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Informed Trading When Information
Becomes Stale

DAN BERNHARDT and JIANJUN MIAO∗

ABSTRACT

This paper characterizes informed trade when speculators can acquire distinct signals
of varying quality about an asset’s value at different dates. The most reasonable
characterization of private information about stocks is that while information is long-
lived, new information will arrive over time, information that may be acquired by
others. Hence, while a speculator may know more than others at a moment, in the
future, his information will become stale, but not valueless. In an environment that
allows for arbitrary correlations among signals, we characterize equilibrium outcomes
including trading, prices, and profits. We provide explicit numerical characterizations
for different informational environments.

ONE OF THE MOST IMPORTANT OPEN QUESTIONS in theoretical market microstructure
finance is: How do informed speculators trade in a dynamic environment when
different speculators receive distinct signals at different dates?

The most interesting and reasonable characterization of private information
about stocks is that, while information is long-lived, new information will arrive
over time and this information may be acquired by other speculators. In prac-
tice, individuals only periodically engage in detailed research on a particular
stock. At the moment a speculator does this research, he may know that he is
better informed than everyone else with regard to the stock, but he also knows
that in the future, his information will become dated, and others will acquire
fresher information. Still, the speculator can continue to trade profitably on
his information in the future; that is, even though his information will become
stale, it will still have value.

An informed speculator must determine how intensively to trade on his infor-
mation at each date. To do this he must use the information contained in both
his signal and market prices to forecast (i) the information that each differ-
entially informed agent has about the asset value, and (ii) the trades of other
informed agents, because those trades influence prices. In such an environ-
ment, one wishes to determine how the strategic interplay among differentially
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informed agents affects trading behavior, market prices, volume and profits
over time.

This problem has defied solution. Existing attempts at characterizing spec-
ulative informed trade have taken one of two basic approaches. The approach
adopted by Kyle (1985), Back, Cao, and Willard (2000), Baruch (2002), Holden
and Subrahmanyam (1992), and Foster and Viswanathan (1996) is to assume
that (i) information arrives only at the beginning of the game; and (ii) the date 0
signals that the informed agents receive about the long lived value of the asset,
although perhaps correlated, are identically distributed. These extreme mod-
eling assumptions are made solely for reasons of tractability: “The assumption
of symmetry, i.e., that all traders have the same initial variance of informa-
tion, same cross covariance between signals and the same covariance between
signals and true value is critical for the analysis” (Foster and Viswanathan
(1996)). The alternative approach has been to assume that private information
is short-lived, so that old information is immediately revealed to the market
as soon as new private information becomes available (Admati and Pfleiderer
(1988)).

What has made this problem so difficult is that each informed agent’s trading
problem is intrinsically different because the nature of each agent’s informa-
tion is different. One must simultaneously solve each informed agent’s trading
problem and solve for the consistent equilibrium pricing at each date. To do so,
one must solve the forecasting and information extraction problems of these
agents, and address how they trade over time.

This paper solves this problem. We consider an environment in which new,
normally distributed innovations to the asset’s value arrive in each period. We
allow the correlation between the innovation in the asset’s value in one period
with the innovations in other periods to be arbitrary. In a base formulation, in
each period t, a single new informed agent receives one of the following pieces
of information: (i) the period t innovation to the asset’s value; (ii) the period
t asset value (i.e., the sum of all innovations up to period t); or (iii) the period t
history of innovations (i.e., the vector containing each innovation up to period t’s
innovation). Going from the first formulation to the third, agents who acquire
information later are increasingly better informed than earlier agents. Our
analysis extends these base formulations to allow for arbitrary numbers of
informed agents at each date, and to allow agents who become informed at the
same date to see different innovations.

In sum, the informational environment we consider is very general. To de-
termine how much an informed agent should trade in each period given his
private information and past history of prices, the agent must first use this
information to forecast both the information about the asset’s value that other
informed agents receive, and the trades by other informed agents, since those
trades will affect prices. What complicates the informational extraction prob-
lem is a formidable “forecasting the forecasts of others” problem: Each agent’s
trades will depend on their forecasts of other agents’ trades; since trades de-
pend on forecasts, so too do prices, and hence agents must forecast the forecasts
of others, and so on.
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The key step in our analysis is to first conjecture and then verify that: (i) an
equilibrium pricing rule is a linear function of net order flow; (ii) the optimal
trading strategy of an informed agent is a linear function of each piece of his
unrevealed private information, that is, the difference between each signal and
the expectation of that signal given public information; and, (iii) an informed
agent’s expected future trading profits are a quadratic function of this private
information.

Several driving forces underlie our findings. The first concerns how agents
use the information contained in each signal that they receive to forecast the
asset’s value, the information of other agents, and other agents’ trades. Given
the linear pricing rule and the linear strategies of other informed agents, an
agent’s best estimates of both the difference between the asset’s true value and
the market’s expectation of that value, and the private information of other
agents, are linear functions of each piece of unrevealed private information that
an agent has. That is, agents essentially run multivariate linear forecasting re-
gressions. The conjectured linear strategies therefore render unnecessary the
task of directly solving the forecasting-the-forecasts problem. Second, given the
conjectured linear strategies of other agents, an agent’s expected period prof-
its are a quadratic function of each piece of his private information. Quadratic
objectives yield linear first-order conditions, and thus an informed agent’s op-
timal period trade is a linear function of his unrevealed private information. In
turn, the linear trading strategies and linear pricing functions imply that pe-
riod profits, and hence expected lifetime trading profits, are quadratic functions
of the agent’s unrevealed private information.

Importantly, this analysis also highlights that one cannot generally write an
agent’s optimal trade as a linear function of the difference between his forecast
of the asset’s value given both his private information and trade history, and
the market’s best forecast given the trade history. This is because the intensi-
ties with which agents compete on each piece of private information differ. For
example, if agents face greater competition on “older” information that more
agents have acquired, then each agent reduces the intensity with which he
trades on that piece of information.

In Section I, we first provide explicit equilibrium characterizations for the
problem in which informed agents observe period innovations. The model is
very general since we assume that an arbitrary number of informed agents can
acquire information at each date, these informed agents may see different in-
novations, and the correlations among innovations are arbitrary. We first detail
the evolution of public information in the process of trading, and the difference
between the private and public informational structures, and then provide a
theorem characterizing the equilibrium. The linear equilibrium characteriza-
tion is along the lines of Kyle (1985), Holden and Subrahmanyam (1992), or
Foster and Viswanathan (1994, 1996): We provide a system of difference equa-
tions, the solution to which characterizes equilibrium informed trading and
pricing.

Our results are foreshadowed by the analysis of Foster and Viswanathan
(1994). Foster and Viswanathan consider an environment with two informed
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agents; one agent knows a date-1 innovation to an asset’s value, while the
other agent knows that innovation and an additional innovation. What our
paper shows is that the nature of Foster and Viswanathan’s solution in their
one-period special case extends to very general finite-horizon contexts.

In Section II, we show how equilibrium outcomes are affected when there
is a positive probability that an agent’s private information may leak out at
a future date and become public information. This might occur, for example,
when a firm announces quarterly earnings.

Section II also provides characterizations of outcomes when agents observe
the period asset value rather than the period innovation to the asset value.
Finally, we show that our analytical approach extends even if an insider’s pri-
vate information is multidimensional, perhaps because his information sub-
sumes that of agents who acquire information at earlier dates. These latter
characterizations permit us to determine how equilibrium outcomes are af-
fected by the quality of information: An agent who observes the period t inno-
vation is less well informed than one who learns the period t value of the asset,
who, in turn, is less well informed than someone who sees the entire history of
asset innovations through date t.

In Section III, we augment our theoretical analysis with numerical charac-
terizations for cases in which: (i) there is a single innovation to the asset’s value,
but informed agents observe the innovation at different dates; and, (ii) innova-
tions are independently distributed and an informed agent observes either the
date t innovation, the date t asset value, or the entire history of innovations.

Our numerical characterizations reveal several important findings:

� To generate the U-shaped intradaily pattern in volume found in the data, it
is important to allow for both sequential information acquisition and het-
erogeneous (sufficiently uncorrelated) information. Even when innovations
are independently distributed, for volume to exhibit a U-shaped pattern,
agents must acquire sufficient new information over time.

� Sequential information acquisition and sufficiently heterogeneous (uncor-
related) information are also required to generate, simultaneously, the
widening bid–ask spreads, increasing volume and increasing price volatil-
ity that are found empirically as the timing of earnings announcements
draws near (see Brooks (1994) and Krinsky and Lee (1996)).

� The nature of private information has surprising effects on equilibrium
outcomes. For example, when innovations are independently distributed,
an agent’s expected profits are lower when he knows each innovation that
together comprise the asset’s value than they are when he knows only the
total asset value. The reason is that an agent who observes only the asset
value cannot make the size of his trade a function of each individual inno-
vation, and this causes him to trade more aggressively on innovations that
are privately observed by others. In turn, the equilibrium “best response”
of other agents to this more aggressive trading is to trade less aggressively.

� The division of information across agents matters in a dynamic con-
text, even when innovations are independently distributed. In a static
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environment, when signals are independently distributed, pricing is unaf-
fected by the division of information. However, in a dynamic context, agents
learn from the price and their own private information about the signals
of other agents, even if innovations are independently distributed. Rec-
ognizing that their signals are conditionally negatively correlated, agents
compete less aggressively, reducing information release (Back et al. (2000)
uncover a related result).

� Using a Kyle-style decomposition of time for the case in which there is
a single innovation observed at different times, we show that the timing
at which the second agent observes the second innovation endogenously
determines the trading horizon of the first-informed agent in a Kyle envi-
ronment: The first agent to acquire information will trade to exhaust all
private information at the moment that the second agent learns the news.
More generally, as one increases the number of trading periods in which
the first-informed agent is the sole observer of his private information,
equilibrium dynamics move smoothly from duopoly to monopoly dynamics.

These numerical findings highlight the importance of a theoretical analysis
that allows both for heterogeneity in agents’ signal qualities and intertemporal
information arrival.

Section I outlines the base model, and characterizes the equilibrium. Sec-
tion II extends the analysis to other informational environments. Section III
provides the numerical characterization. A conclusion follows. Most proofs are
placed in the Appendix.

I. A Base Model

A single risky asset is traded over a finite number of periods, N. We assume
that the asset’s final liquidation value is equal to v = v̄ + ∑N

t=1 δt , where v̄ is
the (unconditional) mean of v and the innovations (δ1, . . . , δN) are drawn from a
multivariate normal distribution with mean zero and variance–covariance ma-
trix �. In the information structures that we consider, agents who are privately
informed in a particular period observe in that period either a vector containing
some subset of the δ’s or a partial of sum the δ’s, for example,

∑L
j=1 δ j , where

L ≤ N. At the end of period N, the asset’s liquidation value, v, becomes public
information. Risk-neutral informed traders and uninformed liquidity traders
trade in a market made by risk-neutral, competitive, uninformed market mak-
ers who only observe the net order flow.

No structure is imposed on the covariance matrix between innovations, �.
Special cases of this informational environment include a single informational
innovation as in Kyle (1985) and Holden and Subrahmanyam (1992), and sym-
metrically distributed innovations as in Foster and Viswanathan (1996), or
Back et al. (2000). In addition to allowing for a far more general informational
structure on innovations, our set-up allows agents to receive signals at different
dates.

In the base formulation, an informed agent observes a single innovation,
δi, i ∈ {1, 2, . . . , N}, to the asset’s value. However, we impose no restrictions
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on the number of agents who learn δi, nor on the dates at which agents ac-
quire this information. Let Mi

k ≥ 0 be the number of traders who learn δi at
date k. Thus, M ≡ ∑N

i=1
∑N

k=1 M i
k is the total number of informed agents. A

timing interpretation for the arrival of innovations is preserved if Mi
k = 0, for

i > k, so that agents do not observe innovation δi until at least date i. How-
ever, if Mi

k �= 0, i > k, the formulation admits the interpretation that δi and
δk are distinct innovations to the asset value that are realized at date 0, and
are observed by different agents. In particular, with this interpretation, our
formulation incorporates Kyle (1985), Holden and Subrahmanyam (1992), and
Foster and Viswanathan (1996) as special cases. Kyle’s (1985) model is obtained
when the sole informed trader acquires information at date 1: M1

1 = 1, Mj
k = 0

for k, j �= 1, and δj = 0 for j > 1. Holden and Subrahmanyam’s (1992) model
is obtained when more than one agent observes δ1, so that M1

1 > 1, Mj
k = 0 for

k, j �= 1, and δj = 0 for j > 1. Foster and Viswanathan’s (1996) numerical model
is obtained when Mi

1 = 1, Mi
k = 0 for i = 1, 2, . . . , M ≤ N, and k > 1, where in-

novations (δ1, . . . , δM) are symmetrically distributed, and δj = 0 for j > M.
In each period, t, in addition to trade from informed agents, there is also

exogenous liquidity trade of ut. We assume that net liquidity trade is indepen-
dently and identically normally distributed each period according to N(0, σ 2

u ).
Let xi

kt be the date t trade of an informed agent who observes δi at date k. Then

X t =
N∑

k=1

N∑
i=1

M i
kxi

kt (1)

is the total informed trade at date t. Competitive market making implies that
the price of the asset in period t, pt, equals the expectation of v conditional on
the current information available to the market maker:

pt = E[v | X t + ut , �t−1], (2)

where �t−1 is the public information revealed prior to trading at period t, and
Xt + ut is the total net order flow at t that the market maker observes. Thus,
public information evolves according to �t = {�t−1, Xt + ut}, where �0 = v̄. The
market efficiency condition (2) implies that pt follows a martingale.

