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Chapter 8 – Molecular Evolution 

Neutral/Nearly Neutral Theory 

Measuring Divergence & Polymorphism 

The Molecular “Clock” 

Variation in Molecular Rates 

Tests for Deviation from Neutral Expectations 

Molecular Evolution at Linked Loci/Sites 

Sequence Divergence 

v simple genetic distance, d = the proportion 
of sites that differ between two aligned, 
homologous sequences 

v given a constant mutation/substitution rate, 
d should provide a measure of time since 
divergence 
² but this is greatly complicated by multiple hits 

(homoplasy)  
v given that there are not an infinite number 

of sites in a sequence, how is d expected to 
change with time? 
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consider two recently diverged 
sequences… 

!
ACGTACGTACGTACGTACGTACGTACGT!
ACGTACGTACGTACGTACGTACGTACGT 

consider two recently diverged 
sequences… 

!
ACGTACGTACGTACGTACGTACGTACGT!
ACGTACGTACGTACGTAAGTACGTACGT 

what is the chance that the next 
substitution obscures the first? 
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consider two recently diverged 
sequences… 

!
ACGTACGCACGTACGTACGTACGTACGT!
ACGTACGTACGTACGTAAGTACGTACGT 

now, what is the chance that the 
next substitution obscures one of 
the first two? 
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λ = 0.01 substitutions per site

~9.9 

€ 

f k;λ( ) =
λke−λ

k!
where k is the number of 
occurrences (mutations) 
and λ is the mean rate 
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€ 

λ = 0.05 substitutions per site

Poisson Distribution
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~1.2 sites with 2 mutations 

47.6 

€ 

λ = 0.20 substitutions per site
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~1.2 sites with 2 mutations 
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~1.1 sites with 3 mutations 
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€ 

λ =1.0 substitutions per site

Poisson Distribution
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λ = 20 /365 birthdays per day
The Birthdays Problem
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€ 

λ = 50 /365 birthdays per day
The Birthdays Problem
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birthdays 

€ 

λ = 0.20 substitutions per site
Poisson Distribution
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16 

~181 sites with 1 or more 
mutations 

164 



4/26/13	  

7	  

Divergence of DNA Sequences 

v even if mutation occurs by a random 
Poisson process… 
² divergence (genetic distance) depends on 

changes in both sequences, not just one 
² mutations yield one of four different 

nucleotides (A, C, G, T) 
² parallel and reverse mutations may result in 

sequences being identical at a particular 
position 

Jukes-Cantor Distance 

v where k is an estimate of the number of 
substitutions that have actually occurred as a 
function of the observed number of differences 
d 

v assumes a simple model of nucleotide 
substitution 
²  substitutions are equally likely at all sites  
²  any nucleotide is equally likely to be substituted for any 

other nucleotide 
²  the four nucleotides occur at equal frequency 

K = −
3
4
× ln 1− 4

3
d

#

$
%

&

'
(
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Derivation of Jukes-Cantor Distance 

v probability that a given site is an A 

² where α is the mutation rate between 
each of the four nucleotides 

	

€ 

PA( t+1) = 1− 3α( )PA (t ) +α(1− PA( t ))
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Derivation of Jukes-Cantor Distance 

v  probability that a given 
site is an A 

v  solve differential 
equation for PA(t) 

v  probability that a site 
remains the same in two 
lineages 

v  expected proportion of 
sites that differ 

v  rate of change to 
another nucleotide 

v  actual number of 
substitutions per site 

v  estimate of k based on d	


PA(t+1) = 1−3α( )PA(t ) +α(1−PA(t ) )

PA(t ) =
1
4
+
3
4
e−4αt

PNN =
1
4
+
3
4
e−8αt

d =1−PNN =
3
4
1− e−8αt( )

λ = 3α
k = 2λt

K = −
3
4
× ln 1− 4

3
d

#

$
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'
(

more 
algebra 
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max 
d = 0.75 
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Jukes-Cantor 
equation 
undefined 
for d ≥ 0.75 

variance in estimate of k increases 
greatly as d approaches 0.75 
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*mutation rate in substitutions / site / generation 


