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Ch 4: Population Subdivision 

Population Structure 

v most natural populations exist across a 
landscape (or seascape) that is more or less 
divided into areas of suitable habitat 

v to the extent that populations are isolated, 
they will become genetically differentiated 
due to genetic drift, selection, and 
eventually mutation 

v genetic differentiation among populations 
is relevant to conservation biology as well as 
fundamental questions about how 
adaptive evolution proceeds 
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Definitions 

v panmixia 
v population structure 
v subpopulation 
v gene flow 
v isolation by distance 
v vicariance (vicariant event) 

Structure Results in “Inbreeding” 

v given finite population size, autozygosity 
gradually increases because the 
members of a population share 
common ancestors 
² even when there is no close 

inbreeding 
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“Identical by Descent” 

v what is the probability that two randomly 
sampled alleles are identical by descent (i.e., 
“replicas of a gene present in a previous 
generation”)? 
²  Wright’s “fixation index” F	


v at the start of the process (time 0), “declare” all 
alleles in the population to be unique or 
unrelated, Ft = 0 at t = 0 

v  in the next generation, the probability of two 
randomly sampled alleles being copies of the 
same allele from a single parent = 1/(2N), so… 



10/8/14	  

4	  

€ 

or

Ft =1- 1−
1
2N

# 

$ 
% 

& 

' 
( 
t

“Identical by Descent” 

€ 

Ft =
1
2N

+ 1− 1
2N

# 

$ 
% 

& 

' 
( Ft−1

= probability that alleles are copies of the same gene from 
the immediately preceding generation plus the probability 
that the alleles are copies of the same gene from an earlier 
generation 

assuming F0 = 0 

compare to: 
mean time 
to fixation for 
new mutant 
= ~4N	
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v Suppose 
multiple 
subpopulations: 

Overall average 
allele frequency 
stays the same but 
heterozygosity 
declines 

Predicted distributions of allele frequencies in 
replicate populations of N = 16 

same process as 
in this figure… 
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Population Structure 

v Ft for a single population is essentially the 
same thing as FST	

² a measure of genetic differentiation among 

populations based on the reduction in 
heterozygosity 

v due to increasing autozygosity, 
structured populations have lower 
heterozygosity than expected if all were 
combined into a single random 
breeding population 

Aa = 0 
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FST 

v measures the deficiency of 
heterozygotes in the total population 
relative to the expected level 
(assuming HWE) 

v in the simplest case, one can 
calculate FST for a comparison of two 
populations… 

FST =
HT −HS

HT

Two population, two allele FST	


Frequency	  of	  "A"	  

Popula2on	  1	   Popula2on	  2	   HT	
 HS	
 FST	

0.5	   0.5	   0.5	   0.5	   0	  

0.4	   0.6	   0.5	   0.48	   0.04	  

0.3	   0.7	   0.5	   0.42	   0.16	  

0.2	   0.8	   0.5	   0.32	   0.36	  

0.1	   0.9	   0.5	   0.18	   0.64	  

0.0	   1.0	   0.5	   0	   1	  

0.3	   0.35	   0.43875	   0.4375	   0.002849	  

0.65	   0.95	   0.32	   0.275	   0.140625	  
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FST - Whalund Effect 

v Whalund 
principle - 
reduction in 
homozygosity 
that results from 
combining 
differentiated 
populations 
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Frequency of heterozygotes in the combined population is higher 
than the average of the separate populations (0.42 > 0.40) 

FST =
HT −HS

HT

=
0.42− 0.40
0.42

= 0.0476

FST =
var(p)
pq

=
0.01
0.21

= 0.0476
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FST - Whalund Effect 

v Whalund principle - reduction in homozygosity 
due to combining differentiated populations  
² R = frequency of homozygous recessive 

genotype 
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FST - Whalund Effect (Nielsen & Slatkin) 

fA =
2N1 fA1 + 2N2 fA2

2N1 + 2N2
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fA1 + fA2
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FST over time w/ no migration 
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FST 
increases with 
time due to 
genetic drift in 
exactly the 
same way as 

Ft	
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Migration 

v migration between populations results in 
gene flow, which counters the effects of 
genetic drift (and selection) and tends 
to homogenize allele frequencies 

v what level of migration is sufficient to 
counter the effects of genetic drift?     
²  Nm ~ 1 

v what level of migration is sufficient to 
counter the effects of selection?    
²  m > s	


The Island 
Model 

 
assumptions: 
v equal population 

sizes 
v equal migration 

rates in all 
directions 
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Equilibrium value of FST 

v change in Ft with migration 
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setting  ˆ F = Ft = Ft−1 

€ 

some algebra +  ignoring terms in m2 and m/N ...