Consider an informed agent who learns δi at date k. The contribution of period
t trading to the agent’s total realized profits is π i

kt ≡ (v − pt)xi
kt, and his cumu-

lative trading profit from period t to N is 	i
kt ≡ ∑N

j=t π i
k j . For t < k, this agent

is still uninformed; he trades to maximize expected profits given the public in-
formation history of prices, maximizing E[	i

kt | �t−1], and his optimal trading
strategy xi

kt is a measurable function of �t−1. For t ≥ k, the agent who learns δi
at date k is informed at date t, and hence trades to maximize expected profits
given both the public information history of prices and his private informa-
tion, maximizing E[	i

kt | δi, �t−1]. Furthermore, his optimal trading strategy is
a measurable function of (δi, �t−1).

An equilibrium can be defined by (i) the market efficiency condition, equa-
tion (2), and (ii) profit maximization by each informed agent at each date given
the optimal strategies of other agents and the equilibrium pricing function.
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We restrict attention to linear equilibria in which both the pricing function
and informed agents’ strategies are linear with respect to the information struc-
ture. In particular, we conjecture that the trading strategy of an informed trader
who learns δi at date k takes the form:

xi
kt = βi

t (δi − E[δi | �t−1]) for t ≥ k and M i
k > 0,

xi
kt = 0 for t < k or M i

k = 0,
(3)

where βi
t is a constant, and that the equilibrium price functions take the

form:

pt = pt−1 + λt · (X t + ut), (4)

where λt is a constant and p0 = v̄. If prices evolve according to equation (4),
and the strategies of informed agents take the form of equation (3), then pt
is a linear function of the net orders, so that the streams of net order flows
and prices are informationally equivalent. Hence, without loss of generality we
can let �t−1 ≡ {v̄, p1, . . . , pt−1}. Further, given the linear strategies, past prices
(p1, . . . , pt) are normally distributed with some strategy-dependent conditional
mean and conditional variance–covariance matrix.

The standard approach (Kyle (1985), Holden and Subrahmanyam (1992),
Back et al. (2000), Foster and Viswanathan (1996), etc.) is to conjecture that
the trading strategies are linear functions of the difference between an agent’s
signal and the date t − 1 price, the latter of which represents the market’s ex-
pectation of the asset’s value given the public information history. One might
wonder why equilibrium strategies are not linear functions of the difference
between an agent’s expectation of the asset value and the market’s date t as-
sessment of this value, pt−1. In fact, with symmetrically distributed signals
Back et al. (2000) show that these strategy formulations are equivalent.

The “standard” approach works when agents have symmetrically distributed
signals, and hence adopt identical strategies. As a result, pt−1 corresponds to the
market’s forecast of each agent’s signal. Our conjectured form of trading strate-
gies generalizes this approach in the natural way to environments in which
informed agents are heterogeneous ex ante, both with regard to the timing of
when they receive information, and to the distribution of their signals.

Our equilibrium concept mirrors that of Kyle (1985), Back et al. (2000),
Holden and Subrahmanyam (1992) in that we characterize behavior only along
the equilibrium path, in which in each past period, each agent followed his
equilibrium linear trading rules. This ensures that the evolution of past prices
is normally distributed.

A. Information

We now examine how private and public information evolves over time,
and how the expectations of informed agents are formed. Since agents follow



346 The Journal of Finance

linear strategies, at period t, the past stream of prices (p1, . . . , pt−1) is normally
distributed along the equilibrium path. This allows us to exploit the projection
theorem (see Grossman and Stiglitz (1980), or Greene (1993)).

The private information δi acquired by an agent may be at least partially
revealed through trading at t through the price pt. If δi is (unconditionally)
correlated with other signals, say δj(j < i), then the market may provide infor-
mation about δi prior to period i:

LEMMA 1: The market’s date t forecast of δi can be decomposed into the sum of
the expectation at date t − 1 plus a component reflecting information revealed
by the date t price:

E[δi | �t] = E[δi | �t−1] + φi
t {pt − E[pt | �t−1]}, (5)

where φi
t = cov(δi, pt | �t−1)

Var(pt | �t−1)
. (6)

The second term in equation (5) represents the adjustment of the expectation
reflecting the difference between the realized value of pt and the prior expec-
tation E[pt | �t−1]. Also, note that the conditional variance and covariance are
not functions of �t−1 and neither is φi

t , so that this term can be treated as a
parameter at any date prior to t − 1. Because informed trading strategies are
linear, net order flow is normally distributed. Consequently, the market’s fore-
cast of δi is obtained from a regression of the unobserved δi on the equilibrium
price change (equivalently, net order flow) using population moments.

Analogously, an informed agent must forecast the information of other agents
using both his private signal, δi, and the information contained in prices. In
general, pricing will reflect an infinite hierarchy of forecasts by each agent:
Each agent, when deciding how much to trade, forecasts the information of
other agents, their forecasts of the information of other agents, their forecasts
of other agents’ forecasts, and so on. However, the conjectured linear form of
optimal trading strategies implies that the relationship between E[δj | �t−1] and
E[δj | δi, �t−1] takes a simple form, as described by Lemma 2.

LEMMA 2: The relationship between E[δj | �t−1] and E[δj | δi, �t−1] is given by

E[δ j | δi, �t−1] = E[δ j | �t−1] + θ
i j
t {δi − E[δi | �t−1]}, (7)

where θ
i j
t = cov(δi, δ j | �t−1)

Var(δi | �t−1)
. (8)

Here, δi − E[δi | �t−1] represents the agent’s informational advantage over
the market. Using equation (7), which characterizes the agent’s forecasts of
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those innovations that he does not observe, we derive his forecast of the asset
value v conditional on δi and �t−1 :

E[v | δi, �t−1] = v̄ +
N∑

j=1

E[δ j | δi, �t−1] = pt−1 +
N∑

j=1

θ
i j
t {δi − E[δi | �t−1]}, (9)

where the final equality uses pt−1 = v̄ + E[
∑N

j=1 δ j | �t−1].
This result implies that an equivalence result similar to that derived by

Back et al. (2000) obtains in our environment if agents only observe one sig-
nal. That is, we could have formulated strategies as linear functions of the
difference between an agent’s forecast of the asset value given both his infor-
mation and the history of prices, and the market’s forecast of the asset value
given the history of prices. This is because the difference between the agent’s
forecast and the market’s forecast of the asset value turns out to be

∑N
j=1 θ

i j
t

times the difference between an agent’s signal and the market’s forecast of
the signal. If an agent sees more than one signal, then this equivalence re-
sult breaks down: An agent’s trading strategy is not generally a linear func-
tion of the difference between his forecast of the asset value and the market’s
forecast.

Finally, we must characterize how the agent’s information about other in-
novations evolves over time. To do this we must determine how covariances
between innovations (conditioned both on public and on private information)
are updated each period.

LEMMA 3: Conditional on public information, the covariance between δj and δk
evolves according to

Cov(δ j , δk | �t) = Cov(δ j , δk | �t−1)

− Cov(δ j , pt | �t−1) Cov(δk , pt | �t−1)
Var(pt | �t−1)

. (10)

Conditional on private and public information, the covariance between δk and
δj evolves according to

Cov(δ j , δk | δi, �t−1) = Cov(δ j , δk | �t−1)

− Cov(δ j , δi | �t−1) Cov(δk , δi | �t−1)
Var(δi | �t−1)

. (11)

B. Informed Optimization and Equilibrium

We now turn to the optimization problem of an informed agent. For an in-
formed agent who learns δi at date k, let Vi

kt(δi, �t−1) be his date t future expected
trading profits given δi and the history of past prices. This value function is the
sum of the maximized expected trading profits from trading at j ≥ t, evaluated
at the beginning of period t. We conjecture that the informed agent’s value
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function is a quadratic function of the difference between his private informa-
tion, δi, and the expectation of that value given the history of prices, E[δi | �t−1]:

V i
kt(δi, �t−1) = Ai

t−1 + Bi
t−1(δi − E[δi | �t−1])2 for t ≥ k and M i

k > 0,

V i
kt(·) = 0 for M i

k = 0,
(12)

where Ai
N = Bi

N = 0. Kyle (1985), Holden and Subrahmanyam (1992), and oth-
ers. conjecture that future expected profits are a quadratic function of δi − pt−1.
Our conjectured form of Vi

kt(δi, �t) is the natural generalization to environments
in which the market’s assessment of agent i’s private information, E[δi | �t−1],
does not necessarily correspond to the past price, pt−1.

We must also determine the expected future profits of agents who have yet
to acquire private information. Let Vi

kt(�t−1) represent the maximized expected
profits at date t < k of an agent who has yet to acquire private information δi at
date k, but who does see the history of prices. Specifically, Vi

kt(�t−1) corresponds
to the expected value of his information once he obtains it: For t < k,

V i
kt(�t−1) = V i

k−1k(�k−2) ≡ E
[
V i

kk(δi, �k−1) | �k−1
]

, M i
k > 0. (13)

Proposition 1 characterizes decision making by informed agents and associated
equilibrium pricing.

PROPOSITION 1: Suppose there are N periods and Mi
k informed traders observe δi

at date k. Then the necessary and sufficient conditions for a linear equilibrium
are as follows:

(a) The trading strategies of an informed agent who observes δi at date k take
their conjectured form of equation (3). The constants β i

t , for i = 1, . . . , N,
Mi

k > 0, and k ≤ t, satisfy:

ΛN




β1
t
...

βN
t


 = 1

λt




∑N
j=1 θ

1 j
t

...∑N
j=1 θ

N j
t


 − 2




B1
t φ1

t
...

BN
t φN

t


 ,

where �N is an N × N matrix with elements:

aii = 1 + M i
k

(
1 − 2λt Bi

t

(
φi

t

)2
)

(k ≤ t) and

aij =
(
1 − 2λt Bi

t

(
φi

t

)2
) t∑

l=1

M j
l θ

i j
t (i �= j ≤ t).

(14)

For Mi
k = 0 or k > t, β i

t = 0. The second-order condition for optimization
is given by

λt

(
1 − λt Bi

t

(
φi

t

)2
)

> 0. (15)
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(b) The value functions of the informed agent who observes δi at date k take the
conjectured form of equations (12) and (13), where Ai

t−1 evolves according
to

Ai
t−1 = Ai

t + Bi
t

(
φi

tλt
)2[Var(X t | δi, �t−1) + σ 2

u

]
, (16)

and Bi
t−1 evolves according to

Bi
t−1 = βi

t

[
N∑

j=1

θ
i j
t − λt

t∑
l=1

N∑
j=1

M j
l θ

i j
t β

j
t

]

+ Bi
t

[
1 − φi

tλt

t∑
l=1

N∑
j=1

M j
l θ

i j
t β

j
t

]2

, (17)

with Ai
N = Bi

N = 0.
(c) The price function takes the form of equation (4), where

λt = Cov(v, X t | �t−1)
Var(X t | �t−1) + σ 2

u
. (18)

(d) The conditional covariances between δi and δj based on public information
and on private and public information evolve according to equations (10)
and (11), respectively, and the conditional variance of the asset value �t
evolves according to:

Var(v | �t) ≡ �t = �t−1 − λ2
t

[
Var(X t | �t−1) + σ 2

u

]
. (19)

The key to the proof is showing that the date t equilibrium trading strategy
of any informed agent who has learned δi is a linear function of δi − E[δi | �t−1],
that is, the difference between the agent’s private information and the mar-
ket’s expectation of his information. To do this, we first solve an informed
agent’s decision problem at each date recursively. We suppose that expected
future trading profits take their conjectured quadratic form, and that the pric-
ing function and trading strategies of other agents are linear functions. We then
show that when agents substitute their best linear forecast (a constant times
δi − E[δi | �t−1]) for the information of other agents, the resulting first-order
conditions are linear functions of δi − E[δi | �t−1]. But, linear first-order con-
ditions imply linear trading rules. Linear trading rules, in turn, imply linear
forecasting by the market maker, and hence linear pricing. Finally, the resulting
linear trading rules together with linear pricing generate quadratic expected
period profits (linear order times expected linear price), and thus the conjec-
tured quadratic form of expected future trading profits, verifying the consistent
conjectures.
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II. Other Informational Environments

Throughout this section, for expositional purposes, we will attach a temporal
interpretation to δt. Specifically, we will refer to the tth element in the vector
(δ1, . . . , δN) as the period t innovation. We will also assume that there are N
informed agents and that informed agent t acquires private information at
date t. The reader should note, however, that δt does not necessarily equal the
period t change in the expectation of v for any particular informed agent. Since
in our general formulation the δ’s may be correlated, it is possible that part or
all of δt is forecastable based on information received before period t. We will
consider and contrast equilibrium outcomes when informed agent t’s private
information is only the period innovation δt versus when the agent sees the
period t asset value, vt = v̄ + ∑t

j=1 δ j , versus when he sees the period t history
of innovations, (δ1, . . . , δt). We will also consider how the possibility that private
information is prematurely made public affects outcomes.

