What about...

violation of the simple assumptions?

- different rates for transitions and transversions (and for different kinds of transitions and transversions)?
- ♦ unequal base frequencies?
- differences in base composition among lineages?
- differences in rates among nucleotide sites? (gamma distributed rates)
- different evolutionary rates in different organisms?
- all this and more!

	A	С	G	Т	totals
4	2755	9	44	2	2810
2	8	3214	1	80	3303
3	42	1	1137	2	1182
	3	65	1	2140	2209
otals	2808	3289	1183	2224	9504

comparison of 9502 bp of mtDNA sequence between Falco peregrinus and Falco sparverius

	Α	С	G	Т	totals
Α	2683	49	120	27	2879
С	51	2879	5	262	3197
G	104	3	1040	2	1149
Т	15	299	3	1960	2277
totals	2853	3230	1168	2251	9502

Proportion of sites that differ = 940/9502 = 0.0989

Apparent transition/transversion ratio = 785/155 = 5.0645

3

Jukes-Cantor Model

♦ assumes that all substitutions occur at the same rate (a = b = c = d = e = f) and that the bases are in equal frequency ($\pi_A = \pi_C = \pi_G = \pi_T$)

$$\mathbf{Q} = \begin{pmatrix} -\frac{3}{4}\mu & \frac{1}{4}\mu & \frac{1}{4}\mu & \frac{1}{4}\mu \\ \frac{1}{4}\mu & -\frac{3}{4}\mu & \frac{1}{4}\mu & \frac{1}{4}\mu \\ \frac{1}{4}\mu & \frac{1}{4}\mu & -\frac{3}{4}\mu & \frac{1}{4}\mu \\ \frac{1}{4}\mu & \frac{1}{4}\mu & \frac{1}{4}\mu & -\frac{3}{4}\mu \end{pmatrix}$$

Table 3.4 Estimates (\hat{d}) of the number of nucleotide substitutions per site
between the human and Rhesus monkey mitochondrial cytochrome b
genes for the first, second, and third codon positions ($\hat{d} \times 100$).

Position in Codon	р	Jukes-Cantor	Kimura	Tajima-Nei	Tamura-Nei
First	15.5 ± 1.9	17.3 ± 2.4	17.8 ± 2.5	18.0 ± 2.6	17.9 ± 2.5
Second	8.5 ± 1.4	9.1 ± 1.6	9.2 ± 1.7	9.2 ± 1.7	9.3 ± 1.7
Third	36.8 ± 2.5	50.6 ± 4.9	52.3 ± 5.4	66.5 ± 9.4	87.9 ± 39.0

Generalizations...

- estimated genetic distance generally increases with the complexity of the underlying substitution model
 - ♦ but even the most "aggressively corrected" distances may still be underestimates
- increased model complexity generally leads to greater accuracy but also reduced precision (i.e., greater variance)
- when dates of evolutionary events are based on estimates of sequence divergence, interpret cautiously!

Per site or per locus?

- nucleotide diversity and sequence divergence can be expressed both as number of pairwise differences per locus or per site (*Π* verus *π*)
- likewise, mutation/substitution/divergence rate can be expressed as a rate per locus or per site