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The Neutral Theory of Molecular Evolution 

v Kimura (1968) 
²  initially viewed as a challenge to Darwinian 

evolution  
²  e.g., King & Jukes 1969 Science 164:788-798. 

v many genetic polymorphisms have no 
effect on fitness and are therefore 
selectively neutral  

v neutral polymorphisms are maintained by 
the combined effects of mutation and drift 
² mutations introduce new alleles as others are 

lost through drift 

Origins of the “Selectionist-Neutralist” 
Debate 

v  the only “mutations” early biologists saw were ones that 
had phenotypic effects 

v  1953 - structure of DNA (Watson & Crick / Franklin) 
v  1960-70’s - protein electrophoresis 

²  revealed allelic diversity for many genes 

v  1968 - Motoo Kimura - the neutral theory 
²  motivated by allozyme (amino acid) variation  

v  discovery of “junk DNA” 
²  98.5% of human genome is non-coding 

v  DNA sequencing has revealed substantial silent and non-
coding variation, suggesting that much genetic variation 
is selectively neutral (or nearly so!) 
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Infinite Alleles/Sites Model 

v what is the expected level of genetic 
diversity (heterozygosity) given mutation 
and drift in a finite population? 

v suppose a gene is 900 base pairs long, 
coding for 300 amino acids 
² there are 4900 = 10542 possible sequences 

(sorta…) 
v thus, we can reasonably assume that each 

new mutation generates a unique allele… 

Infinite Alleles/Sites Model 

v it follows that alleles with the same 
sequence are identical by descent 

v autozygous - a genotype with two alleles 
that are identical by descent 

v allozygous - a genotype with alleles that are 
not identical by descent (is this possible?) 
² arbitrarily declare all alleles unique at t = 0 

v autozygous = homozygous under the infinite 
alleles model 
² thus, the level of heterozygosity can be 

predicted from the expected level of 
autozygosity 
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Infinite Alleles/Sites Model 

v Ft = probability that two randomly chosen 
alleles are IBD 
² same as autozygosity if we randomly choose 

alleles to form genotypes 

²  in this model, mutations generate new alleles 
and “erase” IBD 
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Infinite Alleles Model 

v in a random-breeding population of 
constant size, an equilibrium is reached 
where the increase in autozygosity (~IBD) 
due to loss of alleles by drift is exactly 
countered by the increase in heterozygosity 
produced by new mutations 

v solving for Ft = Ft-1 yields: 
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Infinite Alleles Model 

v given the assumption of infinite alleles, any 
genotype that is not autozygous is 
heterozygous, so 
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Ĥ =1− F̂ = 4Neµ
1+ 4Neµ

=
θ
1+θ

Neutral Expectations for Genetic Diversity 
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v although an ideal population is expected to 
reach an “equilibrium” value of F, the 
population is not really at equilibrium, but 
rather in a “dynamic steady state” because 
there is a continual turnover of alleles 
² the most common allele is periodically 

replaced by another, other alleles are lost, 
and new alleles are produced by mutation 

F̂ = 1
1+ 4Nµ

=
1
1+θ

v DNA sequencing 
revealed 
surprisingly high 
levels of neutral 
genetic variation 
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DNA Sequence-based Measures of 
Genetic Variation 

v S = number of segregating sites 
v ∏ = average number of pairwise 

differences between sequences 
v ∏ analogous to heterozygosity 
v can derive theoretical expectations for 

both measures for an idealized, random 
breeding population (and also assuming 
an “infinite sites” model)… 

Segregating sites 

v expected number of segregating sites: 

v where θ = 4Nµ and k = the number of 
sequences in the sample 

v µ (“mu”) is the per locus mutation rate = 
mutation rate per site per generation x 
length of sequence 
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Coalescent theory often provides “easy” 
derivations of classical theory 

v e.g., number of segregating sites in a sample 
²  is a function of the total length (in 

generations) of the coalescent tree E(T) times 
the mutation rate per locus per generation 
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Coalescent theory often provides “easy” 
derivations of classical theory 

v e.g., number of segregating sites in a sample 
²  is a function of the total length (in 

generations) of the coalescent tree E(T) times 
the mutation rate per locus per generation 
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Average number of pairwise differences	



v  in an idealized population, the expected value 
of ∏ is θ:	



v θ can also be estimated from S: 
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Key point! 

v differences in the values for number of 
segregating sites and average pairwise 
differences lead to the inference that the 
gene(s) or the population departs in one or 
more ways from the ideal “null model” (i.e., 
constant population size, no selection, etc..) 