We let xi
t and Vi

t denote agent i’s date t trading strategy and value function,
respectively.

A. Positive Probability of Information Revelation

Our analysis has thus far presumed that informed agents can keep their pri-
vate information to themselves until the end of the trading horizon. However,
our qualitative findings extend directly if private information up to period t;
that is, (δ1, . . . , δt) may be revealed publicly after period t trading and before
date t + 1 trading. Public information then evolves over time according to ei-
ther �t = (�t−1, pt) or �t = (�t−1, pt, δ1, . . . , δt). Let µt+1 be the probability that
(δ1, . . . , δt) is revealed before date t + 1 trading occurs. For example, informed
agents may have private information about a firm’s quarterly earnings, and µt+1
may correspond to the probability that the firm releases quarterly earnings at
date t + 1. This formulation admits the possibility that information release be-
comes more likely over time. As µt+1 → 1, an insider’s private information is
almost certainly short-lived, so that equilibrium outcomes approach those in
Admati and Pfleiderer (1988).

It is straightforward to show that xi
t and Vi

t take the following forms:

xi
t = βi

t (δi − E[δi | �t−1]) if i ≤ t; xi
t = 0 otherwise, and (20)

V i
t (δi, �t−1) = Ai

t−1 + Bi
t−1(δi − E[δi | �t−1])2 if i ≤ t and �t = (�t−1, pt);

(21)

V i
t (δi, �t−1) = 0 otherwise. (22)

That is, informed traders (i ≤ t) participate in the tth period trading and ex-
pected future trading profits are positive, if and only if their private information
has not been revealed. Agents whose private information has been revealed do
not trade. Consequently, for an agent with private information, (1 − µt+1) essen-
tially acts as a discount factor in his optimization problem. Because the agent
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may lose future profitable trading opportunities, he trades more aggressively.
The optimization problem of an informed agent who has observed δi becomes:

max
xi

t

E
[
(v − pt)xi

t

∣∣ δi, �t−1
]

− (1 − µt+1) · 2Bi
tφ

i
t (δi − E[δi | �t−1])E[pt − pt−1 | δi, �t−1]

+ (1 − µt+1) · Bi
t

(
φi

t

)2 E
[
(pt − pt−1)2

∣∣ δi, �t−1
]
. (23)

That is, Bi
t is now replaced by (1 − µt+1) · Bi

t in the insider’s optimization. It fol-
lows that equilibrium outcomes described in Proposition 1 are qualitatively un-
changed, except that Bi

t and Ai
t are replaced with (1 − µt+1)Bi

t and (1 − µt+1)Ai
t,

respectively.

B. Informed Agents Observe Asset Value

We next show how trading strategies are affected when the informed agent i
observes the date i asset value, vi ≡ v̄ + ∑i

j=1 δ j , (vN = v), rather than the date
i asset innovation. Now, when informed agent i acquires his information, he
becomes unambiguously better informed about the asset’s value than agents
who learn the asset value at earlier dates, j < i. This formulation therefore
captures the feature that the information of agents who acquire information at
earlier dates becomes stale as time passes due to the later acquisition of private
information by other agents.

The qualitative properties of the equilibrium trading strategies extend in
the natural way. Redefine equations (6) and (7) by replacing agent i’s previous
signal, δi, with vi:

φi
t = Cov(vi, pt | �t−1)

Var(pt | �t−1)
, θ

i j
t = Cov(vi, vj | �t−1)

Var(vi | �t−1)
=

∑i
l=1

∑ j
k=1 Cov(δl , δk | �t−1)∑i

l=1
∑i

k=1 Cov(δl , δk | �t−1)
.

Lemmas 1–3 are unchanged, save that δi, δj and δk are replaced by vi, vj and vk,
respectively.

Again, uninformed agents i > t do not trade in period t and the equilibrium
trading rule of informed agent i ≤ t is a linear function of his private informa-
tion, that is, the difference between his signal, vi, and the market’s forecast of
his signal, E[vi | �t−1]:

xi
t = βi

t (vi − E[vi | �t−1]), t ≥ i; xi
t = 0, t < i. (3′)

Analogously, the value function of an informed agent i ≤ t takes the form

V i
t (vi, �t−1) = Ai

t−1 + Bi
t−1(vi − E[vi | �t−1])2, (12′)

and the value function of an uninformed agent i > t takes the form:

V i
t (�t−1) = V i

i−1(�i−2) = Ai
i−1 + Bi

i−1Var[vi | �i−1], t < i. (13′)
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Finally, pricing functions take the form of (4), where total informed trade is

X t =
t∑

i=1

βi
t (vi − E[vi | �t−1]). (24)

A formal statement and proof of this proposition is in a working paper draft.
Both the statement and proof follow that of Proposition 1 directly, except that
δi is replaced by vi.

C. Later Information Subsumes Earlier Information

We now show how our analytical approach extends if informed agent i’s in-
formation subsumes that of all agents who acquired information at earlier
dates. That is, we now suppose that informed agent i sees the entire history
of past innovations, (δ1, . . . , δi), at time i rather than just the period i innova-
tion, δi, or the period i asset value, vi = v̄ + ∑i

j=1 δ j . Note that if agent i sees
the history of past asset values, (v̄, v1, . . . , vi), then he can infer the innovation
history.

In this informational environment, the quality of information that later
agents acquire is unambiguously better than if they only observe the asset val-
ues, or a single-period innovation. Now the history of past innovations reveals
not only the period i asset value vi, but also, in equilibrium, the future trades
of those agents who acquired information at earlier dates. Informed agents are
now asymmetrically situated with respect to each other: Agents who acquire in-
formation at earlier dates must forecast the information of agents who acquire
information at later dates, but the converse is not true.

We first detail how forecasts, given public and private information, are up-
dated. Each agent forecasts the asset’s value and the trades of other agents by
running a multivariate regression on each piece of his private information:

LEMMA 4:

(a) The market’s expectation of the period i innovation is

E[δi | �t] = E[δi | �t−1] + φi
t (pt − E[pt | �t−1]),

where φi
t = Cov(δi, pt | �t−1)

Var(pt | �t−1)
.

(b) For j > i, the relationship between E[δj | �t−1] and E[δj | δ1, . . . , δi, �t−1] is
given by

E[δ j | δ1, . . . , δi, �t−1] = E[δ j | �t−1] +
i∑

k=1

θ
k j
t (δk − E[δk | �t−1]),

where θ
k j
t = Cov(δk , δ j | �t−1)

Var(δk | �t−1)
.
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(c) The covariance between δj and δk conditional on public information
evolves according to

Cov(δ j , δk | �t) = Cov(δ j , δk | �t−1) − Cov(δ j , pt | �t−1) Cov(δk , pt | �t−1)
Var(pt | �t−1)

.

At date t ≥ i, insider i observes δ1, . . . , δi so that conditional on private and
public information, the covariance between δj and δk evolves according to

Cov(δ j , δk | δ1, . . . , δi, �t−1)

= Cov(δ j , δk | �t−1) −
i∑

�=1

Cov(δ j , δ� | �t−1) Cov(δk , δ� | �t−1)
Var(δ� | �t−1)

.

The next proposition, which is proved in the Appendix, shows that our anal-
ysis extends in a straightforward way: At each date t, informed agent i ≤ t’s
optimal trading strategy is a linear function of each piece of his unrevealed pri-
vate information, (δ1 − E[δ1 | �t−1], . . . , (δi − E[δi | �t−1]), and his value function
is a quadratic function of unrevealed private information.

PROPOSITION 2: Suppose informed trader i observes asset innovations at earlier
dates, observing {δ1, δ2, . . . , δi}, i = 1, . . . , N, so that his information subsumes
that of agents who acquired information at earlier dates. Then on an equilibrium
path:

(a) The period t pricing function takes the form:

pt = pt−1 + λt(X t + ut), where λt = Cov(v, X t | �t−1)
Var(X t | �t−1) + σ 2

u
. (25)

(b) Trading strategies of each agent i take the form:

xi
t (δ1, . . . , δi, �t−1) =

i∑
j=1

βi
j t(δ j − E[δ j | �t−1])

for i ≤ t, where βi
j t is a constant

= 0 for i > t. (26)

(c) The value functions take the form:

V i
t (δ1, . . . , δi, �t−1) = Ai

t−1 +
i∑

k=1

i∑
j=1

Bi
j t−1Ci

kt−1(δ j − E[δ j | �t−1])

× (δk − E[δk | �t−1]) for i ≤ t, (27)

where Bi
jt−1 and Ci

kt−1 are constants, Bi
jN = Ci

kN = 0, and Vi
t (�t−1) = Vi

i−1
for i > t.
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The proof strategy is again a straightforward induction argument. We sup-
pose that expected future trading profits take their conjectured quadratic form,
and that the pricing function and trading strategies of other agents are linear
functions. We then show that the linear structure of the first-order condition
from optimization is preserved—agents either substitute the known value for
an innovation, or their estimate of the innovation given their multivariate fore-
casting regression described in Lemma 4(b). Finally, we show that this linear
structure induces the conjectured quadratic form of the value function. Thus, in
equilibrium, trading strategies are linear and the value functions are quadratic.

Note that Proposition 2 provides an incomplete characterization of outcomes:
Tractability, in general, precludes deriving, the difference equations governing
the equilibrium evolution of the constants β i

jt, λt, Ai
t−1, Bi

jt−1, and Ci
kt−1, which

characterize the evolution of trading behavior, payoffs, and pricing.
It is important to note that our analytical approach is easily extended to sit-

uations where agents see a set of different (normally distributed) asset-value
innovations, which do not necessarily correspond to the history of past inno-
vations. That is, equilibrium strategic trading and pricing when agents have
many sources of information at their disposal (perhaps acquiring information
at different dates) is qualitatively unaffected by the number of pieces of infor-
mation to which they have access. Again, agents’ trading strategies are linear
functions of each piece of information available to them; agents use each signal
to forecast both the asset’s value, and the trades of other agents, and pricing is
a linear function of order flow. As such, this represents an important extension
of the literature, which, to date, assumes that each agent has access to only one
signal. We now consider a special case to provide sharper characterizations.

PROPOSITION 3: Suppose there are two periods, two informed traders, innovations
are independently distributed, informed agent 1 observes δ1 in period 1, and
informed agent 2 observes both δ1 and δ2 in period 2. Then:

(a) Equilibrium trading strategies are

x1
2 = 1

3λ2
(δ1 − E[δ1 | �1]) , (28)

x2
2 = 1

3λ2
(δ1 − E[δ1 | �1]) + 1

2λ2
δ2,

x2
1 = 0, and x1

1 = 1 − 2λ1/(9λ2)
2λ1[1 − λ1/(9λ2)]

(δ1 − E[δ1 | �0]). (29)

The second-order conditions are λ2 > 0, and 0 < λ1 < 9λ2/2.
(b) The constants in the price function (4) solve

λ2 = 1
σu

√
2
9

Var(δ1 | �1) + 1
4

Var(δ2),

(
1 − 2λ1/(9λ2)

)2 Var(δ1) + 4(λ1)2(1 − λ1/(9λ2)2σ 2
u

= 2(1 − λ1/(9λ2))
(
1 − 2λ1/(9λ2

)
Var(δ1). (30)
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Proof: See the Appendix for the proof and a more complete characterization.
Q.E.D.

Proposition 3 implies that an agent’s optimal trading strategy cannot be writ-
ten as a linear function of the difference between his forecast of the asset value
given his private information and trade history, and the market’s forecast given
the trade history. Essentially, the reason is that the difference between each
signal that an agent sees and the market’s forecast is a distinct strategic com-
ponent. The intensity with which an agent trades on each signal varies with the
competition on that information. Here, agent 2 faces competition from agent 1
on the older, date 1 information innovation, δ1, but he does not face competition
over his information about δ2. The increased competition over δ1 causes agent 2
to reduce the intensity with which he trades. He trades as a “monopolist” over
δ2, but as a “duopolist” over δ1.

III. Numerical Results

To shed more light on how the informational environment affects outcomes,
we now consider three different informational environments.

First, to illustrate how the timing of information acquisition affects outcomes,
we consider two agents who acquire the same information but at different points
in time. We show that as the number of trading periods in which the first
informed agent has private information to himself rises, equilibrium dynamics
move smoothly from duopoly to monopoly dynamics. Indeed, as we divide the
trading horizon up more finely, à la Kyle, as the number of trading periods
grows large, we endogenize the trading horizon of a Kyle monopolist.

