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Coalescent Theory 

v the Wright-Fisher model considers 
changes in the ideal population as time 
moves forward 

v coalescent theory (~1980+) looks 
backwards in time 

v how long does it take for k alleles to 
coalesce to k - 1 alleles, then k - 2, k - 3,
…, and finally a single ancestral allele? 

Stochastic elements of the coalescent 

v alleles randomly sample their parents in the 
previous generation 
²  results in variation in offspring number 

v sample of loci from the genome 
² different loci have different genealogical histories 

v sample of alleles from the population 
² different samples of the same locus may have 

different coalescent trees 
v distribution of mutations on the genealogy 

² mutations allow estimates of coalescence times 
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Rosenberg & Nordborg 2002 Nat Rev Gen 
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Coalescent probabilities 1 

v the present is time 0 (zero) 
v probability that two alleles had a common 

ancestor in generation 1	



v probability that two alleles did not have a 
common ancestor in generation 1	
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Coalescent probabilities 2 

v probability that two alleles have still not 
coalesced by generation t	
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Coalescent probabilities 3 

v probability that two alleles had a common 
ancestor in generation t+1	
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Coalescent probabilities 4 

v can we randomly choose a coalescence time 
from the exponential distribution? 
²  need to solve for t as a function of a random 

variable from 0 to 1 

PNC ≈ e
−t 2N( )

ln PNC( ) ≈ −t 2N( )

ln PNC( )×2N ≈ −t

t ≈ − ln PNC( )×2N

Coalescent probabilities 5 

v what if we consider k alleles and not just 2? 

v what is the probability that k alleles had k 
distinct parental alleles the previous 
generation? 

Pr k( ) = 1− i
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Coalescent probabilities 6 

v probability that k alleles do not coalesce for t 
generations 
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Coalescent probabilities 7 

v probability that k alleles do not coalesce for t 
generations, and then one pair coalesces to 
give k - 1 alleles at t + 1 generations 

 
v distribution has mean and variance: 
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expected coalescence times for k = 10 and N = 10,000 
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