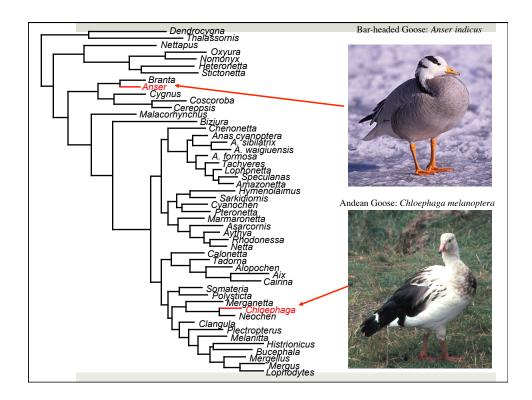
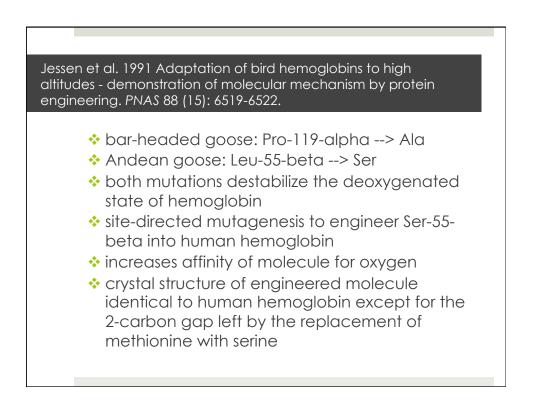
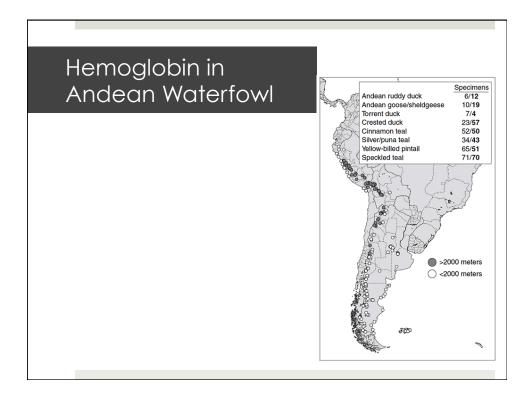
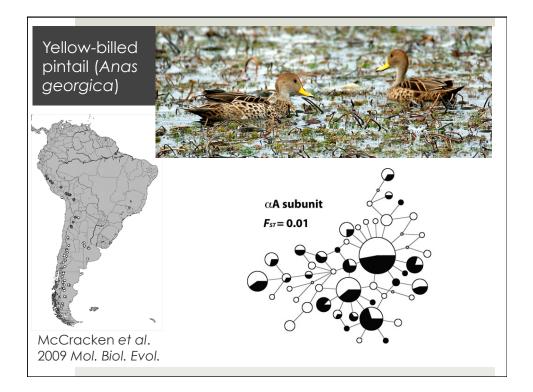

 ♦ what level of migration is sufficient to counter the effects of selection?
♦ "divergence with gene flow"

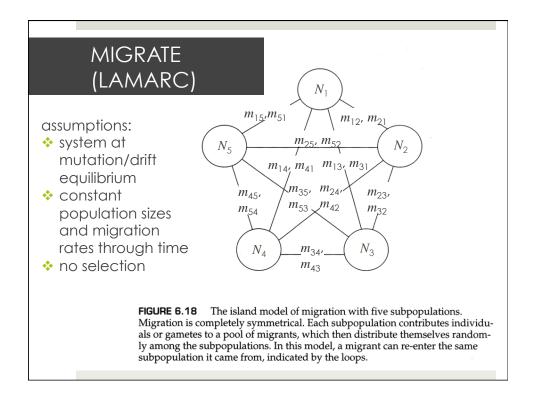


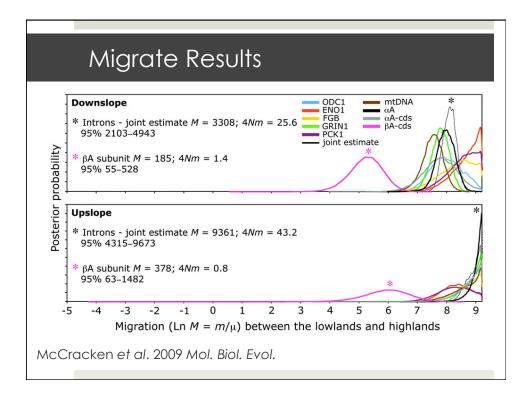

Waterfowl Hemoglobin

♦ waterfowl adapted to high-altitude
♦ Bar-headed goose: Pro-119-alpha --> Ala
♦ Andean goose: Leu-55-beta --> Ser