Next, we consider an environment in which innovations are independently
distributed, and each agent sees one innovation. We then consider how the
division of information between the agents affects outcomes. Three key obser-
vations emerge. First, less information is revealed in dynamic settings when
information is more evenly divided, because this leads private information to
be more negatively conditionally correlated. Second, the price impact of or-
der flow falls with time if agents acquire information simultaneously, but the
price impact rises with time if agents do not acquire information at the same
time and the agent acquiring information at a later date acquires “enough” of
it. Third, to generate the U-shaped intradaily pattern in volume found in the
data, agents must again acquire their information at different dates, and the
agent acquiring information at a later date, must acquire an “intermediate”
amount of information.

Finally, we consider how the nature of information that agents acquire af-
fects outcomes. Specifically, in a two-period environment with independently
distributed innovations we consider how outcomes are affected when agent 2 ob-
serves (a) δ2, (b), v = δ1 + δ2, and (c) {δ1, δ2}. We contrast outcomes when agent 2
acquires his information at date 1 with those when he acquires his information
at date 2. Several observations emerge. Again, sequential information acqui-
sition can generate simultaneously both the increased bid–ask spreads and
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increased trading volumes, and hence price volatilities, while simultaneous in-
formation acquisition cannot. Second, improving agent 2’s information need not
increase even his own profits; his profits are higher when he sees v = δ1 + δ2
than when he sees {δ1, δ2}. Third, improving agent 2’s information always leads
to more information being revealed through price. Finally, the nature and tim-
ing of information acquisition interact in subtle ways on the trading intensities
of the two informed agents.

A. Timing of Information

To determine the impact of acquiring information at different dates, we first
generalize Holden and Subrahmanyam’s (1992) environment. Suppose innova-
tions are perfectly correlated, v = v̄ + nδ, and L j = ∑n

i=1 M i
j traders observe δ

at date j. Since signals are perfectly correlated, each informed agent can use his
signal to infer the signal that other informed agents have received or will re-
ceive. Proposition 4 in the Appendix characterizes the unique equilibrium. This
environment is general enough to include several scenarios of interest. First,
if n = 1 and L1 > 0, then Proposition 4 reduces to Proposition 2 in Holden and
Subrahmanyam (1992). Second, if n > 1 and Lj = L > 0, ∀j, then Proposition 4
captures the case where L newly informed traders learn δ each period. Finally,
we can capture different degrees of delayed information acquisition. For exam-
ple, M = 2, L1 = 1, Lt = 1, and Lj = 0 for j �∈ {1, t}, captures an environment in
which one informed agent acquires information with a considerable lag.

Figure 1 contrasts equilibrium outcomes for different specifications of infor-
mation acquisition in a six-period model: (a) a single agent who observes δ in
period 1, as in Kyle (1985); (b) two informed agents who observe δ in period 1,
as in Holden and Subrahmanyam (1992); (c) two informed agents, one of whom
observes δ in period 1, the other observes δ one period later; and, (d) two in-
formed agents, one of whom observes δ in period 1, the other does not observe
δ until period 5. In all of our numerical examples we set the variances of both
the asset value and liquidity trade to equal 1.

This figure suggests that differences in the timing of information acquisi-
tion become important if there is a substantial delay in information acqui-
sition. If there is only a one-period difference, outcomes are similar to those
where agents acquire information simultaneously. In contrast, if the second
informed agent does not acquire information until date 5, outcomes approxi-
mate Kyle’s monopoly outcome. Relative to a monopolist informed agent, the
first agent to acquire information trades more aggressively on his informa-
tion at earlier dates, because he anticipates greater future competition. This
effect is especially significant if the first informed agent anticipates competi-
tion shortly after information acquisition. As a result, the price impact of order
flow (λt) is greater both prior to the entry of the second informed agent, and
immediately thereafter as the agents compete away their informational rents.
Eventually, the greater information decay due to the more aggressive trading
reduces the price impact below the level that obtained when there is a single
informed agent. Figure 1 also reveals that the four-period delay in information
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Figure 1. Perfectly correlated innovations and six trading periods. The figure contrasts
equilibrium outcomes for different specifications of information acquisition. BMS (1,2): agent 1 (2)
acquires information at date 1 (2). BMS (1,5): agent 1 (2) acquires information at date 1 (5). HS
(1,1): both agents acquire information at date 1. Kyle (1,0): Kyle’s model. �: conditional variance
of the asset value given public information. λ: the price impact of order flow. E[V]: the expected
lifetime profits.
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acquisition means that it takes much longer for information to be revealed to
the market through prices.

Figure 2 illustrates how outcomes are affected by sequential information ac-
quisition if we take limits à la Kyle and approximate the continuous trading
environment by dividing the trading interval [0, 1] into 2J equal subintervals,
so that liquidity trade in each period is σ 2

u /2J for J = 4, 8, 16. This figure con-
trasts the Kyle monopoly outcome with that where the second informed agent
acquires information in period 2J−1 + 1, after half of the trading opportunities
have passed.

Figure 2 reveals that if the first informed agent has enough periods to trade
before the second agent acquires information, then he essentially behaves as a
Kyle monopolist facing a trading horizon that corresponds to the period before
the second agent acquires information (here t = 0.5). In particular, as J → ∞,
the first informed agent trades so that all of his private information is just
revealed at the moment that the second agent acquires information. In this way,
anticipation of the competition induced by information acquisition by the second
agent effectively endogenizes the terminal condition for the Kyle monopolist.
Because the first informed agent trades more aggressively prior to t = 0.5, the
limit value of the pricing parameter before date t = 0.5 exceeds that for a single
Kyle monopolist.

Figure 3 shows further how the possibility that agents’ private information
may be publicly revealed at an early date (recall that µ is the probability each
period that the information is revealed publicly) causes informed agents to trade
more aggressively, which leads to more rapid information release through trade.
Trading intensities and hence pricing (conditional on information not being
revealed) are relatively similar when (i) agents acquire information at nearly
the same time and there is no possibility that their information becomes public
and when (ii) there is a long delay in the information acquisition by a second
informed agent and a 0.5 probability each period that private information is
made public. The strategic presence of a second informed agent leads to slightly
more information release through trading than does “competition from God”
in the form of a second nonstrategic “agent” who reveals private information
publicly with probability 0.5.

B. Division and Timing of Information

Now consider the polar case where asset innovations are independently dis-
tributed, and let v = v̄ + δ1 + δ2. Since innovations are independently
distributed, the current price contains no information about future asset in-
novations. Proposition 5 in the Appendix details equilibrium outcomes in a
three-period environment with independently distributed innovations and two
informed agents, both when agent i observes δi at date 1, and when agent i ob-
serves δi at date i. The first setting is a generalization of Foster and
Viswanathan (1996) in that the innovations can have arbitrary variances.

Although innovations are independently distributed, the strategic trading be-
havior of the informed agents leads the covariance between δ1 and δ2 conditional
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Figure 2. Perfectly correlated innovations and convergence. The figure illustrates limiting
results by dividing the trading interval [0,1] into 2J equal subintervals so that liquidity trade
in each period is σ 2

u /2J for J = 4, 8, 16. �: conditional variance of the asset value given public
information. λ: the price impact of order flow.
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Figure 3. Positive probability of information revelation. The figure illustrates equilibrium
outcomes when innovations are perfectly correlated and private information is publicly revealed
with probability µ. �: conditional variance of the asset value given public information. λ: the price
impact of order flow. E[V]: the expected lifetime profits.



Informed Trading When Information Becomes Stale 361

on date 1 public information to be negative. Intuitively, this is because the
market maker is forecasting both δ1 and δ2 using total net order flow: If he
attributes too much of the order flow to δ1, then he is attributing too little
to δ2. This negative covariance is easiest to see when information is acquired
sequentially. Proposition 5(c) in the Appendix yields

Cov(δ1, δ2 | �2) = − β1
2β2

2 Var(δ1 | �1) Var(δ2 | �1)(
β1

2

)2 Var(δ1 | �1) + (
β2

2

)2 Var(δ2 | �1) + σ 2
u

< 0.

Further, the difference in informed trading intensities at date 3, β1
3 − β2

3 , is
proportional to

θ12
3 − θ21

3 = Cov(δ1, δ2 | �2)
[

1
Var(δ1 | �2)

− 1
Var(δ2 | �2)

]
.

Since δ1 and δ2 are conditionally negatively correlated, it follows that β1
3 < β2

3 if
and only if Var(δ1 | �2) < Var(δ2 | �2). That is, as private information is revea-
led through trading prior to the final period (and thus as the conditional vari-
ance decreases), insider i’s trading strategy becomes less elastic with respect
to his unrevealed private information, δi − E[δi | �2].

Figures 4 and 5 illustrate outcomes when both agents acquire information
at date 1, while Figures 6 and 7 illustrate outcomes where agent j observes
δj at date j, j = 1, 2. We contrast this case where innovations are identically
distributed, Var(δ1) = Var(δ2) = 0.5, with the case where informed agent 2 has
better information than agent 1, Var(δ1) = 0.1 and Var(δ2) = 0.9, and Kyle’s
framework where Var(δ1) = 1.0 and Var(δ2) = 0.0. Importantly, our solution
technique does not require symmetrically distributed signals.

Note that even though innovations are independently distributed, agents
trade less aggressively when information is more evenly divided among agents.
In a one-period trading environment, trading intensities and pricing would
not depend on how information is divided among informed agents. However,
in a dynamic context, each informed agent uses the price and his own private
signal to update his forecast of the other agent’s signal. Signals are more condi-
tionally negatively correlated in periods 2 and 3 when information is more
evenly divided (the date 2 and date 3 conditional covariances are −0.0862
and −0.1454 when Var(δ1) = Var(δ2) = 0.5 versus −0.0380 and −0.0563 when
Var(δ1) = 0.9, Var(δ2) = 0.1). As a result, when signals are more symmetrically
distributed, agents trade less intensively on their information at dates 2 and 3
(see Figure 5). In turn, less information is revealed through trade (see
Figure 4, Panel A). This augments a finding by Back et al. (2000), who find
that less information is revealed when innovations are independently and
symmetrically distributed between two informed agents than when a single
trader sees the sum of the innovations. More equal signal divisions also re-
duce total informed profits, but the impact is not spread uniformly across pe-
riods. Total second-period profits are greatest with more equal distributions
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Figure 4. Simultaneous information acquisition. The figure illustrates equilibrium outcomes
when innovations are independently distributed and agent i acquires information δi at date 1 for
i = 1, 2. �: conditional variance of the asset value given public information. λ: the price impact of
order flow. Var(d1) (Var(d2)): Var(δ1)(Var(δ2)).
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intensities for the two agents when innovations are independently distributed and agent i acquires
information δi at date 1 for i = 1, 2. Var(d1) (Var(d2)): Var(δ1) (Var(δ2)).
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Figure 6. Sequential information acquisition. The figure illustrates equilibrium outcomes
when innovations are independently distributed and agent i acquires information δi at date i for
i = 1, 2. �: conditional variance of the asset value given public information. λ: the price impact of
order flow.
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Figure 7. Sequential information and trading intensities. The figure illustrates trading in-
tensities for the two agents when innovations are independently distributed and agent i acquires
information δi at date i for i = 1, 2. Var(d1) (Var(d2)): Var(δ1) (Var(δ2)).
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of information, while first- and third-period profits are smallest (see Figure 4,
Panel C).

Figure 4, Panel B reveals that the price impact of order flow (λt) falls with
time if both agents acquire information at date 1. In sharp contrast, Figure 6
reveals that if information is acquired sequentially, then as long as informed
agent 2’s signal contains enough information, the price impact of trade rises in
period 2 and then falls. This reflects that while some of agent 1’s information
has been revealed at date 1, (i) the private information is further increased at
date 2 because of agent 2’s newly acquired information, and (ii) (see Figure 7)
both agents trade more aggressively at date 2 because the trading horizon is
shorter. At date 3, the price impact falls because period 2 trading reveals enough
private information to offset the greater informed trading intensities. Thus,
sequential information arrival helps generate the widening bid-ask spreads
and price volatility observed in the data as the moment at which information
becomes public approaches.