F̂ ≈ 1
1+ 4Nm

Equilibrium value of FST 

F̂ ≈ 1
1+ 4Nm

€ 

Nm =1

Fig. 4.5, pg. 69 
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Migration rate vs. Number of migrants 

v migration rates yielding Nm = 1 
² Ne = 100, m = 0.01 

² Ne = 1000, m = 0.001 

² Ne = 10000, m = 0.0001 

² Ne = 100000, m = 0.00001 

Equilibrium value of FST 

mtDNA or 
y-chromosome 
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FST over time w/ no migration 
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Nm = 1 corresponds to FST = 0.2  

v Wright (1978) 
²  FST = 0.05 to 0.15 - “moderate differentiation” 
²  FST = 0.15 to 0.25 - “great genetic differentiation” 
²  FST > 0.25 - “very great genetic differentiation” 

€ 

Nm =1
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Nm = 1 corresponds to FST = 0.2  

v Wright (1978) 
²  FST = 0.05 to 0.15 - “moderate differentiation” 
²  FST = 0.15 to 0.25 - “great genetic differentiation” 
²  FST > 0.25 - “very great genetic differentiation” 

v populations of most mammalian species range 
from FST = 0.1 to 0.8 

v humans: 
²  among European groups: 0 to 0.025 
²  Among Asians, Africans & Europeans: 0.05 to 0.2 

FST 

v theoretical maximum is 1 if two 
populations are fixed for different alleles 

v but, there are some issues… 
v fixation index developed by Wright in 

1921 when we knew essentially nothing 
about molecular genetics 
² two alleles at a locus (with or w/o 

mutation between them) was the 
model 



10/8/14	  

16	  

FST versus GST 

v FST – derived by Wright as a function of the 
variance in allele frequencies 

v GST – derived by Nei as a function of within and 
among population heterozygosities 
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HT −HS
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GST  with multiple alleles	

v microsatellite loci, for example, may have 

many alleles in all subpopulations 

v   FST can not exceed the average level of 
homozygosity (1 minus heterozygosity) 

 

GST =1−
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<1−HS
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Balloux et al. 
2000 Evolution 

GST ~ 0.12	


GST =
HT −HS

HT

Hedrick (2005) Evolution 

v a standardized genetic distance measure for k 

populations: G’ST	


v where: 
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Allele 1 2 1 2
1 0.1 — 0.1 —
2 0.2 — 0.2 —
3 0.2 — 0.2 0.1
4 0.2 — 0.2 0.2
5 0.2 — 0.2 0.2
6 0.1 — 0.1 0.2
7 — 0.1 — 0.2
8 — 0.2 — 0.1
9 — 0.2 — —

10 — 0.2 — —
11 — 0.2 — —
12 — 0.1 — —

HS HS

HT HT

FST (GST) FST (GST)
HT(max) HT(max)

GST(max) GST(max)

G'ST G'ST

0.099
1 0.357

0.099

Subpopulation Subpopulation

0.910
0.035
0.850
0.8200.820

0.910
0.099
0.910
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Coalescent-based Measures 

v Slatkin (1995) Genetics 

v where T and TW are the mean 
coalescence times for all alleles and 
alleles within subpopulations 

FST =
T −TW
T

TW = 2Ned

TB = 2Ned +
d −1
2m
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RST for microsatellites 

v under a stepwise mutation model for 
microsatellites, the difference in repeat number 
is correlated with time to coalescence 

 

v where S and SW are the average squared 
difference in repeat number for all alleles and 
alleles within subpopulations 

v violations of the stepwise mutation model are a 
potential problem 

€ 

RST =
S - SW

S 

ΦST for DNA sequences 

v the number of pairwise differences between 
two sequences provides an estimate of time 
to coalescence 

v method of Excoffier et al. (1992) takes into 
account the number of differences between 
haplotypes 

v Arelquin (software for AMOVA analyses) 
calculates both FST and ΦST for DNA 
sequence data 
²  important to specify which one is calculated 


