tis 6: E(H)=0=4NM

6 can also be estimated from S:

0=E(S)/(1+;+;+411+m+k11)

Nucleotide site in gene

Allele 132 142 162 192 198 201 207 240 246 351 354 372 375 405 417 483

a T ¢ T A C C T C € T C G G T T A
b T ¢c ¢c 1T A C C T € €C T G G T T T
c c T ¢ ¢c ¢c ¢c ¢c T C€C T T T G C T A
d c T ¢ ¢c c ¢c ¢c T T €C T G A C T T
e c T c¢c c¢c ¢ T C T T T T G G C C A

0=16/(1+1+1+1)=7.68
2 3 4

(6><6)+(4X9)+(7X1)+(0"484))=7.90

E(9)=H=( 0
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differences in the values for number of
segregating sites and average pairwise
differences lead to the inference that the
gene(s) or the population departs in one or
more ways from the ideal “null model” (i.e.,
constant population size, no selection, etc..)

MtDNA haplotypes .

for big brown bats

; B8 {vo[ks}—{NE[NE
(Eptesicus fuscus) [Solks}— <2

east of the Rockies 8

IL[AB[SK}” /

0 (IT)=5.35
0 (S)=1042

10/2/14



10/2/14

Data versus histories

generally, the coalescent history of a
sample is unknowable

but, can be crudely approximated by
building a gene tree based on DNA
sequence data

“hanging”” mutations on the tree...

MRCA S|

1 [ [ =
G & T T T &G G G G G

Rosenberg & Nordborg 2002 Nat Rev Gen
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Data versus histories

generally, the coalescent history of a
sample is unknowable

but, can be crudely approximated by
building a gene tree based on DNA
sequence data

genealogical histories estimated with
sequence data typically collapse to
poorly resolved “networks”

Ornithine decarboxylase
intron 6 sequences for
mallards, black ducks,
and mottled ducks

FL156.2

Harrigan et al. 2008 Mol. Ecol. Resources
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The Ewens Distribution

beyond F, there is additional “information”
available in the number of alleles present
and the distribution of allele frequencies

< “allelic configuration”

< or “allele-frequency spectrum”

Ewens (1972) - expected number of alleles k
in a sample of size n, depends on 6

0 0 0

+ + . —
0+1 O6+2 O+n-1

E(k)=1+

Values of 6 = 4Nu
E(k)=1+i+ 0 F ot 0
0+1 06+2 O0+n-1

18 7 «=0.125
| =025
0.5

© (@] N N o~
1
I\')

Expected number of unique alleles
o~
w
N

\

o

0 5 10 15 20
N (sample size)
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The Ewens Sampling Formula

but there’ s more than just k (number of alleles)
the Ewens Distribution specifies the probability
distribution on the set of all partitions of the
integer n

< a.k.a. the “Chinese Restaurant” problem

< broad applicability outside of population
genetics

Partitions of 8

8 4+1+1+1+1

7+1 3+3+2

6+2 3+3+1+1

6+1+1 3+2+2+1

5+3 3+2+1+1+1
5+2+1 3+1+1+1+1+1
5+1+1+1 2+2+2+2

4+4 2+2+2+1+1
4+3+1 2+2+1+1+1+1
4+2+2 2+41+1+1+1+1+1
4+2+1+1 1+1+1+1+1+1+1+1
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Ewens’ Sampling Formula

(from Wikipedial)

Ewens’ result provided the basis for a formula
(Karlin & McGregor, 1972) giving the probability of a
given dllele frequency configuration (note: this
is just one formulation)...

n

Pr{al,...,an} = n l_[ 0"

6(0+1) ...(0+n-1)1ja,

where q,,...,a, are counts of the number of

alleles represented one, two,..., n times in
the sample. q,,...,a, are nonnegative integers

that satisfy: a, +2a, + 3a, + ...+ na, =n

Karlin & McGregor 1972

this equation works too...
r! 1 0"
mn,...n, o, L(6)

where L (6) =0(0+1)(6+1) ... (0+r-1)

