More Effective Population Size Concepts

- Inbreeding effective population size
 - the size of an ideal population with the same probability of randomly sampled alleles being IBD as the real population
- Variance effective population size
 - the size of an ideal population with the same sampling variance in allele frequency as the real population

Inbreeding effective population size

$$P(IBD) = \frac{1}{2N_e}$$

$$N_e^i = \frac{1}{2P(IBD)}$$

$$N_e^i \approx -\frac{t}{2\ln(H_t/H_0)}$$

Variance effective population size

$$\operatorname{var}(\Delta p) = \frac{p_{t-1}q_{t-1}}{2N_e}$$

$$N_e^v = \frac{pq}{2x \operatorname{var}(\Delta p)}$$

Figure 3.20 Simulated allele frequencies in 10 replicate populations that experienced effective population sizes of 100, 100, 100, 100, and 100 individuals across four generations. The variance in the change in allele frequency (Δp) can be used to estimate the variance effective population size. The inbreeding effective population size can be estimated from the change in heterozygosity through time.

N_e^i excludes the negat	ive values.		
H _{t=3}	H _{t=4}	$ \ln\left(\frac{H_{t=4}}{H_{t=3}}\right) $	$\hat{N}_{e}^{i} = -\frac{1}{2} \frac{1}{\ln \left(\frac{H_{t=4}}{H_{t=3}}\right)}$
0.4987	0.4504	-\ 0.1018/	4.91
0.4866	0.4594	-0.057	8.69
0.4813	0.3474	-0\3259	1 5 3
0.4998	0.4376	-0. 329	3/76
0.4546	0.3772	-0.1864	2 <mark>.</mark> 68
0.4884	0.4999	0.0232	-21,58
0.4920	0.4566	-0. <mark>07</mark> 47	4.69
0.4413	0.4856	0/0957	-5.42
0.4715	0.3578	-0.2761	1.81
0.4995	0.4550	- <mark>0.0932</mark>	Average $\hat{N}_e^i = 4.43$

Table 3.5 Data from simulated allele frequencies in Fig. 3.20 used to estimate the effective population size. Here, the change in allele frequency between generations three and four is used to estimate variance effective population size (\hat{N}_e^{ν}) according to equation 3.56. Allele frequencies in the third generation were used to estimate pq.

$p_{t=4}$	$\Delta p = p_{t=4} - p_{t=3}$	pq	$Var(\Delta p) = \frac{1}{10} \sum (p_{t=4} - \frac{\bar{p}}{\bar{p}})^2$	$\hat{N}_e^v = \frac{pq}{2 \times \text{variance}(\Delta p)}$
0.6574	0.1825	0.2494	0.0186	6.71
0.3575	-0.0606	0.2433	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0.2238	-0.1795	0.2406	$\operatorname{var}(\Lambda p) = \frac{1}{\sqrt{\Lambda p}} \sum_{n=1}^{\infty} (\Lambda p)$	$-\Lambda n$ 6.47
0.3234	-0.1668	0.2499	$\operatorname{var}(\Delta p) = \frac{1}{(n-1)} \sum (\Delta p - 1) \sum_{n=1}^{\infty} (\Delta p - 1) \sum_{n$	6.72
0.2523	-0.0970	0.2273	(" 1)	6.12
0.4940	-0.0819	0.2442	1 5/	— \2 6.57
0.6473	0.0842	0.2460	$\equiv \operatorname{var}(p) = \frac{1}{p}$	-p 6.62
0.4153	0.0866	0.2207	$= \operatorname{var}(p) = \frac{1}{(n-1)} \sum (p)$	5.94
0.7667	0.1473	0.2357		6.34
0.6499	0.1343	0.2498		6.72
			A	verage $\hat{N}_e^v = 6.48$

1000 reps