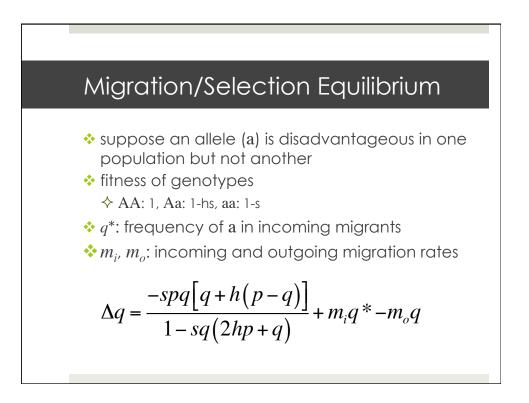


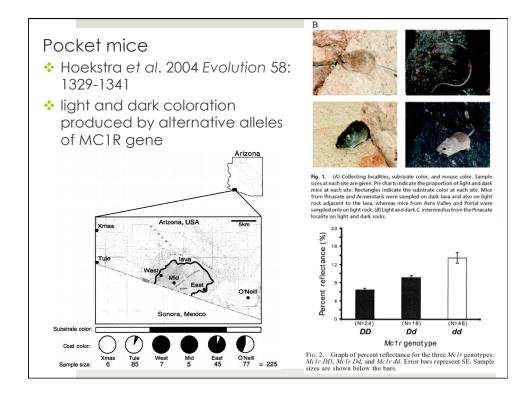


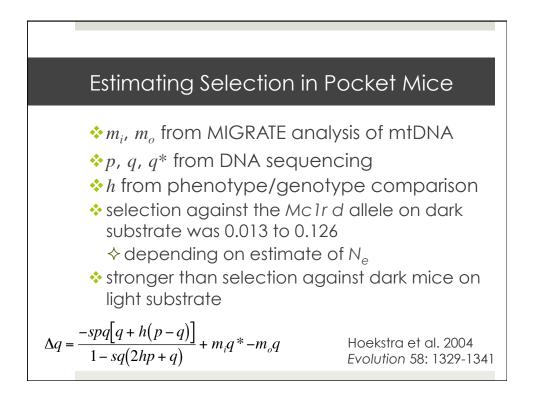


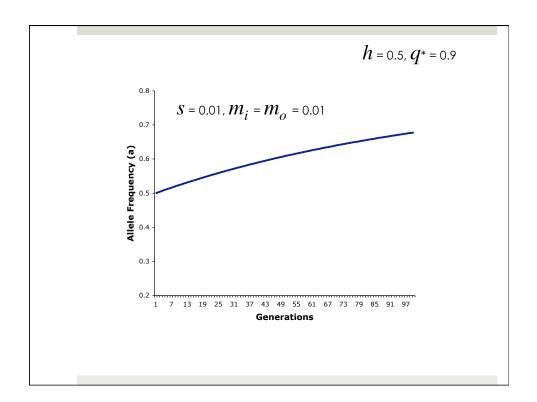

	Amino acid position																		
init	8	12	13	18	19	22	23	28	34	35	49	55	57	63	77	115	119	129	13
Cereopsis novaehollandia	e Thr	Gly	Val	Gly	Gly	Glu	Glu	Thr	Ile	Ala	GIn	Val	Ala	Ala	Ala	Ser	Pro	Leu	Se
Coscoroba coscoroba	Thr	Gly	Val	Gly	Gly	Asp	Asp	Thr	Ile	Ala	GIn	Ile	Ala	Ala	Ala	Ser	Pro	Leu	A
Cygnus melanocoryphus	Thr	Gly	Val	Gly	Gly	Asp	Asp	Thr	Ile	Ala	Gln	Ile	Ala	Ala	Ala	Ser	Pro	Leu	A
Cygnus atratus	Thr	Gly	Val	Gly	Ser	Asp	Asp	Thr	Ile	Ala	Gln	Ile	Ser	Ala	Ala	Ser	Pro	Leu	S
Cygnus olor	Thr	Gly	Val	Gly	Gly	Asp	Asp	Thr	Ile	Ala	Gln	Ile	Ala	Ala	Ala	Ser	Pro	Leu	A
Cygnus cygnus	Thr	Gly	Val	Gly	Gly	Asp	Glu	Ala	Ile	Thr	GIn	Val	Ala	Ala	Ala	Ser	Pro	Leu	A
Cygnus columbianus	Thr	Gly	Val	Gly	Gly	Asp	Glu	Ala	Ile	Thr	GIn	Val	Ala	Ala	Ala	Ser	Pro	Leu	A
Cygnus buccinator	Thr	Gly	Val	Gly	Gly	Asp	Glu	Ala	Ile	Thr	GIn	Val	Ala	Ala	Ala	Ser	Pro	Leu	A
Branta spp.	Thr	Gly	Val	Gly	Gly	Asp	Glu	Thr	Val	Ala	GIn	Ile	Ala	Ala	Ala	Ser	Pro	Leu	Tł
Anser spp.	Thr	Gly	Val	Gly	Gly	Glu	Glu	Thr	Thr	Ala	GIn	Ile	Ala	Ala	Ala	Ser	Pro	Leu	Tł
