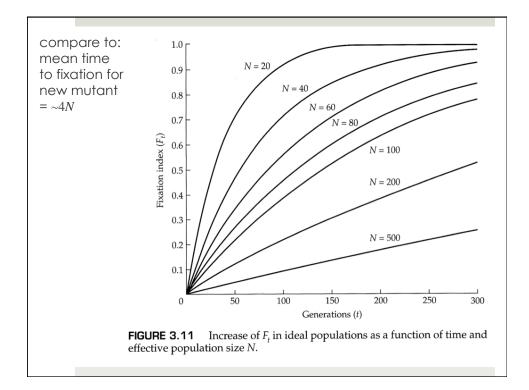


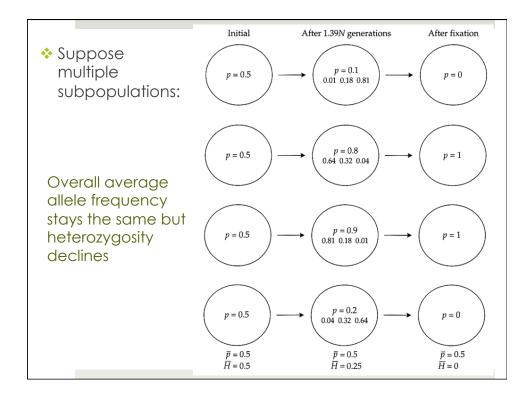
"Identical by Descent"

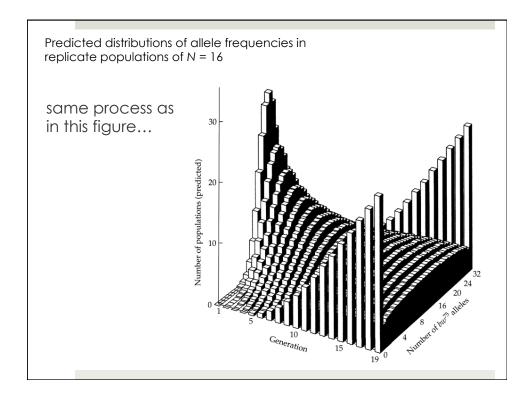
$$F_{t} = \frac{1}{2N} + \left(1 - \frac{1}{2N}\right)F_{t-1}$$

= probability that alleles are copies of the same gene from the immediately preceding generation *plus* the probability that the alleles are copies of the same gene from an earlier generation **Or**

$$F_t = 1 - \left(1 - \frac{1}{2N}\right)^t \qquad \text{assuming } F_0 = 0$$







- F_t for a single population is essentially the same thing as F_{ST}
 - a measure of genetic differentiation among populations based on the reduction in heterozygosity
- due to increasing autozygosity, structured populations have lower heterozygosity than expected if all were combined into a single random breeding population

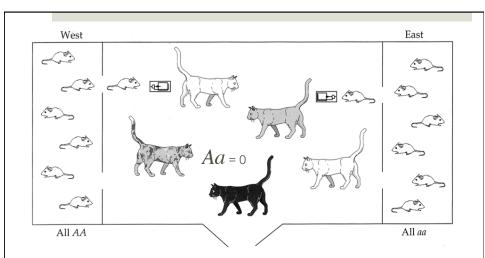
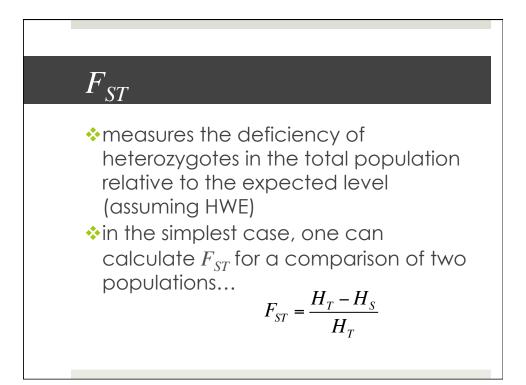
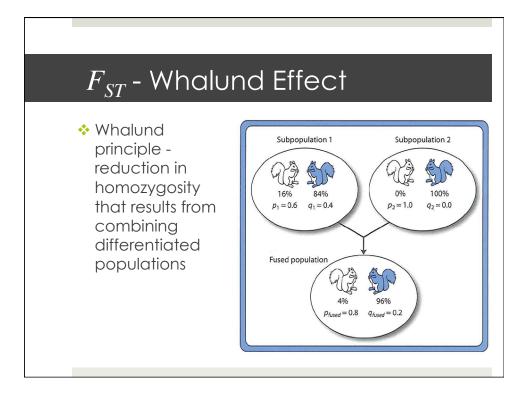
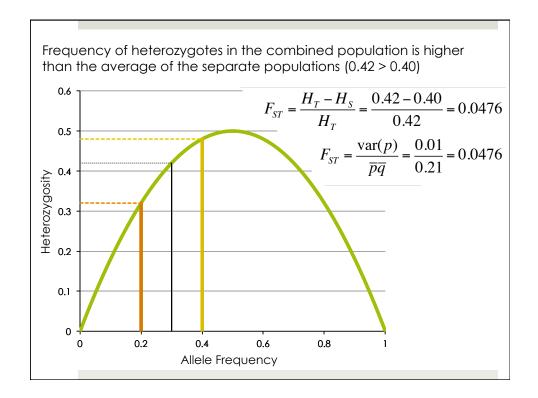