mtDNA haplotypes 
for big brown bats 
(Eptesicus fuscus) 
east of the Rockies 

v θ (∏) = 5.35	


v θ (S) = 10.42	
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Data versus histories 

v generally, the coalescent history of a 
sample is unknowable 

v but, can be crudely approximated by 
building a gene tree based on DNA 
sequence data 

Rosenberg & Nordborg 2002 Nat Rev Gen 

“hanging” mutations on the tree… 
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Data versus histories 

v generally, the coalescent history of a 
sample is unknowable 

v but, can be crudely approximated by 
building a gene tree based on DNA 
sequence data 

v genealogical histories estimated with 
sequence data typically collapse to 
poorly resolved “networks” 

Ornithine decarboxylase 
intron 6 sequences for 
mallards, black ducks, 
and mottled ducks 

Harrigan et al. 2008 Mol. Ecol. Resources 
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The Ewens Distribution 

v beyond F, there is additional “information” 
available in the number of alleles present 
and the distribution of allele frequencies 
² “allelic configuration” 
² or “allele-frequency spectrum” 

v Ewens (1972) - expected number of alleles k 
in a sample of size n, depends on θ	
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The Ewens Sampling Formula 

v but there’s more than just k (number of alleles)	


v the Ewens Distribution specifies the probability 

distribution on the set of all partitions of the 

integer n	


² a.k.a. the “Chinese Restaurant” problem 
² broad applicability outside of population 

genetics 

v 8 
v 7 + 1 
v 6 + 2 
v 6 + 1 + 1 
v 5 + 3 
v 5 + 2 + 1 
v 5 + 1 + 1 + 1 
v 4 + 4 
v 4 + 3 + 1 
v 4 + 2 + 2 
v 4 + 2 + 1 + 1 

Partitions of 8 

v 4 + 1 + 1 + 1 + 1 
v 3 + 3 + 2 
v 3 + 3 + 1 + 1 
v 3 + 2 + 2 + 1 
v 3 + 2 + 1 + 1 + 1 
v 3 + 1 + 1 + 1 + 1 + 1 
v 2 + 2 + 2 + 2 
v 2 + 2 + 2 + 1 + 1 
v 2 + 2 + 1 + 1 + 1 + 1 
v 2 + 1 + 1 + 1 + 1 + 1 + 1 
v 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 
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Ewens’ Sampling Formula  
(from Wikipedia!) 

v Ewens’ result provided the basis for a formula 
(Karlin & McGregor, 1972) giving the probability of a 
given allele frequency configuration (note: this 
is just one formulation)… 
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Pr a1,...,an{ } =
n!

θ θ +1( ) ... θ + n −1( )
θ a j

j a j a j!j=1
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∏

where a1,...,an  are counts of the number of
alleles represented one, two,...,  n times in

the sample. a1,...,an  are nonnegative integers 
that satisfy :    a1 + 2a2 + 3a3 + ...+ nan = n

Karlin & McGregor 1972 
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Pr θ ; n1,  n2,...,  nk( ) =
r!

n1n2 ... nk
1

α1!α2!...α p!
θ k

Lr θ( )
where Lr θ( ) = θ θ +1( ) θ +1( ) ... θ + r −1( )

v this equation works too… 
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Ewens’ Sampling Formula 

v key point: the Ewens distribution provides 
a basis for testing observed data against 
the neutral model 

Ewens’ Sampling Formula 

v key point: the Ewens distribution provides 
a basis for testing observed data against 
the neutral model  

v and if the data fit neutral expectations, 
they can be used to estimate 
demographic and historical parameters 
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Site Frequency Spectrum 

v applicable to DNA sequence data 
v what is the distribution of frequencies for 

individual mutations (SNPs) 

v number of derived “singletons” = θ 
v why? 

²  length of “external branches” = 4N generations  

²  (note: t = 2 in Nielsen & Slatkin) 

v  frequency distribution for derived mutations 
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Neutral Expectations with… 

v  ...constant population size and mutation 
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The coalescent with population growth 

v coalescent trees are expected to be sparse 
(few lineages) near the root for populations 
of constant size 

v in a growing or shrinking population, the 
distribution of coalescence times differs 
from expectations for the ideal population 

v expanding populations have more nodes 
closer to the root of the tree 
² takes longer for alleles to “find each other” in 

a growing population 

constant 
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growing 

declining 
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constant growing declining 

So, what’s the point? 

v coalescent modeling 
² simulate genealogies under a given set of 

population parameters 
² “hang” random mutations on those trees in 

equal number (or at the same rate) as in the 
observed data 

² evaluate whether the observed data could 
have been produced by a random 
coalescent process (the null hypothesis) 