Finally, Figure 8 illustrates the evolution of trading volume, which we mea-
sure as the square root of the expected net order flow,

√
Var(X t + ut) =

√√√√Var

[
I∑

i=1

βi
t (δi − E[δi | �t−1]) + ut

]

=
[

I∑
j=1

I∑
i=1

βi
tβ

j
t Cov(δi, δ j | �t−1) + σ 2

u

]1/2

. (31)

Importantly, if agents acquire information sequentially and agent 2 has bet-
ter information (Var(δ1) = 0.1, Var(δ2) = 0.9), then the model can generate the
U-shaped pattern of intraday trading volume found in the data (see, e.g.,
Bernhardt and Hughson (2002)). The behavior of trading intensities (Figures 5
and 7) underlies this result. To generate the U-shaped pattern, there must be
both sufficient new information arrival at the opening and in the middle of
the day. Then, the initial volume is relatively high, driven by new informa-
tion arrival; volume at period 2 falls as the new information arrival causes the
agent who obtained information at the beginning of the day to reduce sharply
his trading intensity; and, volume rises again at period 3 because the trading
horizon ends, so there ceases to be a reason to restrict trade to support future
profits. In sharp contrast, if both agents acquire information at date 1, or if in-
novations are sufficiently correlated, then volume rises over time as informed
trading intensities rise due to the reduced trading horizon. A nice feature of
our model is that it can generate the U-shaped intradaily volume even when
information arrival is high in the middle of the day, which is presumably when
analysts are busiest gathering information. This contrasts with Bernhardt and
Hughson (2002), who provide structural estimates of intradaily information
arrival. Specifically, in Bernhardt and Hughson (2002) there is a one-to-one
link between information arrival and volume, so that they necessarily require
information production to be lowest in the middle of the day.
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Figure 8. Trading volume. The figure illustrates trading volume when innovations are indepen-
dently distributed and two agents acquire information simultaneously at date 1 or sequentially.
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C. Nature of Information

Finally, we characterize how the nature of information that agents acquire
affects equilibrium outcomes. Specifically, let the asset value be v = δ1 + δ2,
where δ1 and δ2 are independently distributed. Within a two-period trading
environment with two informed agents, we contrast outcomes when agent 1
sees δ1 and agent 2 observes

� Only the date 2 asset innovation, δ2.
� The asset value v = δ1 + δ2.
� Both asset innovations, {δ1, δ2}, so that his information subsumes agent 1’s.

For each informational environment, we also determine how outcomes are af-
fected by the timing of agent 2’s information acquisition. The first set of columns
of Table I details equilibrium outcomes when agent 2 does not acquire infor-
mation until period 2, while the last two columns present outcomes when the
agents simultaneously acquire information in the first period, as in Foster and
Viswanathan (1994).

This table shows that the timing of information acquisition does not affect
the ordering of the impact of the quality of agent 2’s information on key vari-
ables: total information revealed through trade, individual and total informed
profit, and the price impact of information. Of course, the timing of information
acquisition has distinct impacts within periods. The most important impact

Table I
Impact of Information Quality and Timing of Information

Acquisition on Equilibrium Outcomes
The table illustrates equilibrium outcomes when agent 1 observes δ1 and agent 2 observes δ2, v =
δ1 + δ2, or {δ1, δ2}. � : conditional variance of the asset value given public information. λ : price
impact of order flow. Vj

t : trader j’s profit at date t. β : trading intensity.

Sequential Information Simultaneous Information
Agent 2’s

Info. Period 1 Period 2 Period 1 Period 2

δ2 0.81 0.41 0.59 0.34
� v 0.77 0.35 0.56 0.26

{δ1, δ2} 0.78 0.34 0.55 0.25

δ2 0.34 0.45 0.49 0.38
λ v 0.353 0.42 0.465 0.36

{δ1, δ2} 0.352 0.43 0.473 0.37

(V1
1 , V2

1 ) (V1
2 , V2

2 ) (V1
1 , V2

1 ) (V1
2 , V2

2 )
δ2 (0.52, 0.28) (0.17, 0.28) (0.44, 0.44) (0.19, 0.19)

Vj
t v (0.40, 0.37) (0.05, 0.37) (0.17, 0.66) (0.03, 0.34)

{δ1, δ2} (0.42, 0.36) (0.07, 0.36) (0.19, 0.65) (0.04, 0.33)

(β1, β2) (β1, β2) (β1, β2) (β1, β2)
δ2 (1.11, 0) (1.11, 1.11) (0.83, 0.83) (1.12, 1.12)

β v (1.32, 0) (0.65, 1.08) (0.76, 0.57) (0.49, 1.29)
{δ1, δ2} (1.28, {0,0}) (0.77, {0.77,1.42}) (0.74, {0.54,0.62}) (0.61, {1.06,1.36})
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of the timing of information acquisition is on the price impact of order flow
(λt). Again, we see that sequential information acquisition generates a rising
price impact over time, while simultaneous information acquisition leads to a
declining price impact.

Table I also reveals that, quite surprisingly, anticipated monotonic relation-
ships do not obtain. For example, as agent 2 gets access to increasingly better
information, his expected profits do not rise monotonically. Specifically, his ex-
pected profits are lower when he observes {δ1, δ2} than they are when he just
observes the asset value, v = δ1 + δ2.

What causes agent 2’s profit to fall as his information improves is that seeing
only the asset value rather than its constituent components confers a strategic
advantage on him. When agent 2 sees each component, he trades more aggres-
sively on δ2 than δ1 because he has a monopoly on δ2 information, whereas he is
a duopolist on δ1 information. However, when agent 2 only sees the asset value
v, he cannot disentangle the contribution of δ2, on which he would like to trade
more aggressively, from that of δ1. As a result, agent 2 trades more aggressively
on the δ1 component of asset value than he would if he saw each component
separately. In turn, agent 1’s “best response” to this more aggressive trading
is to reduce his trading intensity, thereby raising agent 2’s expected profits.
Indeed, this strategic effect is magnified when both agents acquire information
at date 1, because the net private information of the two agents given date 1
public information becomes negatively correlated. This shifts back agent 1’s
date 2 trading intensity, but does not shift agent 2’s, as he knows v.

Of course, when agent 2 sees the asset value, his information is worse than
when he sees each component of the asset value distinctly. So the question
becomes: Which dominates, in terms of impact on expected profits, information
release, and price impact—the strategic advantage conferred by seeing v, or
the reduced information quality? It turns out that the answer depends on the
variable in question.

C.1. Informed Lifetime Profits

As was just noted, the third panel of Table I reveals that for agent 2’s ex-
pected lifetime profits, the “strategic advantage” of seeing v = δ1 + δ2 rather
than {δ1, δ2} dominates: Agent 2’s expected lifetime profits are higher when he
only sees v = δ1 + δ2.

Agent 2’s higher profit due to seeing v = δ1 + δ2 rather than {δ1, δ2} comes at
the expense of both agent 1 and total informed profit. Total informed profit is
reduced by about 1.5 percent when agent 2 sees v = δ1 + δ2 rather than {δ1, δ2},
independent of the timing of information acquisition. Thus, the reduction in
total informed profit is on the same order of magnitude as agent 2’s profit
increase from seeing v rather than {δ1, δ2}.

Obviously, agent 1’s lifetime profit is highest when he has a monopoly over
δ1 information (23 percent higher for sequential information, 232 percent for
simultaneous information). However, total informed profit is but 3–4 percent
higher in this case; most of agent 1’s increased profit is simply a redistribution
from agent 2.
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C.2. Trading Intensities

In the last panel of Table I, three features of informed trading intensities
stand out:

1. Agent 2’s second-period trading intensity on δ1 is far higher when he sees
v = δ1 + δ2 than when he sees {δ1, δ2} and hence can distinguish the con-
tribution of each innovation, and identify agent 1’s information.

2. The flip side is that agent 1’s second-period trading intensity is far lower
when agent 2 sees v = δ1 + δ2 than when agent 2 sees {δ1, δ2}.

3. Agent 1’s trading intensity rises over time if agent 2 only sees δ2, but drops
significantly if agent 2 sees δ1 and , δ2 separately, and drops tremendously
if agent 2 sees v = δ1 + δ2.

It is the first two trading intensity relationships that underlie the strategic
benefit accruing to agent 2 from seeing the asset value v = δ1 + δ2, rather than
each of its constituent components. To glean intuition, contrast the second-
period first-order conditions when agents acquire information sequentially.
When agent 2 sees v = δ1 + δ2, the first-order conditions are

Agent 1: 2β1
2 = 1

λ2
− β2

2 , (32)

Agent 2: 2β2
2 = 1

λ2
− β1

2
Var(δ1|�1)

Var(δ1|�1) + Var(δ2|�1)
, (33)

where Var(δ1 | �1)
Var(δ1|�1) + Var(δ2|�1) = 0.348, whereas when agent 2 sees {δ1, δ2}, the first-

order conditions for trade on δ1 − p1 are

Agent 1: 2β1
2 = 1

λ2
− β2

12,

Agent 2: 2β2
12 = 1

λ2
− β1

2 .

Thus, agent 1’s first-order conditions are the same for both informational en-
vironments (treating λ2 and agent 2’s trade as parameters). However, when
agent 2 only sees v, he places a reduced weight on β1

2 compared to when he
sees δ1 distinctly because δ1 is only a fraction of the information on which he is
trading. Therefore, agent 2’s trading intensity on δ1 information is shifted out
sharply. As a result, agent 1’s equilibrium best response is to cut back on his
trading intensity.

This result also helps explain why, in the sequential information acquisition
environment, agent 1’s trading intensity falls over time when agent 2 acquires
any information about δ1: At date 1, agent 1 anticipates future competition on
his information, and this leads him to ratchet up his date 1 trading intensity
in order to profit when he has an informational monopoly.

Obviously, when information is acquired simultaneously, a different ratio-
nale must underlie the intertemporal decline in agent 1’s trading intensity, as
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competition is immediate. Again, the second-period first-order conditions pro-
vide the explanation. For example, when agent 2 sees v = δ1 + δ2, the first-order
conditions become

Agent 1: 2β1
2 = (1 + θ12

2 )
(

1
λ2

− β2
2

)
, (34)

Agent 2: 2β2
2 = 1

λ2
− β1

2
Var(δ1 | �1) + Cov(δ1, δ2 | �1)

Var(δ1 | �1) + 2Cov(δ1, δ2 | �1) + Var(δ2 | �1)
, (35)

where Var(δ1|�1) + Cov(δ1,δ2|�1)
Var(δ1|�1) + 2Cov(δ1,δ2|�1) + Var(δ2|�1) = 0.343, and θ12

2 = Cov(δ1,δ2|�1)
Var(δ1|�1) = −0.326 in

agent 1’s forecast of v reflects the negative correlation in the agents’ net private
information conditional on period-1 information. Comparing the first-order con-
ditions when information is acquired sequentially with those when information
is acquired simultaneously reveals that agent 2’s first-order conditions are vir-
tually the same (equations (33) and (35)), but the right-hand side of agent 1’s
first-order condition is shifted down by about θ12

2 (approximately 33 percent)
when information is simultaneously acquired (equations (32) and (34)), imply-
ing a greatly reduced equilibrium trading intensity for agent 1. Thus, it is this
negative conditional correlation in information that underlies the intertempo-
ral decline in agent 1’s trading intensity when agent 2 has information about
δ1. Finally, there is no such decline when agent 2 only sees δ2, because when
information is simultaneously acquired, agent 2 has an offsetting reduction in
second-period trading intensity, which reflects his forecasting of δ1.

C.3. Pricing and Information Revelation

The second panel of Table I reveals that the price impact of information falls
over time if the agents both acquire information at date 1, reflecting the release
of information over time. If, instead, agent 2 does not acquire his information
until date 2, then this new information leads to a greater date 2 price im-
pact. Thus, sequential information acquisition can generate simultaneously the
increased bid–ask spreads, increased trading intensities, and increased price
volatilities found in the data as the timing of earnings announcements is ap-
proached, while simultaneous information acquisition does not. Other models
that generate widening bid–ask spreads (see, e.g., Back et al. (2000), and Foster
and Viswanathan (1996)) also have the (counterfactual) feature that informed
order flow vanishes as the announcement date draws near.

The first panel of Table I reveals that the pattern of information revela-
tion through trade does not match the pattern of informed profit. Less infor-
mation is revealed through price if agent 2 only observes δ2 than if he has
some information about δ1. This reflects the facts that both agents have less
information, and each agent has a monopoly over his signal, which means
that total trading intensities and hence information release are more sharply
restricted.

More interestingly, by the end of the trading horizon, slightly more informa-
tion is released through trade when agent 2’s information is perfect than when
he only observes the asset value, v = δ1 + δ2. In particular, for simultaneous
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information acquisition, roughly 3 percent more information is revealed through
trade when agent 2 sees {δ1, δ2}, and for sequential information acquisition
about 2 percent more information is revealed. That is, the direct effect of the
higher quality of 2’s information dominates the indirect effect on the reduced
trading intensities for the total amount of information revealed through trade.

C.4. Homogeneous Good Oligopoly

To provide added intuition for our findings, we compare these results with
those that obtain in a homogeneous good oligopoly under different competitive
environments. One can draw parallels between: (a) the environment in which
informed agent 1 has a monopoly over δ1 information and an output monopolist
in the “good 1” market; (b) the environment in which agent 2 also sees δ1 (and
δ2) distinctly and an oligopoly featuring Cournot competition in the “good 1”
market; and, (c) the environment in which agent 2 sees δ1 + δ2 and there is a
Stackelberg oligopoly in which agent 2 is the leader and agent 1 is the follower,
reflecting the strategic effect of agent 2 averaging his trading intensity between
δ1 and δ2, which shifts back agent 1’s best response.