FIGURE 6.12 An extreme example of the general principle that a difference in allele frequency among subpopulations results in a deficiency of heterozygotes. The floor plan is that of a hypothetical barn. The mouse subpopulations in the east and west enclaves are completely isolated because of the cats in the middle. The west subpopulation is fixed for the *A* allele and the east subpopulation for the *a* allele. Trapping mice at random in the area patrolled by the cats would yield an overall allele frequency of $\frac{1}{2}$, but no heterozygous genotypes.

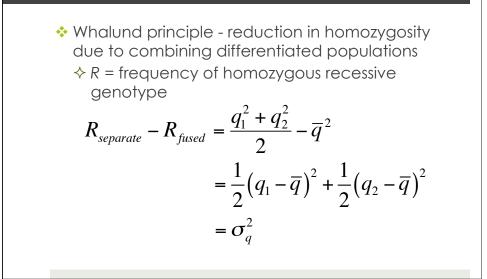


Two population, two allele $F_{\rm ST}$						
Frequency of "A"						
Population 1	Population 2	H_T	H_{S}	F_{ST}		
0.5	0.5	0.5	0.5	0		
0.4	0.6	0.5	0.48	0.04		
0.3	0.7	0.5	0.42	0.16		
0.2	0.8	0.5	0.32	0.36		
0.1	0.9	0.5	0.18	0.64		
0.0	1.0	0.5	0	1		
0.3	0.35	0.43875	0.4375	0.002849		
0.65	0.95	0.32	0.275	0.140625		

