$F_{\it ST}$ as variance in allele frequencies

 F_{ST} as variance in allele frequencies

$$F_{ST} = \frac{\operatorname{var}(p)}{\overline{p}\overline{q}} = \frac{\frac{1}{n}\sum_{i=1}^{n}(p_i - p)^2}{\overline{p}\overline{q}}$$

where n is the number of populations (and assuming a large number of populations)

$F_{\it ST}$ - relationship to genetic variance

 \diamond assuming two alleles, the total reduction in homozygosity is $2\sigma^2$

$$F_{ST} = \frac{H_T - H_S}{H_T} = \frac{2\sigma^2}{H_T} = \frac{2\sigma^2}{2\overline{p}\overline{q}} = \frac{\sigma^2}{\overline{p}\overline{q}}$$

 AMOVA - <u>Analysis of MO</u>lecular <u>VA</u>riance
 partitions the total genetic variation into within and between group components

3/4/13

 $\overline{F_{ST}}$ over time w/ no migration

$$F_t = \frac{1}{2N} + \left(1 - \frac{1}{2N}\right)F_{t-1}$$

FIGURE 3.11 Increase of F_t in ideal populations as a function of time and effective population size N.

Migration

- migration between populations results in gene flow, which counters the effects of genetic drift (and selection) and tends to homogenize allele frequencies
- what level of migration is sufficient to counter the effects of genetic drift?
 Nm~1 (error on pg. 137?)
- what level of migration is sufficient to counter the effects of selection?
 \$\phi m > s

FIGURE 6.18 The island model of migration with five subpopulations. Migration is completely symmetrical. Each subpopulation contributes individuals or gametes to a pool of migrants, which then distribute themselves randomly among the subpopulations. In this model, a migrant can re-enter the same subpopulation it came from, indicated by the loops.

Equilibrium value of $\overline{F_{ST}}$

♦ change in F_t with migration
$$F_t = \left(\frac{1}{2N}\right) (1-m)^2 + \left(1-\frac{1}{2N}\right) (1-m)^2 F_{t-1}$$
setting $\hat{F} = F_t = F_{t-1}$
some algebra + ignoring terms in m² and m/N...
$$\hat{F} \approx \frac{1}{1+4Nm}$$

migration

$$F_{t} = \left(\frac{1}{2N}\right) \left(1 - m\right)^{2} + \left(1 - \frac{1}{2N}\right) \left(1 - m\right)^{2} F_{t-1} \qquad \hat{F} \approx \frac{1}{1 + 4Nm}$$

* mutation

$$F_{t} = \left(\frac{1}{2N}\right) (1-\mu)^{2} + \left(1-\frac{1}{2N}\right) (1-\mu)^{2} F_{t-1} \qquad \hat{F} \approx \frac{1}{1+4N\mu}$$

$$m >> \mu$$

Equilibrium value of F_{ST}

Equilibrium value of F_{ST}

Nm = 1 corresponds to $F_{ST} = 0.2$

Wright (1978)

- ♦ F_{ST} = 0.05 to 0.15 "moderate differentiation"
- \Rightarrow F_{st} = 0.15 to 0.25 "great genetic differentiation"
- $F_{ST} > 0.25$ "very great genetic differentiation"

Migration rate vs. Number of migrants

★ migration rates yielding Nm = 1♦ $N_e = 100, m = 0.01$ ♦ $N_e = 1000, m = 0.001$ ♦ $N_e = 10000, m = 0.0001$ ♦ $N_e = 100000, m = 0.00001$