In the output market, total firm profit is greatest when firm 1 has a monopoly
and output (total trading intensity) is at its least. Total firm profit is next
highest and output (total trading intensity) increases when the firms engage
in Cournot competition, as they compete away some of the monopoly rents.
Firm 1 reduces its output (trading intensity) relative to a monopoly, but does
not reduce it by enough to offset 2’s output. Finally, total firm profit is least and
output (total trading intensity) is highest when firm 2 is a Stackelberg leader.
Relative to the Cournot setting, firm 2 increases its output (trading intensity);
firm 1’s best response is to reduce its output (trading intensity), but again, not
by enough to offset 2’s increase in output. By increasing its trading intensity,
firm 2 raises its profits above those in the Cournot setting, but it inefficiently
extracts its greater profit from the economy, not only at the expense of firm 1’s
profit, but at the expense of total firm profit.

As Table I reveals, the strategic considerations highlighted in the oligopoly
environment dominate the profit and trading intensity outcomes in our econ-
omy. Comparisons of information release, however, reveal that more than these
strategic considerations matter; when agent 2’s information is perfect, slightly
more information about the asset’s value is revealed through price than when
agent 2 only observes the total asset value. That is, the difference in informa-
tion qualities more than offsets the strategic impact of trading intensities on
the total amount of information revealed through price.

IV. Conclusion

This paper characterizes informed trading and pricing when agents can ac-
quire distinct signals of varying quality about an asset’s value at different dates.
Incorporating these features into a model is of both fundamental theoretical and
empirical importance; it is important to allow for the possibility that agents who
acquire information at later dates have access to better information and hence
that these agents are better informed.
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We first characterize the form of equilibrium trading strategies, the market
maker’s pricing function and trader’s profits. We then determine the quanti-
tative impacts of different informational environments on the time paths of
(i) information release, (ii) pricing, (iii) trading intensities, and (iv) informed
profits. Our main findings are:

� The price impact of order flow crucially depends on both how information is
divided among informed agents and the timing of information acquisition.
Specifically, for the price impact of order flow to rise with time, the sequen-
tial arrival of sufficiently heterogeneous information is necessary. More
generally, such information arrival can generate the U-shaped intradaily
volume found in the data, and the increasing spreads, volume, and price
volatility that arise as an event window approaches.

� Because of the strategic ramifications of the nature of private informa-
tion on the trading behavior of other agents, an informed agent’s trading
profits need not rise with the quality of his information. For example, know-
ing only the asset value, and not the components that make up the asset
value, can raise profits: An agent who observes only the asset value cannot
decompose his trade on each innovation, thus causing him to trade more
aggressively on commonly observed innovations. In turn, the equilibrium
“best response” by other agents is to trade less aggressively.

Appendix

Proof of Proposition 1: (a) Step 1: Informed agent at date t who observes δi at
date k ≤ t. Given the conjectured value function (12) at date t + 1, the forecast
of the continuation profits Vi

kt+1 conditional on (δi, �t−1) at date t is given by

V i
kt+1(δi, �t−1) ≡ E

[
V i

kt+1(δi, �t)
∣∣ δi, �t−1

]
= Ai

t + Bi
t E

[
(δi − E[δi | �t])2

∣∣ δi, �t−1
]

= Ai
t + Bi

t E
[
(δi − E[δi | �t−1] − φi

t (pt − pt−1))2
∣∣ δi, �t−1

]
= Ai

t + Bi
t

{
(δi − E[δi | �t−1])2 − 2φi

t (δi − E[δi | �t−1])

× E[pt − pt−1 | δi, �t−1] + (
φi

t

)2 · E[(pt − pt−1)2
∣∣ δi, �t−1]

}
,

(A1)

where we use Lemma 1 in the third equality.
Hence, at date t, the agent seeks to maximize:

V i
kt(δi, �t−1) = max

xi
kt

E
[
(v − pt)xi

kt + V i
kt+1(δi, �t)

∣∣ δi, �t−1
]

= max
xi

kt

E
[
(v − pt)xi

kt

∣∣ δi, �t−1
] − 2Bi

tφ
i
t (δi − E[δi | �t−1])

· E[pt − pt−1 | δi, �t−1] + Bi
t

(
φi

t

)2 E
[
(pt − pt−1)2

∣∣ δi, �t−1
]
,

(A2)
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where, without loss of generality, the first two terms of (A1) are suppressed
since they are constant at the beginning of date t.

Each insider takes into account how his order affects price through the con-
jectured price function, equation (4). Each informed agent also believes that
the trading strategies of other agents, xj

lt(j �= i, l = 1, . . . , N), take the form of
equation (3); these beliefs are rational in equilibrium. Using the conjectured
pricing function (4), the first-order condition becomes:

0 = E

[
v − pt−1 − λt

N∑
j=1

N∑
l=1

(
M j

l x j
l t − xi

kt

) ∣∣∣∣ δi, �t−1

]
− 2λt xi

kt

− 2λt Bi
tφ

i
t (δi − E[δi | �t−1]) + 2λt Bi

t · (
φi

t

)2 · E[(pt − pt−1) | δi, �t−1].
(A3)

The second-order condition is:

−2λt + 2λ2
t Bi

t

(
φi

t

)2
< 0, or, λt

(
1 − λt Bi

t · (
φi

t

)2
)

> 0, (A4)

which gives (15). Substituting for E[(pt − pt−1) | δi, �t−1] using the conjectured
linear forms for informed trading and pricing, equations (3) and (4), we rewrite
the first-order condition as:[

1 + M i
k

(
1 − 2λt Bi

t

(
φi

t

)2
)]

xi
kt

= E[v − pt−1 | δi, �t−1] − 2λt Bi
tφ

i
t (δi − E[δi | �t−1])

+ λt

(
2λt Bi

t

(
φi

t

)2 − 1
) t∑

l=1

∑
j �=i

M j
l E

[
x j

lt

∣∣ δi, �t−1
]
. (A5)

We next exploit the market efficiency condition and Lemma 2 to rewrite E[v −
pt−1 | δi, �t−1] as:

E
[
v − pt−1

∣∣ δi, �t−1
] = E[v − E[v | �t−1] | δi, �t−1]

=
N∑

j=1

E[δ j − E[δ j | �t−1] | δi, �t−1]

=
N∑

j=1

θ
i j
t · {δi − E[δi | �t−1]}. (A6)

Using Lemma 2 and the conjectured linear form of informed trade, equation
(3), the last term on the right-hand side of (A5) can be written as:

t∑
l=1

∑
j �=i

M j
l E

[
x j

lt | δi, �t−1
] =

t∑
l=1

∑
j �=i

M j
l β

j
l t E[(δ j − E[δ j | �t−1]) | δi, �t−1]

=
t∑

l=1

∑
j �=i

M j
l β

j
t θ

i j
t · {δi − E[δi | �t−1]}. (A7)

Substituting for the first and third terms of (A5), the first-order condition
becomes
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[
1 + M i

k

(
1 − 2λt Bi

t

(
φi

t

)2
)]

xi
kt

=
{

N∑
j=1

θ
i j
t − 2λt Bi

tφ
i
t + λt

(
2λt Bi

t

(
φi

t

)2 − 1
) t∑

l=1

∑
j �=i

M j
l β

j
t θ

i j
t

}
(δi − E[δi | �t−1]).

(A8)

Thus, given the conjectured form of continuation profits, we see that xi
kt is

proportional to unrevealed private information, δi − E[δi | �t−1], verifying the
conjectured form of the linear trading strategies in equation (3). We thus have
the following system of t equations:

[
1 + M i

k

(
1 − 2λt Bi

t

(
φi

t

)2
)]

βi
t + λt

(
1 − 2λt Bi

t

(
φi

t

)2
) t∑

l=1

∑
j �=i

M j
l θ

i j
t β

j
t

=
N∑

j=1

θ
i j
t − 2λt Bi

tφ
i
t . (A9)

The equilibrium values of β i
t are given by the solution to these simultaneous

equations. Letting �N be the N × N matrix such that

aii = 1 + M i
k

(
1 − 2λt Bi

t

(
φi

t

)2
)

and

aij =
(
1 − 2λt Bi

t

(
φi

t

)2
) N∑

l=1

∑
j �=i

M j
l θ

i j
t (i �= j ) (A10)

yields equation (14) in the proposition. In turn, these linear trading strategies
imply that expected period t profits are a quadratic function of unrevealed
private information, so the conjectured form of continuation profits is correct.

Step 2: Uninformed agent at date t < k who learns δi at date k. At date k − 1,
this agent has yet to receive private information, so he uses public information
�k−2 to infer his future expected trading profits:

V i
kk(�k−2) ≡ E

[
V i

kk(δk , �k−1)
∣∣ �k−2

]
= E

[
Ai

k−1 + Bi
k−1(δi − E[δi|�k−1])2

∣∣ �k−2
]

= Ai
k−1 + Bi

k−1 E
[
(δi − E

[
δi | �k−1])2

∣∣ �k−2
]

= Ai
k−1 + Bi

k−1 E
[
E

[
(δi − E[δi | �k−1])2

∣∣ �k−1
] ∣∣ �k−2

]
= Ai

k−1 + Bi
k−1Var(δi | �k−1)

= Ai
k−1 + Bi

k−1

{
Var(δi | �k−2) − Cov2(δi, pk−1 | �k−2)

Var(pk−1 | �k−2)

}

= Ai
k−1 + Bi

k−1

{
Var(δi | �k−2) − Cov2(δi, X k−1 | �k−2)

Var(X k−1 | �k−2) + σ 2
u

}
, (A11)
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where the third equality follows from the law of iterated expectations, the fourth
equality from the fact that Var(δi | �i−1) is a deterministic number, the fifth from
Lemma 3, and the last equality from the price function (4). Thus, the agent’s
optimization problem at date k − 1 is

V i
kk−1(�k−2) = max

xi
kk−1

E
[
(v − pk−1)xi

kk−1 + V i
kk−1(δi, �k−1)

∣∣ �k−2
]

= max
xi

kk−1

E
[
(v − pk−2 − λk−1(X k−1 + uk−1))xi

kk−1 + V i
kk(δi, �k−1)

∣∣ �k−2
]

= max
xi

kk−1

E[(v − pk−2) | �k−2]xi
kk−1 − λk−1

(
xi

kk−1

)2

− λk−1

k−1∑
j=1

E
[
x j

kk−1

∣∣ �k−2
] + E

[
V i

kk(δi, �k−1)
∣∣ �k−2

]
= max

xi
kk−1

−λk−1
(
xi

kk−1

)2 + V i
kk(�k−2)

= max
xi

kk−1

−λk−1
(
xi

kk−1

)2 + Ai
k−1

+ Bi
k−1

{
Var(δi | �k−2) − Cov2(δi, X k−1 | �k−2)

Var(X k−1 | �k−2) + σ 2
u

}
, (A12)

where the second equality follows from the substitution of the conjectured form
of price function (4), the third equality from the definition of total informed
trade Xi−1, the fourth equality from the market efficiency condition and the
conjectured form of trading strategies of other traders (3), and the last equality
from the preceding equation.

Since xi
kk−1 is �k−2-measurable, the last expression in the preceding equation

is not a function of xi
kk−1. It follows that the optimal trade by an agent who

has yet to acquire information is xi
kk−1 = 0, and thus the expected value of his

future trading opportunities is Vi
kk−1(�k−2).

Step 3: Uninformed agent at dates t < k − 1 who learns δi at date k. At time
t = k − 2,

E
[
V i

kk−1(�k−2)
∣∣ �k−3

] = V i
kk−1(�k−2), (A13)

since Vi
kk−1(�k−2) is a deterministic number from Step 2. Thus,

V i
kk−2(�k−3) = max

xi
kk−2

E
[
(v − pk−2)xi

kk−2 + V i
kk−1(�k−2)

∣∣ �k−3
]

= max
xi

kk−2

−λk−2
(
xi

kk−2

)2 + V i
kk−1(�k−2). (A14)

Hence, xi
kk−2 = 0, and Vi

kk−2(�k−3) = Vi
kk−1(�k−2). Continuing this argument in-

ductively, it follows that at any time t < k, the optimal uninformed trade is
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xi
kt = 0 and the expected future value of his information does not change, that

is, Vi
kt(�t−1) = Vi

kk−1(�k−2).

