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CHAPTER 1 

1.2 The expected homozygosity, given allele frequencies fC = 0.556 and fT = 0.444,  

is 1 – 2fCfT = 0.506. In contrast, the observed homozygosity in the sample is  

fCC + fTT = 0.823. The inbreeding coefficient for this population is 

F = 2 fC fT − fCT
2 fC fT

= 0.639
 

1.4 If 0.02% of the population suffers from a disease caused by a recessive allele B 

that is in HWE with the normal allele A, this implies that 

fB = fBB = 0.0002 = 0.0141.  The fraction of the population that carries allele B 

in a heterozygous state is 2 fB (1− fB ) = 0.0279 , or 2.79%.  

1.6 The expected homozygosity is fA
2 + fC

2 + fT
2 = 0.344. The expected 

heterozygosity is 1 – 0.344 = 0.656.  

1.8 Let f1a denote the frequency of type a at the locus from Exercise 1.1, and let f2a 

denote the frequency of type a at the locus from Exercise 1.5. Assuming HWE, 

the exact match probability is 2 f1T f1C( )× 2 f2A f2C( ) = 0.0970 , or about 9.7%. 

Using the observed genotype frequencies, the match probability is instead 

f1CT × f2AC = 0.0255 , or about 2.55%.  
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CHAPTER 2 

2.2 Using Equation 2.3 we find the allele frequency in the next generation to be  

(0.1) × (1 – 10–6) + 0.9 × 5 × 10–6 = 0.100004. 

2.4 The expected number of substitutions, 

€ 

E[d], in the gene is: 

E[d]= 2µt

= 2 10−9 mutations
generation× bp

×800 bp
#

$
%

&

'
( 6×106 years× generation

20 years
#

$
%

&

'
(

= 0.48 mutations

 

2.6 As the distribution of the number of offspring is the same for all individuals, and 

as there are 2N individuals producing 2N offspring, the expected number of 

offspring of each individual in the next generation is 1. 

2.8 The probability that an offspring chooses a parent without the mutation is 1 – p. 

For the mutation to be lost, all 2N offspring in the next generation must choose a 

parent without the mutation. These events are independent, so Pr(the mutation is 

lost in one generation) = (1 – p)2N. 
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CHAPTER 3 

3.2 The observed frequency of pairwise differences per site in the sample is  

π = 21/10,000 = 0.0021. This leads us to estimate that  

N̂ =
π
4µ

=
0.0021
4×10−9

= 525,000  

3.4 Using Equation 3.11, we find 1− 4 × 20,000 ×10−5

1+ 4 × 20,000 ×10−5
= 0.556  

3.6 For the data in Exercise 3.5, Watterson’s estimate of θ is  

θ̂W =
S
1
kk=1

3
∑

=
5
11 6

= 2.727  

Tajima’s estimate of θ is θ̂T  = π = 3. The numbers could also be reported by 

standardizing with the number of sites, in which case the estimates would be 

0.160 and 0.176 for Watterson’s and Tajima’s estimators, respectively. 

3.8 In a sample of four sequences, the expected proportion of sites that are 

segregating as singletons in the folded SFS is 

1+1 3
1+1 2+1 3

= 0.727
 

In contrast, we observe that 3/5 = 0.6 of the segregating sites are singletons, 

slightly fewer than expected under the standard neutral coalescence model.  

3.10 In a coalescent tree of sample size n = 2, every branch is an external branch, and 

the expected total branch length is 2. Therefore, the total length of external 

lineages is 2 for this sample size. For the purpose of induction, suppose that the 

same is true for a larger sample size n –1. In an n-leaf coalescent tree, the 

expected branch length during the time with n lineages is 2/(n – 1), and these are 
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all external branches. However, exactly n – 2 of the tree’s external branches 

extend farther back in time than this point. Each of these external branches is also 

an external branch of the (n –1)-leaf coalescent tree that we get by restricting our 

study to the time before the first coalescence event occurred. The remaining 

external branch of the (n –1)-leaf tree is ancestral to the two lineages that 

coalesced most recently in the n-leaf tree, so it is actually an internal branch of the 

n-leaf tree. By exchangeability of lineages and the hypothesis of total external 

branch length being equal to 2, each external branch of the (n –1)-leaf tree has 

expected length 2/(n – 1). This implies that the n-leaf coalescent tree has expected 

external branch length of (n – 2) × 2/(n – 1) + 2/(n – 1) = 2, which shows that the 

inductive hypothesis is true for all n. 
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CHAPTER 4 

4.2 a. The allele frequency of A in the third population is 0.54, so the average allele 

frequency in the three populations is fA =
1
3
( fA1 + fA2 + fA3) = 0.472 . 

b. Therefore, 

HT = 2 fA 1− fA( ) = 0.498

HS =
2
3
fA1(1− fA1)+ fA2 (1− fA2 )+ fA3(1− fA3)( ) = 0.488

FST =
HT −HS

HT

=
0.498− 0.488

0.498
= 0.020

 

4.4 a. In coalescent-scaled time, ES[t] = 2. This corresponds to 2 × 104 generations.  

b. M = 2Nm = 104 × 10–4 = 1, so ED[t] = 2 + 1/(2M) = 2.5. This is 2.5 × 104 

generations. 

c. Finally, FST = 1/(1 + 8M) = 0.11.  