Bar-headed Goose	Thr	Ala	Val	Ser	Gly	Glu	Glu	Thr	Thr	Ala	GIn	Ile	Ala	Val	Ala	Ser	Ala	Leu	Tł
Chloephaga spp.	Thr	Gly	Val	Gly	Gly	Asp	Asp	Thr	Ile	Ala	His	Ile	Ala	Ala	Ala	Ala	Pro	Met	AI
Neochen jubata	Thr	Gly	Ile	Gly	Gly	Asp	Asp	Thr	Ile	Ala	His	Ile	Ala	Ala	Ala	Ala	Pro	Met	A
Andean Goose	Ala	Gly	Val	Gly	Gly	Asp	Asp	Thr	Ile	Ala	His	Ile	Ala	Ala	Thr	Ala	Pro	Met	A
-																			
init	4	12	43	55	86	116	119	121	125										
Cereopsis novaehollandiae	Thr	Thr	Ser	Leu	Ala	Ala	Ala	Asp	Asp										
Coscoroba coscoroba	Thr	Thr	Ser	Leu	Ala	Ala	Thr	Asp	Asp										
Cygnus melanocoryphus	Thr	Thr	Ser	Leu	Ala	Ser	Ala	Asp	Asp										
Cygnus spp.	Thr	Thr	Ser	Leu	Ala	Ala	Ala	Asp	Asp										
Branta spp.	Thr	Thr	Ser	Leu	Ala	Ala	Ala	Asp	Asp										
Anser spp.	Ser	Thr	Ser	Leu	Ala	Ala	Ala	Glu	Glu										
Greylag Goose (Mongolia)	Ser	Ala	Ser	Leu	Ala	Ala	Ala	Glu	Glu										
Bar-headed Goose	Thr	Thr	Ser	Leu	Ala	Ala	Ala	Glu	Asp										
Neochen jubata	Thr	Thr	Ala	Ser	Ala	Ala	Thr	Asp	Asp										
Chloephaga spp.	Thr	Thr	Ala	Ser	Ala	Ala	Thr	Asp	Asp				M	Cr	ake	en e	et a	12	01
Andean Goose		Thr		Ser			Thr		Asp						Phy			·· -	~ '