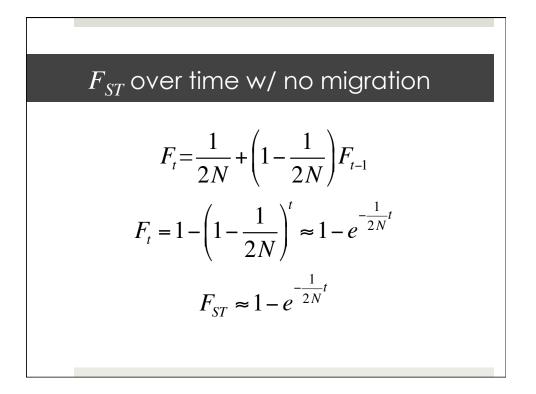


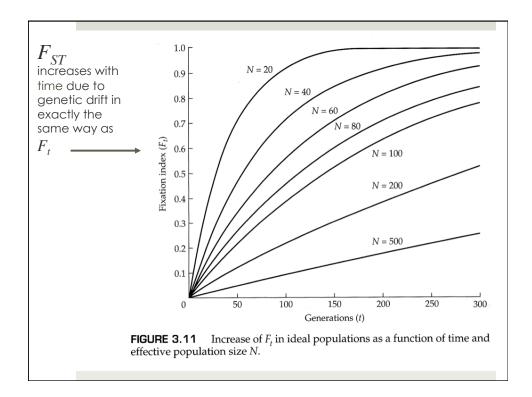


F_{ST} - Whalund Effect

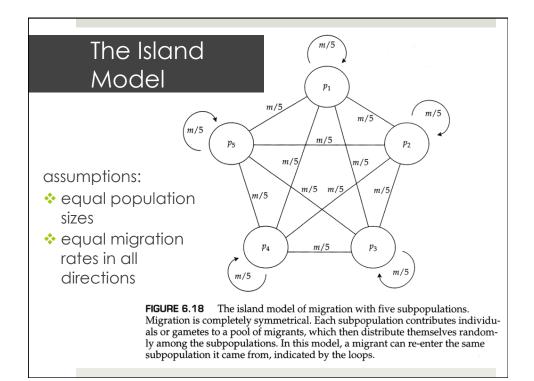


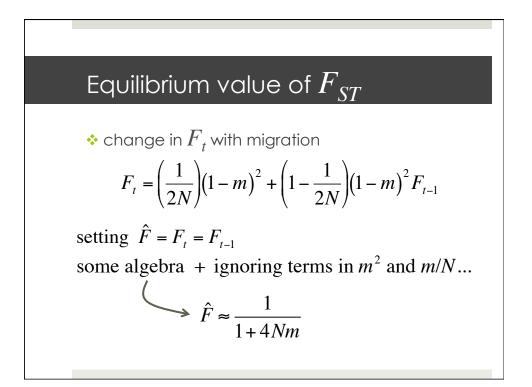
$$\begin{split} F_{ST} &- \text{Whalund Effect (Nielsen & Slatkin)} \\ f_A &= \frac{2N_1 f_{A1} + 2N_2 f_{A2}}{2N_1 + 2N_2} &= f_A = \frac{f_{A1} + f_{A2}}{2} \\ H_S &= \frac{2f_{A1} (1 - f_{A1}) + 2f_{A2} (1 - f_{A2})}{2} = f_{A1} (1 - f_{A1}) + f_{A2} (1 - f_{A2}) \\ H_T &= 2 \left(\frac{f_{A1} + f_{A2}}{2} \right) \left(1 - \frac{f_{A1} + f_{A2}}{2} \right) = f_{A1} (1 - f_{A1}) + f_{A2} (1 - f_{A2}) + \frac{\delta^2}{2} \\ \text{where } \delta &= |f_{A1} - f_{A2}| \end{split}$$

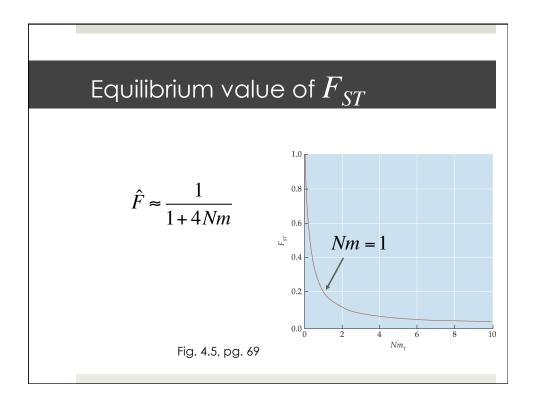


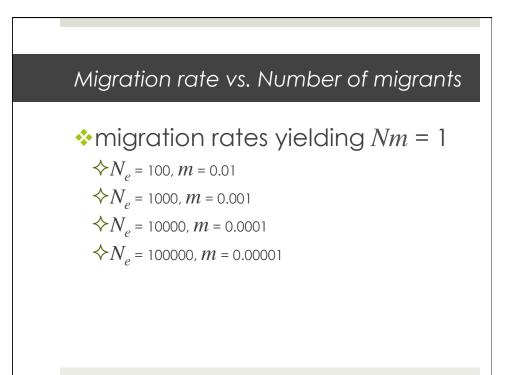


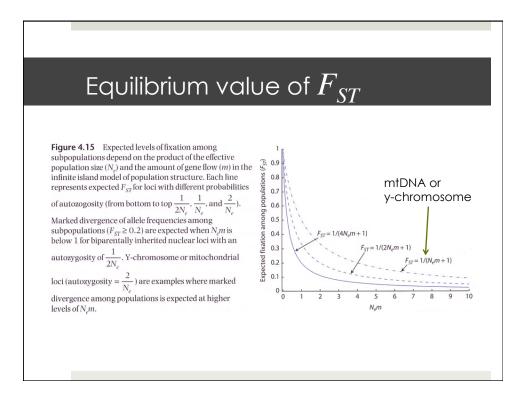
- migration between populations results in gene flow, which counters the effects of genetic drift (and selection) and tends to homogenize allele frequencies
- what level of migration is sufficient to counter the effects of genetic drift?
 Nm~1
- what level of migration is sufficient to counter the effects of selection?
 \$\phi m > s