(b) For t < k, Vi
kt(�t−1) has already been derived. We now verify that the

agent’s value function at date t ≥ k takes the conjectured form of (12). Using
the expected continuation profits (A1), in equilibrium the value function at date
t ≥ k must satisfy

V i
kt(δi, �t−1) = E

[
(v − pt)xi

kt

∣∣ δi, �t−1
] + V i

kt+1(δi, �t−1)

= E[v − pt | δi, �t−1]xi
kt + Ai

t + Bi
t (δi − E[δi | �t−1])2

− 2Bi
tφ

i
t E[pt − pt−1 | δi, �t−1](δi − E[δi | �t−1])

+ Bi
t

(
φi

t

)2 E
[
(pt − pt−1)2

∣∣ δi, �t−1
]
. (A15)

Using the conjectured form of trading strategies, equation (3), we can derive

E[X t | δi, �t−1] =
t∑

l=1

N∑
j=1

M j
k E

[
β

j
t (δ j − E[δ j | �t−1])

∣∣ δi, �t−1
]

=
N∑

j=1

N∑
k=1

M j
k β

j
t θ

i j
t · (δi − E[δi | �t−1]). (A16)

Thus, using the conjectured form of the price function we derive:

E[v − pt | δi, �t−1] = E[v − pt−1 − λt(X t + ut) | δi, �t−1]

=
N∑

j=1

E[δ j − E[δ j | �t−1] | δi, �t−1]

− λt

t∑
l=1

N∑
j=1

M j
l β

j
t E[δ j − E[δ j | �t−1] | δi, �t−1]

=
N∑

j=1

θ
i j
t · (δi − E[δi | �t−1])

− λt

t∑
l=1

N∑
j=1

M j
l β

j
t θ

i j
t · (δi − E[δi | �t−1]), (A17)

E[pt − pt−1 | δi, �t−1] = λt E[X t + ut | δi, �t−1] = λt E[X t | δi, �t−1]

= λt

N∑
j=1

N∑
k=1

M j
k β

j
t θ

i j
t (δi − E[δi | �t−1]), (A18)

E
[
(pt − pt−1)2

∣∣ δi, �t−1
] = λ2

t E
[
(X t + ut)2

∣∣ δi, �t−1
]

= λ2
t E

[
(X t)2

∣∣ δi, �t−1
] + λ2

t σ
2
u

= λ2
t

(
Var(X t | δi, �t−1) + (E[X t | δi, �t−1])2) + λ2

t σ
2
u
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= λ2
t

(
Var(X t | δi, �t−1) + σ 2

u

)

+ λ2
t

(
t∑

l=1

N∑
j=1

M j
l β

j
t θ

i j
t

)2

(δi − E[δi | �t−1])2. (A19)

Substituting these expressions along with (3) and (12) into (A1) and (A15) yields

V i
kt(δi, �t−1) = Ai

t + Bi
t

(
φi

tλt
)2(Var(X t | δi, �t−1) + σ 2

u

)
+ βi

t

(
N∑

j=1

θ
i j
t −

t∑
l=1

N∑
j=1

M j
l λtβ

j
t θ

i j
t

)
(δi − E[δi | �t−1])2

+

Bi

t − 2Bi
tλtφ

i
t

t∑
l=1

N∑
j=1

M j
l β

j
t θ

i j
t + Bi

t

(
λtφ

i
t

t∑
l=1

N∑
j=1

M j
l β

j
t θ

i j
t

)2



× (δi − E[δi | �t−1])2. (A20)

Thus, the value function at date t ≥ i takes the conjectured form of (12). Sub-
stituting this form (12) of Vi

t (δi, �t−1), we can derive the difference equations,
(16) and (17), governing Ai

t and Bi
t.

(c) By the projection theorem and the market efficiency condition,

pt = E[v | X t + ut , �t−1]

= E[v | �t−1] + Cov(v, X t + ut | �t−1)
Var(X t + ut | �t−1)

(
X t + ut − E[X t + ut | �t−1]

)
= pt−1 + Cov(v, X t | �t−1)

Var(X t | �t−1) + σ 2
u

(X t + ut). (A21)

The final equality uses the fact that E[Xt | �t−1] = 0 under (1) and (3).

(d) Equation (19) follows from equation (18) and the projection theorem:

�t = Var(v | �t−1) − Cov2(v, X t | �t−1)
Var(X t + ut | �t−1)

. (A22)

Q.E.D.

Proof of Proposition 2: Using the proof method of Proposition 1, one can
show that for t < i, xi

t = 0 and expected future trading profits do not vary with
information revealed in trade.

For t ≥ i, proceed as before. Given the conjectured value function (27) at date
t + 1, forecasted continuation profits are

V i
t+1(δ1, . . . , δi, �t−1)

= E
[
V i

t+1(δ1, . . . , δi, �t) | δ1, . . . , δi, �t−1
]
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= Ai
t +

i∑
k=1

i∑
j=1

Bi
j tC

i
kt E[(δ j − E[δ j | �t])(δk − E[δk | �t]) | δ1, . . . , δi, �t−1]

= Ai
t +

i∑
k=1

i∑
j=1

Bi
j tC

i
kt E

[(
δ j − E[δ j | �t−1] − φ

j
t (pt − pt−1)

)
· (δk − E[δk | �t−1] − φk

t (pt − pt−1)
) ∣∣ δ1, . . . , δi, �t−1

]
, (A23)

where the last equality uses Lemma 4(a). Thus, the decision problem of insider
i ≤ t is

V i
t (δ1, . . . , δi, �t−1)

= max
xi

t

E
[
(v − pt)xi

t + V i
t+1(δ1, . . . , δi, �t) | δ1, . . . , δi, �t−1

]

= max
xi

t

E

[(
v − pt−1 − λt

∑
j �=i

x j
t

)
xi

t

∣∣∣∣ δ1, . . . , δi, �t−1

]
− λt

(
xi

t

)2

+
i∑

k=1

i∑
j=1

Bi
j tC

i
kt E

[(
δ j − E[δ j | �t−1] − φ

j
t (pt − pt−1)

)
× (

δk − E[δk | �t−1] − φk
t (pt − pt−1)

) ∣∣ δ1, . . . , δi, �t−1
]
. (A24)

Given the conjectured form of price function (4) and the conjectured form of
trading strategies of other traders xj

t, j �= i, (26), the first-order condition is

0 = E[v − pt−1 | δ1, . . . , δi, �t−1] − λt E

[ ∑
j �=i, j≤t

x j
t

∣∣ δ1, . . . , δi, �t−1

]

− 2λt xi
t − 2λt

i∑
k=1

i∑
j=1

Bi
j tC

i
ktφ

k
t

× E
[
δ j − E[δ j | �t−1] − φ

j
t (pt − pt−1)

∣∣ δ1, . . . , δi, �t−1
]
. (A25)

Rearranging yields

2λt

(
1 − λt

i∑
k=1

i∑
j=1

Bi
j tC

i
ktφ

j
t φk

t

)
xi

t

= E[v − pt−1 | δ1, . . . , δi, �t−1] − 2λt

i∑
j=1

i∑
k=1

Bi
j tC

i
ktφ

k
t (δ j − E[δ j | �t−1])

+ λt

[
2λt

i∑
j=1

i∑
k=1

Bi
j tC

i
ktφ

j
t φk

t − 1

]
E

[ ∑
j �=i, j≤t

x j
t

∣∣ δ1, . . . , δi, �t−1

]
. (A26)
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Using market efficiency and Lemma 4(b), rewrite the first term on the right-
hand side as

E[v − pt−1 | δ1, . . . , δi, �t−1] = E[v − E[v | �t−1] | δ1, . . . , δi, �t−1]

=
N∑

j=1

E[δ j − E[δ j | �t−1] | δ1, . . . , δi, �t−1]

=
i∑

k=1

N∑
j=1

θ
k j
t (δk − E[δk | �t−1]), (A27)

and the last term on the right-hand side can be written as:

E

[ ∑
k �=i,k≤t

xk
t

∣∣ δ1, . . . , δi, �t−1

]

= E

[∑
k �=i

k∑
m=1

βk
mt(δm − E[δm | �t−1])

∣∣ δ1, . . . , δi, �t−1

]

=
i∑

j=1

(
k∑

m=1

∑
k �=i,k≤t

βk
mtθ

j m
t

)
(δ j − E[δ j | �t−1]), (A28)

where we have substituted the conjectured form of trading strategies of other
traders, (26). Thus, given the conjectured form of the value function, equation
(27), the price function, equation (4), and the trading strategies of other agents,
equation (26), trader i’s optimal trading strategy xi

t takes the conjectured form
of equation (26).

Lastly, we show the value function takes the conjectured form of equation
(27). Substituting the optimal trading strategies into the continuation value
function, equation (A24), yields

V i
t (δ1, . . . , δi, �t−1)

= E
[
(v − pt)xi

t

∣∣ δ1, . . . , δi, �t−1
] + V i

t+1(δ1, . . . , δi, �t−1)

= E
[
(v − pt)xi

t

∣∣ δ1, . . . , δi, �t−1
] + Ai

t

+
i∑

k=1

i∑
j=1

Bi
j tC

i
kt E

[(
δ j − E[δ j | �t−1] − φ

j
t (pt − pt−1)

)

×(
δk − E[δk | �t−1] − φk

t (pt − pt−1)
) ∣∣ δ1, . . . , δi, �t−1

]
. (A29)

Thus, we only need to show that the first term and the last term on the right-
hand side are quadratic functions of unrevealed private information, (δ1 − E[δ1 |
�t−1], . . . , δi − E[δi | �t−1]).
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First, using the market efficiency condition, the conjectured price function
(4), and the conjectured form of trading strategies (26), we derive

E[v − pt | δ1, . . . , δi, �t−1]

= E[v − pt−1 − λt(X t + ut) | δ1, . . . , δi, �t−1]

=
N∑

j=1

E[δ j − E[δ j | �t−1] | δ1, . . . , δi, �t−1] − λt E

[
N∑

k=1

xk
t

∣∣ δ1, . . . , δi, �t−1

]

=
N∑

j=1

i∑
k=1

θ
k j
t (δk − E[δk | �t−1])

− λt E

[
t∑

k=1

k∑
m=1

βk
mt(δm − E[δm | �t−1])

∣∣ δ1, . . . , δi, �t−1

]

=
i∑

j=1

N∑
k=1

θ
j k

t−1(δ j − E[δ j | �t−1]) − λt

i∑
j=1

t∑
k=1

k∑
m=1

βk
mtθ

j m
t (δ j − E[δ j | �t−1])

=
i∑

j=1

[
N∑

k=1

θ
j k

t − λt

t∑
k=1

k∑
m=1

βk
mtθ

j m
t

]
(δ j − E[δ j | �t−1]). (A30)

Hence,

E
[
(v − pt)xi

t

∣∣ δ1, . . . , δi, �t−1
]

=
[

i∑
�=1

βi
�t(δ� − E[δ� | �t−1])

]

×
[

i∑
j=1

[
N∑

k=1

θ
j k

t − λt

t∑
k=1

k∑
m=1

βk
mtθ

j m
t

] (
δ j − E[δ j | �t−1]

)]
, (A31)

is a quadratic function of unrevealed private information (δ1 − E[δ1 | �t−1], . . . ,
δi − E[δi | �t−1]).

Finally, we compute the last term on the right-hand side of (A29). We can
similarly derive that for j, k ≤ i,

E
[(

δ j − E[δ j | �t−1] − φ
j
t (pt − pt−1)

)(
δk − E[δk | �t−1]

− φk
t (pt − pt−1)

) ∣∣ δ1, . . . , δi, �t−1
]

= E
[(

δ j − E[δ j | �t−1] − φ
j
t λt(X t + ut)

)(
δk − E[δk

∣∣ �t−1]

− φk
t λt(X t + ut)

) | δ1, . . . , δi, �t−1
]
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= E[(δ j − E[δ j | �t−1])(δk − E[δk | �t−1]) | δ1, . . . , δi, �t−1]

− φ
j
t λt E[(X t + ut)(δk − E[δk | �t−1]) | δ1, . . . , δi, �t−1]

− φk
t λt E[(X t + ut)(δ j − E[δ j | �t−1]) | δ1, . . . , δi, �t−1]

+ φk
t φ

j
t λ2

t E
[
(X t + ut)2

∣∣ δ1, . . . , δi, �t−1
]

= (δ j − E[δ j | �t−1])(δk − E[δk | �t−1])

− φ
j
t λt E

[
t∑

k=1

xi
t (δk − E[δk | �t−1])

∣∣ δ1, . . . , δi, �t−1

]

−φk
t λt E

[
t∑

k=1

xi
t (δ j − E[δ j | �t−1])

∣∣ δ1, . . . , δi, �t−1

]

+ φk
t φ

j
t λ2

t

(
E

[
X 2

t

∣∣ δ1, . . . , δi, �t−1
] + σ 2

u

)
= (δ j − E[δ j | �t−1])(δk − E[δk | �t−1])

− φ
j
t λt(δk − E[δk | �t−1])

i∑
j=1

t∑
�=1

�∑
m=1

β�
mtθ

j m
t (δ j − E[δ j | �t−1])

− φk
t λt(δ j − E[δ j | �t−1])

i∑
j=1

t∑
�=1

�∑
m=1

β�
mtθ

j m
t (δ j − E[δ j | �t−1])

+ φk
t φ

j
t λ2

t

(
E

[
X 2

t

∣∣ δ1, . . . , δi, �t−1
] + σ 2

u

)
. (A32)

It remains to be shown that E[X2
t | δ1, . . . , δi, �t−1] is a quadratic function of

unrevealed private information (δ1 − E[δ1 | �t−1] , . . . , δi − E[δi | �t−1]). Using
the forecasting rules described in Lemma 4 and the conjectured form of trading
strategies (26), we derive

E
[
X 2

t

∣∣ δ1, . . . , δi, �t−1
]

= E


( ∑

k≤t

k∑
j=1

βk
j t(δ j − E[δ j | �t−1])

)2
∣∣∣∣∣∣ δ1, . . . , δi, �t−1




= E


( ∑

k≤t

k∑
j=1

βk
j t

(
δ j − E[δ j | δ1, . . . , δi, �t−1]

+
i∑

�=1

θ
� j
t (δ� − E[δ� | �t−1])

))2
∣∣∣∣∣∣ δ1, . . . , δi, �t−1




=
t∑

m=1

t∑
k=1

k∑
j=1

m∑
�=1

βk
j tβ

m
�t Cov(δ j , δ� | δ1, . . . , δi, �t−1)

+
[ ∑

k≤t

k∑
j=1

i∑
�=1

βk
j tθ

� j
t (δ� − E[δ� | �t−1])

]2

(A33)
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Since Cov(δj, δ� | δ1, . . . , δi, �t−1) is a deterministic constant, the last expres-
sion on the right-hand side is indeed a quadratic function of unrevealed private
information. Q.E.D.