4.6 First rearrange FST = 1/(1 + 8M) to get  

M =
1
8

1
FST

−1
"

#
$

%

&
'  

Furthermore, M = 2Nm, so we get  

m =
1

8×2N
1
FST

−1
#

$
%

&

'
(

=
1

8×104
1

0.016
−1

#

$
%

&

'
(

= 7.7×104

 

4.8 We follow the arguments for the case of two populations, but use values of ES[t] 

and ED[t] for an island model with d demes. 
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We get that HS = dθ/k. For the case of HT, note that the probability that two 

samples are from the same population is 1/d, so we have that 

HT =
1
d
dθ
k
+
d −1
d

θ[1 / (2M )+ d]
k

=
θ
k
d + d −1

2dM
"

#
$

%

&
'

 

Plugging into the definition of FST gives: 

FST =
HT −HS

HT

=
(d −1) / (2dM )

d + (d −1) / (2dM )

=
(d −1) / d

2Md + (d −1) / d
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CHAPTER 5 

5.2 

 
Position 1: Mutation A ⇒ C labeled ‘a’ in the figure 

Position 2: Mutation C ⇒ G labeled ‘b’ in the figure 

Position 3: Mutation A ⇒ T (or T ⇒ A) labeled ‘c*’ (or ‘c**’) in the figure 

Position 4: Mutation G ⇒ C labeled ‘d’ in the figure 

Position 5: Mutation C ⇒ T labeled ‘e’ in the figure 

Position 6: Not marked, because the mutation in position 6 is not compatible with 

this tree under infinite sites 

Position 7: Mutation A ⇒ G (or G ⇒ A) labeled ‘c*’ (or ‘c**) in the figure (same 

as position 3) 
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5.4 The likelihood function L(θ) can be computed as follows: 

L θ( ) = θ 4

(1+θ )5  

 

As seen in this plot, L(θ) is maximized around θ = 4. This agrees with 

Watterson’s estimate θ̂w  for sample size n = 2: 

θ̂w =
4
1
jj=1

2−1

∑
= 4  
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CHAPTER 6  

6.2 Two haplotypes out of four can be missing only if one of the allele frequencies is 

0 or if allele frequencies at the two loci are equal. 

6.4 The tree below shows the answer to part a. The haplotype counts are AB (3),  

Ab (4), aB (5), ab (4). fA = 7/16, fB = 1/2, D = 3/16 – (7/16)(1/2) = –1/32,  

Dʹ′ = 0.215.  

 

6.6 a. The allele frequencies are fA = 0.3, fa = 0.7, fB = 0.4, fb = 0.6. The sample size is 

1000. The χ2 statistic is computed by summing (observed–expected)2/expected 

over the four haplotype categories: 

χ 2 =
(30−120)2

120
+
(370− 280)2

280
+
(270−180)2

180
+
(330− 420)2

420
=160.7

 

Therefore, there is significant LD at the 1% level. 

b. D = 0.03 – (0.3 × 0.4) = –0.09 

c. In Box 6.4, χ2 = nD2/(fAfBfafb). The question is, given n and the allele 

frequencies, what is the largest |D| can be so that χ 2 ≤ 6.636. The largest absolute 

value of D is 6.636 fA fB fa fb / n = 6.636×0.3×0.4×0.6×0.7 /1000 = 0.0183 . 

The sign does not matter.  
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d. The question is how long it takes for D to decrease from its initial value of 

0.03–(0.3 × 0.4) = –0.09 to –0.0183. From Equation 6.8, D(t) = D(0)(1 – c)t. 

Solving for t: t =
ln D(t) /D(0)[ ]
ln(1− c)

=
ln(0.0183 / 0.09)
ln(0.999)

≈1592  generations. 