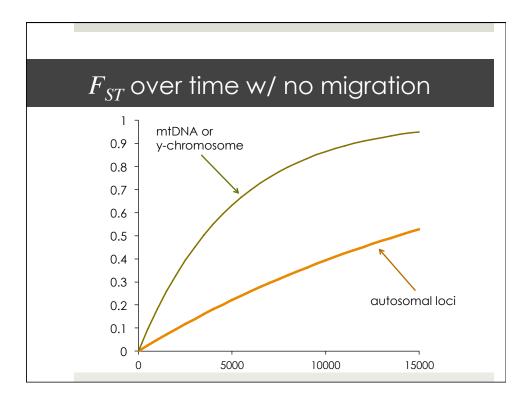


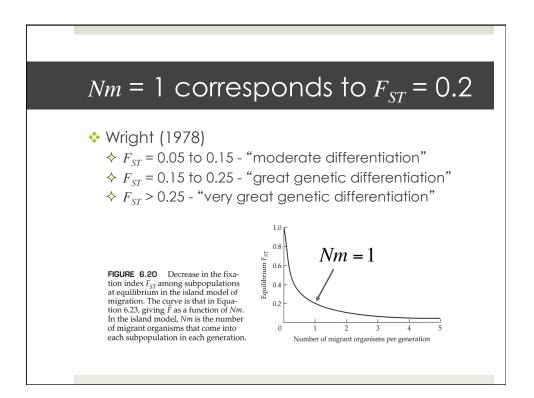






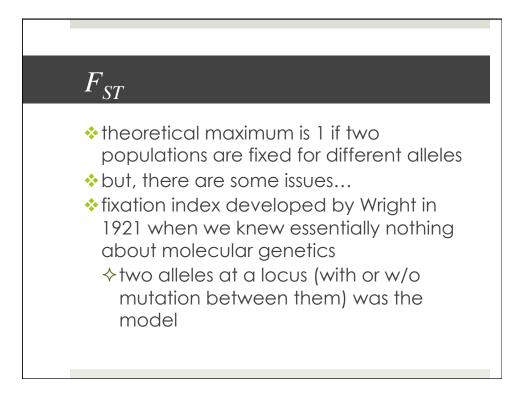


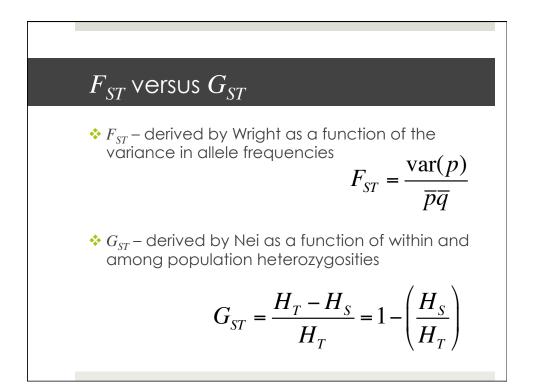


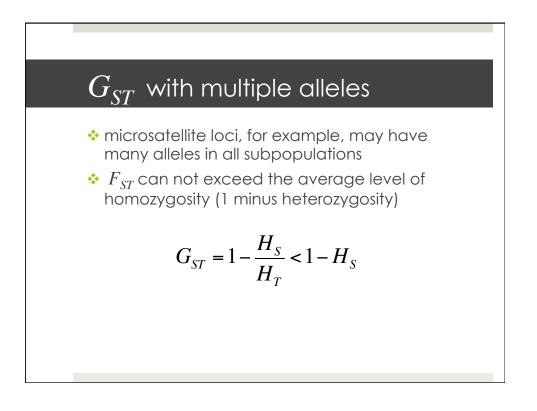


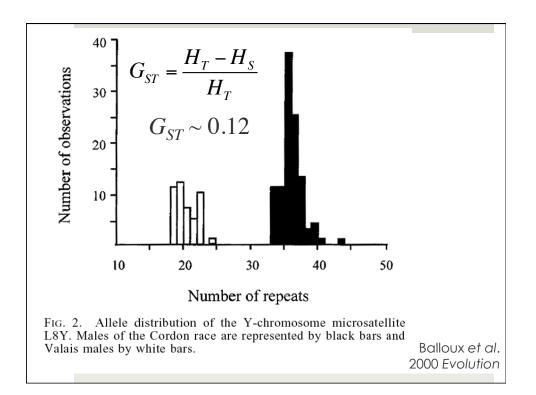
Wright (1978)

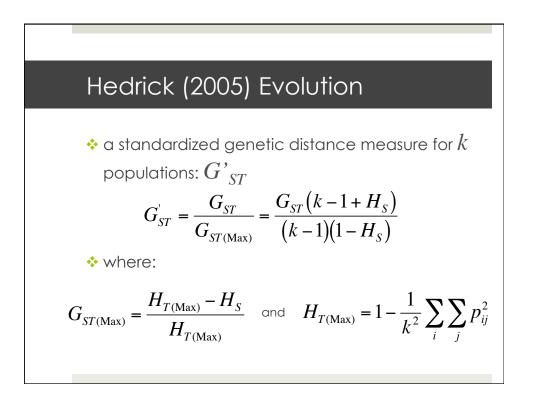
- \Rightarrow F_{ST} = 0.05 to 0.15 "moderate differentiation"
- \Rightarrow F_{ST} = 0.15 to 0.25 "great genetic differentiation"
- \Rightarrow F_{ST} > 0.25 "very great genetic differentiation"
- ✤ populations of most mammalian species range from F_{st} = 0.1 to 0.8
- humans:
 - ♦ among European groups: 0 to 0.025
 - ♦ Among Asians, Africans & Europeans: 0.05 to 0.2

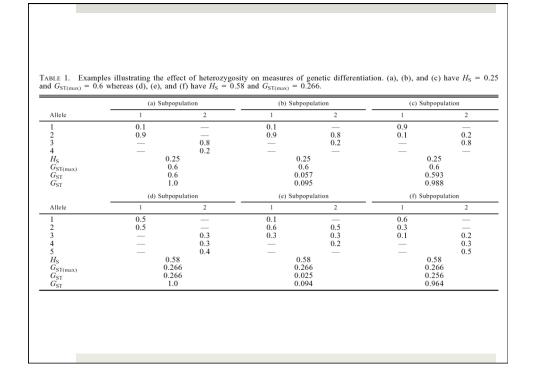












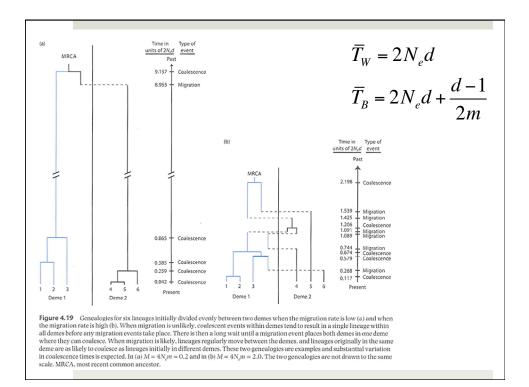
12 H _S H _T	- 0.2 - 0.2 - 0.1 0.820 0.910	2	 0.82 0.85		
	- 0.2	2	_ _ _	_ _ _	
H _S	0.820	Hs		50 35 10 99	

Coalescent-based Measures

Slatkin (1995) Genetics

$$F_{ST} = \frac{\overline{T} - \overline{T}_W}{\overline{T}}$$

where \overline{T} and \overline{T}_{W} are the mean coalescence times for all alleles and alleles within subpopulations



R_{ST} for microsatellites

 under a stepwise mutation model for microsatellites, the difference in repeat number is correlated with time to coalescence

$$R_{ST} = \frac{\overline{S} - S_W}{\overline{S}}$$

 \blacklozenge where \bar{S} and $\bar{S}_{\scriptscriptstyle W}$ are the average squared difference in repeat number for all alleles and alleles within subpopulations

 violations of the stepwise mutation model are a potential problem

