A Question to the Consumer

- Monthly time spent on search: 138 mm hours
- Are you using more or fewer sites when doing product research online compared to last year? (a study done by ExpoTV.com)
 - Diverse responses
 - I use just as many sites as often as I did last year.
 - Definitely more.
 - ...I actually use fewer sites than I used to for product research.
 - How informative, easiness
What Happens During Information Search?

Expected Value

\(t \)
Research Questions

* When should the consumer stop searching for more information?
 * How does search informativeness matter?
 * How does search cost matter?

* Does the seller benefit from more or less consumer search?
 * What is the seller’s optimal pricing strategy?
 * What is his optimal information provision strategy?
The Model

• One consumer, one product, one seller

• The consumer learns some news on an aspect of “product fit” in each step of search, His “true” utility given the T product attributes is

\[U = v + \sum_{i=1}^{T} x_i \]

where \(x_i \) equals \(z \) or \(-z \) with equal probability

• \(z \) can be different across attributes, \(x_i \) is “news” when checking attribute \(i \)
After inspecting t attributes, the consumer’s expected utility is

$$u = v + \sum_{i=1}^{t} x_i + \sum_{i=t+1}^{T} E(x_i)$$

As ε goes to zero and T goes to infinity (an infinite mass of attributes), the process becomes a Brownian motion:

$$du = \sigma d\omega$$
The Consumer’s Problem

x At each point of time, consumer has to optimally choose among

1. Continue to gather more information at cost \(c \) per (unit of) attribute searched
2. Stop searching, buy the product
3. Stop searching, without buying the product

x Expected utility if keep on searching:

\[
V(u, t) = -cdt + EV(u + du, t + dt)
\]
Getting \(V(u) \)

- Taylor Expansion (plus Ito’s lemma):

\[
V(u, t) = -c \, dt + V(u, t) + V_u E(du) + V_t dt + \frac{1}{2} V_{uu} E[(du)^2] + V_{ut} E(du) \, dt.
\]

As \(E(du) = 0 \) and \(E[(du)^2] = \sigma^2 \, dt \) we have, dividing (1) by \(dt \),

\[
-c + V_t + \frac{\sigma^2}{2} V_{uu} = 0.
\]
Boundary Conditions

\[V(\bar{U}) = \bar{U} \quad \text{and} \quad V'(\bar{U}) = 1, \quad V(\bar{U}) = 0 \quad \text{and} \quad V'(\bar{U}) = 0. \]

Intuition:

- Suppose \(V'(\bar{U}) < 1 \), then it would pay off to search more once reaching \(\bar{U} \) → a contradiction.

- Suppose \(V'(\bar{U}) > 1 \), then it would pay off to stop search prior to reaching \(\bar{U} \) → a contradiction.
The Value Function

\[V(u) = \frac{c}{\sigma^2} u^2 + \frac{1}{2} u + \frac{\sigma^2}{16c} \]

No purchase

Keep searching

Purchase

\[U = -\frac{\sigma^2}{4c} \]

\[\bar{U} = \frac{\sigma^2}{4c} \]
The Optimal Stopping Rule

- The two bounds are symmetric around 0
- Starting point \(v \) does not affect the boundaries
- Purchase threshold increases with \(\sigma \) and decreases with \(c \)
Purchase Likelihood I

\[
\bar{U} - u(t_1)
\]

\[
u(t)
\]

\[
u(t_1)
\]

\[
0
\]
Formally, \(\Pr(u) = \frac{u - U}{U - U} \).

Prior to any search, \(\Pr(v) = \frac{2cv}{\sigma^2} + \frac{1}{2} \).

- If \(v < 0 \), having each attribute be more important increases the purchase likelihood (greater possibility of changing preferences).
- If \(v < 0 \), lower search cost also leads to a greater purchase likelihood (cheaper to gain information to reverse preferences).
- Results change if \(v > 0 \).
Optimal Price

Changing the price essentially changes the starting valuation, and hence changes the purchase likelihood \(\rightarrow\) linear demand (marginal cost is \(g\))

\[
p^* = \begin{cases}
v - \frac{\sigma^2}{4c} = v - \overline{U}, & \text{if } v \geq g + 3\overline{U}; \\
\frac{v+g}{2} + \frac{\sigma^2}{8c} = \frac{1}{2}(v + g + \overline{U}), & \text{if } v < g + 3\overline{U}.
\end{cases}
\]
Maximum profit (in expectation) is

\[
\Pi(v) = \begin{cases}
 v - g - U, & \text{if } v \geq g + 3U; \\
 \frac{(v-g+U)^2}{8U}, & \text{if } g + U \leq v < g + 3U.
\end{cases}
\]

- always increases with \(v \)
- increases with \(\bar{U} \) if \(v < g + \bar{U} \)
 - Low \(v \): increase in price dominates
 - High \(v \): decrease in purchase likelihood dominates
- Consumer surplus is half of the optimal profit:
 does not always increase with informativeness and
decrease with search cost
Extension 1: Independent Signals

σ_t decreases in t at a decreasing rate. $V(u,t)$ and purchase and no-purchase thresholds depend on the number of signals t already checked.
Extension 2: Finite Mass of Attributes

When consumer is close to checking all possible attributes, it is not possible to raise expected value of the product substantially.
3. **Discounting:** If positive expected value of purchase, keeping on searching is more costly (more likely to purchase the products)

Conclusion: purchase threshold is closer to zero than exit threshold.

4. **Choosing the search intensity:** when consumer is closer to the purchase threshold, he searches more intensely, as discounting makes it more costly to keep on searching.

Conclusion: not to search intensively if far away from purchase, and search intensively when close to purchase.
Conclusions

- Parsimonious model of search for information
- Stopping rule obtained optimally as a function of search costs and information gained
- Implications for pricing – pricing affects consumer search behavior
- Extensions to signals for value of a product, finite mass of attributes, discounting, intensity of search
- Other questions:
 - Implications for social welfare: more search → more correct choices
 - Search over multiple alternatives (different from Gittins index problem)
 - Optimal provision of information if different attributes provide different amount of information
Thank You!