6.8 a. 1/c =1000 generations. The mean of an exponential distribution is 1/c. 

b. The population size does not matter because the two lineages are on a single 

chromosome. The population size affects the probability of coalescence. 

c. They are joined on the same chromosome if the two chromosomes coalesce, 

which takes an average of 2N generations. Therefore, the waiting time is 200 

generations for the smaller population and 2,000,000 generations for the larger 

population. 

d. The rate of coalescence depends only on the population size. 

e. The average time the two lineages remain on separate chromosomes is given  

by the ratio of the average waiting times, c/[c + 1/(2N)] = 2Nc/(1 + 2Nc). For  

N = 100, the ratio is 0.2/1.2 = 0.167. For N = 1,000,000, the ratio is 2000/2001 ≈ 

0.9995. 
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CHAPTER 7 

7.2 In a population of size 10,000, the initial frequency of the mutant is 1/20,000, so 

that is fA(0). From Box 7.1, t = 1204 generations If N = 100,000, the initial 

frequency is 1/(200,000), so t = 1433 generations. 

7.4 a. Because the allele is a recessive lethal, the equilibrium frequency is given by 

Equation 7.5 with s = 1. Therefore 0.02 = µ , which implies that µ = 4 × 10–4. 

That mutation rate is at least two orders of magnitude larger than mutation rates at 

other loci, which suggests that CF does not result from alleles under mutation–

selection balance. 

b. At equilibrium, Equation 7.3 implies 0.98 = 1/(sAA+1) or sAA = 0.02/0.98 ≈ 

0.0202. It does not require much of a heterozygote advantage, but no one has 

found what advantage heterozygous carriers of CF alleles have, if indeed they 

have one. 

7.6 At HWE, the genotype frequencies are fBB = 1/16, fBb = 6/16 and fbb = 9/16. 

Among adults, !fBB = (1 /16)(1 / 5) / v , !fBb = (6 /16)(1 / 6) / v , and 

!fbb = (9 /16)(1 /10) / v , where v = (1/16)(1/5) + (6/16)(1/6) + (9/16)(1/10) = 

21/160 = 0.13125. Therefore, !fB = !fBB + !fBb / 2 = 1 / 3 = 0.3333 . Thus, fB = 0.3333 

in the seeds the next generation, whether or not the adults mate randomly, as long 

as there is no effect on fertility of the B/b locus. 

7.8 The initial frequency is 1/20,000. The viability of the heterozygotes for the darker 

allele is 80%–90% of the viability of the individuals homozygous for the light 

allele, so s = 0.1 – 0.2. From Box 7.1, t = 137 generations if s = 0.1 and 65 

generations if s = 0.2. 
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7.10 a. Here is a table describing the fertility of each family: 

 

b. If A is rare, Aa × aa families will be less fertile than aa × aa families. 

Therefore, A will tend to decrease in frequency. If a is rare, Aa × aa families will 

be less fertile than AA × AA families, so a will tend to decrease in frequency. 

7.12 a. With 5 S alleles, there are ten possible heterozyotes (S1S2, S1S3, S1S4, S1S5, S2S3, 

S2S4, S2S5, S3S4, S3S5, and S4S5). By symmetry, they have to have equal 

frequencies, 0.1. 

b. Let S6 be the new mutant, which is found initially in one plant, which has the 

genotype S1S6. Half of the pollen produced by this plant will carry S1 and will not 

be able to fertilize 4/10 of the other plants, those that have genotypes S1S2, S1S3, 

S1S4, and S1S5. Half of the pollen produced by this plant will be able to fertilize 

every other plant. Contrast that with any other plant, say, an S1S2 plant. The S1-

bearing pollen cannot fertilize 4/10 of the other plants, and the S2 pollen also 

cannot fertilize 4/10 of the other plants. Therefore, the mutant plant will be able to 

fertilize 2/10 more plants than any other (1/2 of 4/10). 
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CHAPTER 8  

8.2 s is positive in this case. 

a. N = 10,000, r = 8.8 × 10–9; N = 1000, r = 9.0 × 10–9; r = 2.6 × 10–9. 

b. N = 10,000, r/µ = 40; r/µ = 4.1; r/µ = 1.2. 

8.4 The formula is r = d/(2LT). L = 1000, d = 4 and T = 6 × 106 years, so, r = 0.333 × 

10-9 per nonsynonymous site per year. 

8.6 The total substitution rate, r, is the sum of the rates for neutral alleles (1 – α)µ and 

for the slightly deleterious alleles, (α/3)2Nµu(s,N), where N = 100, s = 0.001, and 

µ = 2.2 × 10–9. That is 0.8 = (1 – α)2.2 + (α/3)1.8 which implies that α ≈ 0.88. 

This problem illustrates that α computed from Equation 8.4 is the minimum 

fraction of deleterious nonsynonymous mutations consistent with the observed 

rate. 

8.8  t = 1n[(δ – fB)/(1 – fB)]/1n(1 – c) where fB = 0.086, c = 0.023 and δ = 47/54 = 

0.087. Therefore t ≈ 6.5 generations ago. Assuming 25 years per generation, the 

causative mutation probability arose within the last two hundred years or so. 

