Chapter 2 – Genotype Frequencies

Mendelian Genetics

Hardy-Weinberg Equilibrium

Heterozygosity & Inbreeding

Linkage and Recombination

Mendel's "Laws"

Independent segregation

two members of a gene pair (alleles) segregate separately into gametes so that half of the gametes carry one allele and the other half carry the other allele

Independent assortment

 during gamete formation, the segregation of alelles of one gene is independent of the segregation of alleles of another gene

"Population"

- "a group of organisms of the same species living within a ... restricted geographical area so that any member can potentially mate with any other member of the same species"
 Hartl & Clark, 2006
- "a population is a group of plants, animals, or other organisms, all of the same species, that live together and reproduce"
 N.J. Gotelli, 1998
- "local population" = "deme" = "subpopulation"
 fundamental unit of population genetics

Hardy-Weinberg Assumptions

- theoretical population genetics relies on a set of simplifying assumptions about the structure of populations

 - \diamond non-overlapping generations*
 - Migration (gene flow), mutation, and natural selection have negligible effects
 - * "large" population size (= no genetic drift)
 - \diamond sexual reproduction
 - ♦ two alleles at a locus
 - ♦ allele frequencies equal in two sexes

Hardy-Weinberg Equilibrium (1908)

- relates allele and genotype frequencies assuming random mating
- Hardy considered the principle obvious...
- but presented it to refute an argument that 3:1 phenotypic ratios should be common in nature if inheritance was really Mendelian

 \diamond phenotypic ratios depend on allele frequencies

- Also shows that genetic variation is maintained in the absence of selection, drift, mutation
 - ♦ contrast to earlier notions of "blending inheritance"

Hardy-Weinberg Equilibrium (1908)

$$(p+q)^2 = p^2 + 2pq + q^2$$

 $(A+a)^2 = AA + 2Aa + aa$

- HW model separates life history into two stages:
 - ♦ gametes combining to form zygotes
 - zygotes maturing into adults which produce more gametes
- * more complex models including selection, drift, mutation, etc., still apply the HW principle in the formation of zygotes each generation

H-W Inferences:

- random mating of genotypes yields the same result as random union of gametes (see pg. 18 in text and do the math!)
- a population out of HW equilibrium reaches HW equilibrium in a single generation of random mating
- differences between sexes in allele frequencies at autosomal loci are eliminated in a single generation of random mating

Statistical Tests

Chi-squared test

- estimate allele frequencies from phenotypes or directly from genotypes
- ♦ use to calculate "expected" genotype frequencies
- ♦ compare with observed genotype frequencies

$$\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

What does a "statistically significant" result tell us?

http://faculty.vassar.edu/lowry/csfit.html

Dominance

 with dominance and allele frequencies estimated from phenotypes, there are no degrees of freedom left for a statistical test

 $\hat{q} = \sqrt{R}$, where *R* is the frequency of the recessive phenotype

Other Statistical Tests

- Chi-squared test not valid for small sample sizes, corrections available but may be too conservative
- Alternatives:

 $\Rightarrow \text{ Exact test} \\ \Pr\{n_{12} \mid n_1, n_2\} = \frac{n! / (n_{11}! n_{12}! n_{22}!)}{(2 \cdot)! / (n_{11}! n_{12}! n_{22}!)}$

♦ Permutation test

$$=\frac{n!/(n_{11}!n_{12}!n_{22}!)}{(2n)!/(n_1!n_2!)}2^{n_{12}}$$

Multiple tests

Additional points...

rarity of homozygotes for rare allele ♦ most copies of rare alleles (e.g., recessive) deleterious alleles) are in heterozygotes ✤ X-linked genes \diamond male genotypes = allele frequencies \diamond in XY systems \diamond X-linked diseases multiple alleles \diamond frequency of $A_i A_i$ homozygotes = p_i^2 \Rightarrow frequency of $A_i A_i$ heterozygotes = $2p_i p_i$