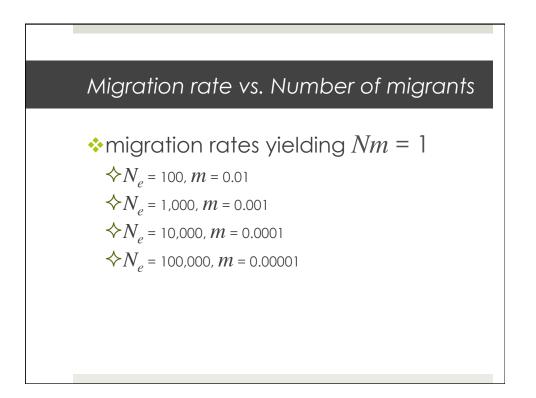
And		90	זג	1 \	/ \ (ie		Ö	\sim													
				αAsut	ounit p	ositic	n									βA sul	ounit p	ositic	n				
	5	8	9	12	18	63	77	111	119		4	13	14	55	62	69	73	86	94	111	116	125	133
Bar-headed goose*	Ala	Thr	Asn	Ala	Ser	Val	Ala	lle	Ala		Thr	Gly	Leu	Leu	Ala	Thr	Asp	Ala	Asp	lle	Ala	Asp	Leu
Andean ruddy duck (6/12)	Ala	Thr	Asn	Gly	Gly	Ala	Ser	lle	Pro		Thr	Ser 1.00	lle 1.00	Leu	Ala	Ser 0.00	Asp	Ala	Asp	lle	Ala	Asp	Leu
Andean goose (10/19)	Ala	Ala 1.00	Asn	Gly	Gly	Ala	Thr 1.00	lle	Pro		Thr	Gly	Leu	Ser 0.00	Ala	Thr	Asp	Ser 1.00	Asp	lle	Ala	Asp	Leu
Blue-winged goose*	Ala	Thr	Asn	Gly	Gly	Ala	Thr	lle	Pro		Thr	Gly	Leu	Leu	Ala	Thr	Asp	Ala	Asp	lle	Ser	Asp	Leu
Torrent duck (7/4)	Ala	Thr	Asn	Gly	Gly	Ala	Thr 0.38	lle	Pro		Thr	Gly	Leu	Leu	Thr 0.00	Thr	Asp	Ala	Asp	Val 0.00	Ala	Asp	Leu
Crested duck (23/57)	Thr 0.46	Ala 0.06	Asn	Gly	Gly	Ala	Ala	lle	Pro		Ser 0.00	Gly	Leu	Leu	Ala	Thr	Asp	Ala	Glu 0.90	lle	Ala	Glu	Leu
Cinnamon teal	Ala	Thr	Ser	Gly	Gly	Ala	Ala	lle	Pro		Thr	Glv	Leu	Thr	Ala	Thr	Asp	Ala	Asp	lle	Ala	Glu	Leu
(52/50) Silver/puna teal	Ala	Thr	0.94 Asn	Gly	Gly	Ala	Thr	Thr	Pro		Thr	Gly	Leu	Thr	Ala	Thr	Asp	Ala	Glu	lle	Ala	Glu	Leu
(34/43) Yellow-billed pintail	Ala	Thr					0.49 Ala	0.01 Ile	Pro		Ser	Ser		Leu	Ala				1.00		Ser	Glu	Met
(65/51) Speckled teal			Asn	Gly	Gly	Ala	Thr				0.002	0.08 Ser				Thr	Asp	Ala	Asp	lle	0.88 Ser		0.88 Met
(71/70)	Ala	Thr	Asn	Gly	Gly	Ala	0.91	lle	Pro		Thr	0.43	Leu	Leu	Ala	Thr	0.01	Ala	Asp	lle	0.97	Glu	0.97
									_					_									