Pr(0; n, nyy...o ny) =

Suppose the number of distinct integers in the set n, ,
7 ,..., M is p and that there are exactly o, indices i such that #; = n,, exactly
o, indices 7 such that #; = =, ., , and so on, with exactly «, indices i such that
=Ny
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FIGURE 4.8 The infinite-alleles model prediction of the relation between the
expected number of alleles E(k) and the expected gene identity (homozygosity)
F. The three curves represent a range of values of 6 = 4N, 4, starting at 6 = 0.1 in
the upper left, and ending with 6 = 10 in the lower right. For the value of 6 =1,
the expected F, given by the relation F = 1/(1 + 6), is 3, regardless of the sample
size. Larger sample sizes always lead to larger expected numbers of alleles, but
the difference is greater in more diverse populations (those with smaller F).
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r FIGURE 4.12  Gene identity (F)
plotted against the observed number
of alleles coding for various proteins
in a sample of 279 E. coli. The solid
lines represent the upper 97.5% and
Mdh lower 2.5% confidence limits, and the
observation that all of the tested loci
fall within these limits suggests good
concordance with the infinite-alleles
model of neutral mutation. (From
Whittam et al. 1983.)
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Ewens’ Sampling Formula

key point: the Ewens distribution provides
a basis for testing observed data against

the neutral model

FIGURE 4.10 Observed (open 0.6 ( ]
columns) and expected (black bars)
allele frequency spectrum of the
HRAS-1 gene in humans, identified
by Southern blotting with the
pLMO0.8 probe and Tagl digests.
Observed data are from Baird et al.

(1986). The expected distribution -
was generated using the Ewens sam- ]]I
pling formula. In this sample of 490

genes there were 14 distinct alleles, LI

four of which were present in just More common ———————————> Less common
one individual. (From Clark 1988.) Allele rank

Allele frequency
I
£
T

N
T

Ewens’ Sampling Formula

key point: the Ewens distribution provides
a basis for testing observed data against
the neutral model

and if the data fit neutral expectations,
they can be used to estimate
demographic and historical parameters
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Site Frequency Spectrum

applicable to DNA sequence data

what is the distribution of frequencies for
individual mutations (SNPs)

number of derived “singletons” = 6

why?e

< length of “external branches” = 4N generations
< (note: t =2 in Nielsen & Slatkin)

frequency distribution for derived mutations

E[fj]=#, forj=1,2,..,n-1

k

k-1

Neutral Expectations with...

...constant population size and mutation

nucleotide diversity E(H) =0=4Nu
(infinite sites)

# segregating sites E(S)=3(1+%+%+%+---+L)

(infinite sites) k=1
heterozygosity R 0
(infinite alleles) H=—
1+6
# unique alleles
(infinite alleles) E(k)=1+ 0 + 0 + ot 0
0+1 6+2 0+n-1

allele frequency distribution ' gy
(infinite alleles) Pr{a,,....a,} = n n

0(0+1) ... (0+n-1)L1 %a!

site frequency distribution 1/
(infinite sites) E[fj]= I forj=1,2,..,n1
1

n-1

k

k-1
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The coalescent with population growth

coalescent frees are expected to be sparse
(few lineages) near the root for populations
of constant size

in a growing or shrinking population, the
distribution of coalescence times differs
from expectations for the ideal population
expanding populations have more nodes
closer to the root of the tree

< takes longer for alleles to “find each other” in
a growing population

constant

10/2/14
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constant growing declining

B CDE F GH I J K L M NO
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Past

So, what's the point?

coalescent modeling

< simulate genealogies under a given set of
population parameters

< “hang” random mutations on those trees in
equal number (or at the same rate) as in the
observed data

< evaluate whether the observed data could
have been produced by a random
coalescent process (the null hypothesis)
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