8.10 The model is equivalent to one with ten islands, each of size N/10.  

a. The effective migration rate is the probability that recombination will move the 

neutral locus on one genetic background (say S1) to any other genetic background 

(S2, . . . S10). Because there are no homozygotes, every copy of S1 is in a 

heterozygote, so every recombination event will move the neutral locus to another 

genetic background. Therefore, the effective migration rate is c, the 

recombination rate.  
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b. Given that one neutral copy is on a particular background (say S1), the 

probability that the other is on the same background is 1/10, and the probability 

that the other is on a different background is 9/10. Therefore, using the result on 

p. 69 of Chapter 4, HT =
1
10
10+ 9

10
10+ 1

2M
!

"
#

$

%
&

'

(
)

*

+
,
θ
k
= 1+ 9

10
1
2M

'

()
*

+,
θ
k

. 

In the island model, M = 2Nm, so in this model, M = 2Nc/10, and the result is  

HT = 1+ 9
4Nc

!

"#
$

%&
θ
k

, 

c. In the above expression, the number of S alleles is present only in the 

numerator of the fraction, 9/(4Nc). As the number of S alleles increases, HT will 

increase, also. 
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CHAPTER 9 

9.2 

 

9.4 There are 8 segregating sites, so θ̂w =
8
1
jj=1

5−1

∑
= 3.84.  Similarly, we find 

θ̂T =
2×3+1× 4+1× 4+ 2×3+1× 4+1× 4+ 2×3+ 2×3

5
2

"

#
$

%

&
'

= 4  

As Watterson’s estimate is smaller than Tajima’s estimate, Tajima’s D would be 

positive. Positive values of Tajima’s D are generally compatible with negative 

selection, although in this case, the value of Tajima’s D would not be negative 

enough to allow us to reject the neutral null hypothesis with statistical confidence. 
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CHAPTER 10  

10.2 !m
Nm

+
!f

Nf
=
m+δm
Nm

+
1−m− 2δm
N(1−m)

=
m
Nm

+
1−m
N(1−m)

+
δm
N

1
m
−

2
1−m

#

$
%

&

'
( . The 

coefficient of δm will be 0 when m = 1/3. 

10.4 The problem tells you that f̂ = 0.5  and that the decrease in mortality when a 

mouse is in a hole is 0.2. If two mice display, then each gains a 0.1 increase on 

average. That is d in Table 10.1. If one displays and the other fights, the gain to 

the other is 0.2, assuming no cost to displaying. That is c in Table 10.2. You are 

asked to find b by solving Equation 10.5, which gives b = 0.1. You would 

conclude that there is a 10% increase in the risk of mortality to each individual if 

they both fight. 

10.6 The observations are consistent with the theory of kin selection, which predicts 

that altruistic behavior should be preferentially directed to close relatives. They 

are not consistent with the theory of group selection. Warning calls directed to 

non-relatives would help promote the survival of the group. 

10.8 With fA(0) = 0.1, fA* = 0.9 and s = 0.01, t ≈ 439 generations. 

10.10 From Equation 10.18, the advantage to B is approximately  

1+ s( fa − "fa )
1− sfa

#

$
%

&

'
(

2

 

With m = 0.1 and s = 0.5, fa = m/s = 1/5. From Equation 10.14, !fA  = 1/9. 

Therefore, the offspring carrying a B has a viability 4/81 larger than that of the 

offspring of a bb individual. 
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CHAPTER 11  

11.2 a. Using the formula Cov(x, y) = 1
n

(xi − x )(yi − y )
i=1

n

∑ , where xi is the weight of the 

father {650, 670, 700, 630, 680 g} and yi is the weight of the offspring {687, 618, 

618, 600, 717 g}, Cov(x,y) = 186 g2. The additive variance is twice the covariance 

when only one parent is used. Therefore, VA = 372 g2. 

b. The variance among the fathers is 584, so h2 – 372/584 = 0.64. 

11.4 For males, α = 0.55 and δ = 0.35. For females, α = 0.3 and δ = 0.2. 

11.6  x = (0.4)2 (7) + 2(0.4)(0.6)(8) + 0.62 (9) = 8.2 . Note that α = 1 and δ = 0. 

Therefore, VA = 2(0.4)(0.6) = 0.48 and Vx = VA +VE  = 1.48. 

11.8  From Equation 11.13, VA = 2 fA fa α − ( fA − fa )δ[ ]2 . Therefore, VA = 0 when  

α = (fA – fa)δ or fA = (α + δ)/(2δ). Because δ > α, 0 < fA <1. 