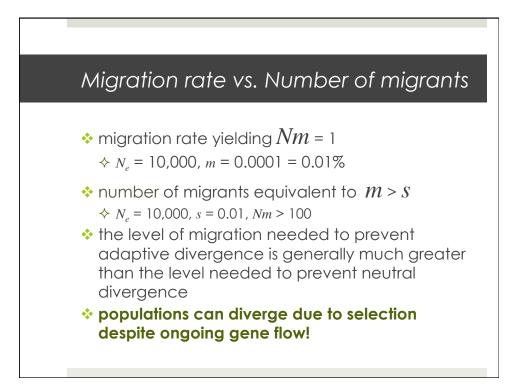


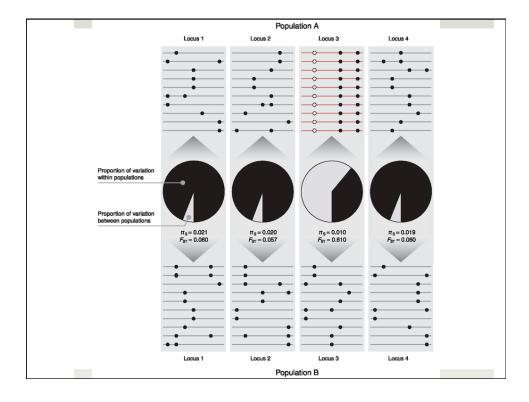

Migration/Selection Equilibrium

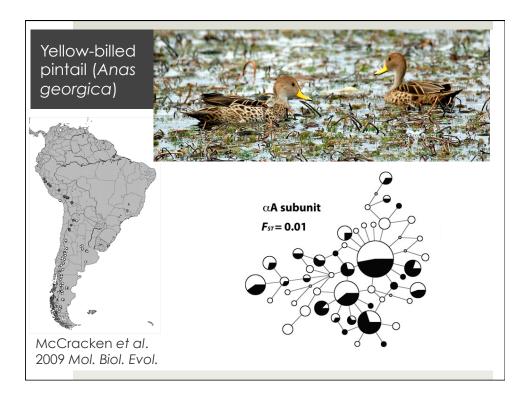

what level of migration is sufficient to counter

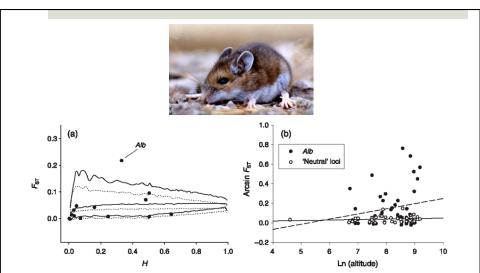

the effects of selection? M > S


 \diamond "divergence with gene flow"






Alignation rate vs. Number of migrants \Rightarrow number of migrants equivalent to m > sfor s = 0.01 $\Rightarrow N_e = 100, Nm > 1$ $\Rightarrow N_e = 1,000, Nm > 100$ $\Rightarrow N_e = 10,000, Nm > 1,000$



compare F_{ST} at multiple loci to look for outliers that may be under selection

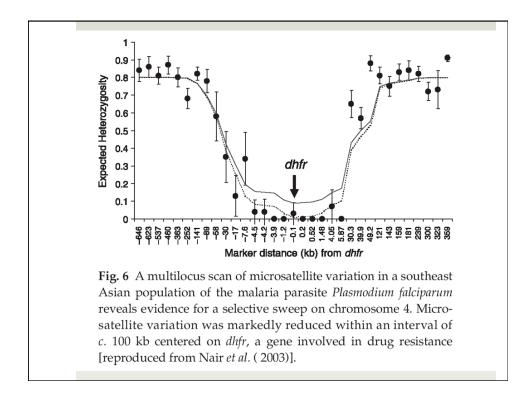


Fig. 8 Evidence for diversifying selection on albumin polymorphism in deer mice, *Peromyscus maniculatus*. (a) Estimated F_{ST} values from 15 protein-coding genes are plotted as a function of heterozygosity in the deer mouse, *Peromyscus maniculatus*. Solid lines denote the 0.975, 0.500, and 0.025 quantiles of the conditional distribution obtained from coalescent simulations under an island model of population structure [using the method of Beaumont & Nichols (1996)]. Dotted lines denote the same quantiles of the null distribution that were recomputed after removing the outlying value for the albumin locus (*Alb*). (b) Linear regression of F_{ST} against altitudinal distance for pairwise comparisons of *P. maniculatus* samples taken from an altitudinal transect. The solid line denotes the linear regression line for transformed values of F_{ST} for *Alb* versus altitudinal distance (modified from Storz & Dubach 2004).

