EC 744: Economic Dynamics

Prof. Jianjun Miao

Fall 2010

Schedule Thursday 5:30-8:30pm at SSW 315.

Office Hours Tuesday 11:00-12:30pm and Wednesday 2:00-3:30pm, or by appointment

Contact

• Office: Room 434, 270 Bay State Road
• E-mail: miaoj@bu.edu
• Phone: 353-6675.
• Homepage: http://people.bu.edu/miaoj

Course Overview This course introduces the theory and application of dynamic optimization and equilibrium analysis in discrete time. It aims at providing necessary techniques for graduate students to analyze economic dynamics. The topics focus on analyzing and solving discrete-time dynamic programming problems in economics and finance. We will put more emphasis on applications by solving many economic examples such as consumption/savings, investment, optimal growth, industry dynamics, job search, recursive utility, portfolio choice, and asset pricing. We will also study computational methods because they become important in economics and finance. We will focus on the discrete state space method (value function iteration) and the projection method. The best way to learn computational methods is learning-by-doing. Thus, students are expected to complete a computation project.
Course Web Site The class material (syllabus, lecture notes, announcements, problem sets, additional readings) will be posted on Boston University Blackboard 8. Use your BU username and Kerberos password.

Textbooks Teaching will be based mostly on the textbook and my lecture notes. I will produce lecture notes that will be made available on the course web site. The following textbooks are required, which can be purchased from internet bookstores such as Amazon or Barnes&Nobel.

- Azariadis, Costas, 1993, Intertemporal Macroeconomics, Blackwell Publisher.

The following books are highly recommended. You may find them from internet bookstores.

Course Requirements and Grades Class attendance is required. Students are required to read textbooks before each class, and are expected to actively participate in classes. The final course performance is based on the following weights:

- Class participation: 10%.
- Computation project and presentation: 30%
- Final exam: 60%.
IMPORTANT It is your responsibility to plan your travel around exams dates. In particular, the date of the final exam is determined by the Registrar and cannot be changed for any reason. All exams are required. If you miss an exam without an acceptable excuse, you will receive a grade of zero. The only exceptions will be for a verified family emergency or for an illness or injury that is confirmed by the University Medical Clinic or other doctor. If you miss an exam for a legitimate reason, you will take a makeup exam.

Academic Conduct It is your responsibility to know and understand the provisions of the CAS Academic Conduct Code (http://www.bu.edu/cas/academics/programs/conductcode.html). Cases of suspected academic misconduct will be referred to the Dean’s Office. Any student found guilty of cheating on an exam in this course will receive a minimum penalty of a zero grade for that exam.
1 Discrete Dynamical Systems

Azariadis (1993) Chapters 1-7

- Scalar Linear Equations
- Stockmarket Bubbles
- Linear Systems
- Exchange-Rate Overshooting
- Nonlinear Systems
- The Structure of Growth Models

2 Deterministic Dynamic Programming

SLP Chapters 3-6.

2.1 Mathematical Preliminaries

- Metric spaces
- Contraction mapping theorem
- The Theorem of the Maximum

2.2 Principle of Optimality

- Bellman equation
- Euler equation
- Policy functions
2.3 Numerical Method

- (Log) linear and second-order approximation
- Value Function Iteration

3 Stochastic Dynamic Programming

SLP Chapters 7-10

3.1 Mathematical Preliminaries

- Measure theory and integration
- Markov process

3.2 Principle of Optimality

- Bellman equation
- Euler equation
- Policy function

3.3 Numerical Methods

- (Log) linear and second-order approximation
- Value function iteration

4 Applications

- Consumption-savings problem
- Investment with convex/nonconvex adjustment costs
- Portfolio choice and asset pricing
- Economic growth
- Dynamic stochastic general equilibrium (DSGE) models
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Sept 2</td>
<td>Dynamical system</td>
</tr>
<tr>
<td>Week 2</td>
<td>Sept 9</td>
<td>Dynamical system</td>
</tr>
<tr>
<td>Week 3</td>
<td>Sept 16</td>
<td>Dynamical system</td>
</tr>
<tr>
<td>Week 4</td>
<td>Sept 23</td>
<td>Deterministic DP</td>
</tr>
<tr>
<td>Week 5</td>
<td>Sept 30</td>
<td>Deterministic DP</td>
</tr>
<tr>
<td>Week 6</td>
<td>Oct 7</td>
<td>Deterministic DP</td>
</tr>
<tr>
<td>Week 7</td>
<td>Oct 14</td>
<td>Deterministic DP</td>
</tr>
<tr>
<td>Week 8</td>
<td>Oct 21</td>
<td>Deterministic DP</td>
</tr>
<tr>
<td>Week 9</td>
<td>Oct 28</td>
<td>Stochastic DP</td>
</tr>
<tr>
<td>Week 10</td>
<td>Nov 04</td>
<td>Stochastic DP</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov 11</td>
<td>Numerical Method</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov 18</td>
<td>Numerical Method</td>
</tr>
<tr>
<td>Week 13</td>
<td>Nov 24-28</td>
<td>Fall Recess</td>
</tr>
<tr>
<td>Week 14</td>
<td>Dec 02</td>
<td>Presentation</td>
</tr>
<tr>
<td>Week 15</td>
<td>Dec 09</td>
<td>Presentation</td>
</tr>
</tbody>
</table>