Proof of Proposition 3:

Period 2. Trader 2’s objective is

V 2
2 (δ1, δ2, �1) = max

x2
2

E
[
(v − p2)x2

2

∣∣ δ1, δ2, �1
]

= max
x2

2

E
[(

v − p1 − λ2
(
x1

2 + x2
2 + u3

))
x2

2

∣∣ δ1, δ2, �1
]

= max
x2

2

[
v − p1 − λ2

(
x1

2 + x2
2

)]
x2

2 . (A34)

Solving the first-order condition yields

x2
2 = v − p1

2λ2
− 1

2
x1

2 . (A35)

The second-order condition is λ2 > 0. Similarly, trader 1’s decision problem is

V 1
2 (δ1, �1) = max

x1
2

E
[(

v − p2
)
x1

2

∣∣ δ1, �1
]

= max
x1

2

E
[(

v − p1 − λ2
(
x1

2 + x2
2

))
x1

2

∣∣ δ1, �1
]
.

(A36)

The first-order condition is

E[v − p1 | δ1, �1] − 2λ2x1
2 − λ2 E

[
x2

2

∣∣ δ1, �1
] = 0. (A37)

Substituting for x2
2 using (A35) yields

2λ2x1
2 = E[v − p1 | δ1, �1] − λ2 E

[
v − p1 − λ2x1

2

2λ2

∣∣∣∣ δ1, �1

]
. (A38)

Using the market efficiency condition and independence, we have

E[v − p1 | δ1, �1] = E[v − E[v | �1] | δ1, �1] = δ1 − E[δ1 | �1] . (A39)

Thus, we can solve for the expression for x1
2, (28), from the first-order condition.

The expression for x2
2 follows from (28) and (A35). The second-order condition

is λ2 > 0.
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To solve for the value functions, substitute for x1
2 and x2

2 into trader 2’s objec-
tive to obtain

V 2
2 (δ1, δ2, �1) = [

v − p1 − λ2
(
x1

2 + x2
2

)]
x2

2

= 1
λ2

[
1
3

(δ1 − E[δ1 | �1]) + 1
2

(δ2 − E[δ2 | �1])
]2

. (A40)

Similarly, trader 1’s value function is

V 1
2 (δ1, �1) = max

x1
2

E
[(

v − p1 − λ2
(
x1

2 + x2
2

))
x1

2

∣∣ δ1, �1
]

= (δ1 − E[δ1 | �1]) x1
2 − λ2x1

2 E
[(

x1
2 + x2

2

) ∣∣ δ1, �1
]

= 1
9λ2

(δ1 − E[δ1 | �1])2. (A41)

The expression for λ2 follows from (18).

Period 1. In period 1, trader 1’s decision problem is

V 1
1 (δ1, �0) = max

x1
1

E
[
(v − p1)x1

1 + V 1
2 (δ1, �1)

∣∣ δ1, �0
]

= max
x1

1

E
[(

v − p0 − λ1
(
x1

1 + u1
))

x1
1

∣∣ δ1, �0
] + E

[
V 1

2 (δ1, �1)
∣∣ δ1, �0

]
= max

x1
1

E
[
(v − p0)x1

1 − λ1
(
x1

1

)2 ∣∣ δ1, �0
]

+ 1
9λ2

E
[
(δ1 − E[δ1 | �1])2

∣∣ δ1, �0
]
. (A42)

Using Lemma 1, the last expectation can be written as

E
[
(δ1 − E[δ1

∣∣ �1])2
∣∣ δ1, �0

] = E
[(

δ1 − E[δ1 | �0]

− φ1
1(p1 − p0)

)2 ∣∣ δ1, �0
]
. (A43)

Noting that p1 − p0 = λ1(x1
1 + u1), we can obtain the first-order condition

0 = E[v − p0 | δ1, �0] − 2λ1x1
1

− 2
9λ2

φ1
1λ1 E

[
δ1 − E[δ1 | �1] − φ1

1(p1 − p0)
∣∣ δ1, �0

]
. (A44)

Substituting the price function (4) and using

E[v − p0 | δ1, �0] = E[v − E[v | �0] | δ1, �0] = δ1 − E[δ1 | �0] , (A45)
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we obtain

2λ1

[
1 − λ1

9λ2

(
φ1

1

)2
]

x1
1 =

[
1 − 2λ1

9λ2
φ1

1

]
(δ1 − E[δ1 | �0]) . (A46)

The expression for x1
1 then follows from

φ1
1 = Cov(δ1, p1)

Var(p1)
= Cov(v, X 1 | �0)

λ1
[
Var(X 1 | �0) + σ 2

u

] = 1. (A47)

Clearly, the second-order condition is λ1(1 − λ1/(9λ2)) > 0.
The equation for λ1, (30), follows from (16). Inspecting equation (30) and the

above second-order condition, we must have 0 < λ1 < 9/2λ2. Moreover, equa-
tion (30) implies a unique solution for λ1 in (0, 9/2λ2).

We now solve for the value function. Using Lemma 1, the pricing function
(4), and the expression for x1

1, we have

E
[
(δ1 − E[δ1 | �1])2

∣∣ δ1, �0
] = E

[
(δ1 − E[δ1 | �0] − φ1

1(p1 − p0))2
∣∣ δ1, �0

]
= 1

4(1 − λ1/(9λ2))2 (δ1 − E[δ1 | �0])2 + λ2
1σ

2
u .

(A48)

The value function then follows from substituting the above expression, the
expression for x1

1, and the pricing function (4) into the maximized objective
function:

V 1
1 (δ1, �0) = E

[
(v − p1)x1

1 + V 1
2 (δ1, �1)

∣∣ δ1, �0
]

= E
[
(v − p0 − λ1x1

1

∣∣ δ1, �0
]
x1

1 + 1
9λ2

E
[
(δ1 − E[δ1 | �1])2

∣∣ δ1, �0
]
.

(A49)

Finally, the expressions for Var(δ1 | �1) follow from (a) Lemma 3, (b) the ex-
pression for x1

1, and (c) the pricing function (4)

Var(δ1 | �1) = Var(δ1) − Cov2(δ1, p1 | �0)
Var(p1 | �0)

= Var(δ1) − Cov2(
δ1, x1

1

∣∣ �0
)

Var
(
x1

1

∣∣ �0
) + σ 2

u

. (A50)

Q.E.D.

PROPOSITION 4: Suppose innovations are perfectly correlated and Lj traders
observe δ at date j. Let qt = λtBt. Then:
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(a) The unique equilibrium is obtained by recursively solving for the unique
root in (0, n2/2) of the cubic equation

2
n∧t∑
m=1

Lm

n∧(t−1)∑
m=1

Lmq3
t−1 −

[
n∧(t−1)∑

m=1

Lm + 1

]
n∧t∑
m=1

Lmn2q2
t−1

− 2
n∧(t−1)∑

m=1

Lmktqt−1 +
n∧(t−1)∑

m=1

Lmn2kt = 0, for t ≥ 2,

where qN = 0, kt = (n2 − qt)2(
1 − 2qt

/
n2

) [∑n∧t
m=1 Lm

(
1 − 2qt

/
n2

) + 1
]2

,

and t ∧ n ≡ min(t, n).

(A51)

(b) The trading strategy of any trader with information at date j takes the
form

xi
j t = βt(δ − E[δ | �t−1]), j ≤ n ∧ t, xi

t ≡ xi
t j = 0, t < j ≤ n,

where βt = n − 2qt/n
λt

[∑n∧t
m=1 Lm

(
1 − 2qt

/
n2

) + 1
] .

(A52)

(c) For t ≥ 1, the constants �t and λt are given by

�t = 1∑n∧t
m=1 Lm

(
1 − 2qt

/
n2

) + 1
�t−1,

λt =
[ ∑n∧t

m=1 Lm
(
1 − 2qt

/
n2

)
�t

σ 2
u

(∑n∧t
m=1 Lm

(
1 − 2qt

/
n2

) + 1
)
]1/2

, (A53)

with boundary condition �0 = n2Var(δ).
(d) The parameters in the value functions are given by

Bi
t−1 = Bt−1 = n2 − qt

λt
[∑n∧t

m=1 Lm
(
1 − 2qt

/
n2

) + 1
]2

,

Ai
t−1 = At−1 = At + Bt(λt/n)2σ 2

u , (A54)

with boundary conditions BN = 0 and AN = 0.

Proof: Since δi = δ, �t = Var(v | �t) = n2Var(δ | �t). Using (25), we derive

λt = n
∑n∧t

j=1 L j βt Var(δ | �t−1)(∑n∧t
j=1 L j

)2
(βt)2 Var(δ | �t−1) + σ 2

u

=
∑n∧t

j=1 L j βt�t−1/n(∑n∧t
j=1 L j

)2
(βt)2�t−1

/
n2 + σ 2

u

, (A55)
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Var(X t | �t−1) =
(

n∧t∑
j=1

L j

)2

(βt)2 Var(δ | �t−1)

=
(

n∧t∑
j=1

L j

)2

(βt)2�t−1
/

n2. (A56)

Thus, from (19) we can derive

�t = �t−1 − λ2
t

[
Var(X t | �t−1) + σ 2

u

]

= �t−1 − λ2
t




(
n∧t∑
j=1

L j

)2

(βt)2�t−1
/

n2 + σ 2
u




= �t−1σ
2
u(∑n∧t

j=1 L j

)2
(βt)2�t−1

/
n2 + σ 2

u

. (A57)

Using the above expressions, rewrite λt and �t as

λt =
∑n∧t

j=1 L j βt�t−1/n(∑n∧t
j=1 L j

)2
(βt)2�t−1

/
n2 + σ 2

u

=
∑n∧t

j=1 L j βt

nσ 2
u

�t and

�t =
(

1 −
n∧t∑
j=1

L j βtλt/n

)
�t−1. (A58)

Then qt = λtBt and Proposition 1 together imply that

βt = n
(
1 − 2qt

/
n2

)
λt

[∑n∧t
k=1 Lk

(
1 − 2qt

/
n2

) + 1
] . (A59)

Substituting for βt into the value function yields

Bt−1 = βt

[
n −

n∧t∑
k=1

Lkλtβt

]
+ Bt

[
1 −

n∧t∑
k=1

Lkβtλt/n

]2

= n
(
1 − 2qt

/
n2

)
λt

[∑n∧t
k=1 Lk

(
1 − 2qt

/
n2

) + 1
]

[
n −

∑n∧t
k=1 Lkn

(
1 − 2qt

/
n2

)
∑n∧t

k=1 Lk
(
1 − 2qt

/
n2

) + 1

]

+ Bt

[
1 −

∑n∧t
k=1 Lk

(
1 − 2qt

/
n2

)
∑n∧t

k=1 Lk
(
1 − 2qt

/
n2

) + 1

]2

= n2 − qt

λt
[∑n∧t

k=1 Lk
(
1 − 2qt

/
n2

) + 1
]2

. (A60)
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Multiplying both sides by λt−1 and using qt−1 = λt−1Bt−1 yields

λt

λt−1
= n2 − qt

qt−1
[∑n∧t

k=1 Lk
(
1 − 2qt

/
n2

) + 1
]2

. (A61)

But, equation (A58) also implies that

λt

λt−1
=

∑n∧t
k=1 Lkβt�t∑n∧(t−1)

k=1 Lkβt−1�t−1
=

∑n∧t
k=1 Lkβt∑n∧(t−1)

k=1 Lkβt−1

[
1 −

n∧t∑
k=1

Lkβtλt/n

]
. (A62)

Thus, using the above expression for βt we can derive

(
λt

λt−1

)2

=
∑n∧t

k=1 Lk∑n∧(t−1)
k=1 Lk

1 − 2qt/n2[∑n∧t
k=1 Lk

(
1 − 2qt

/
n2

) + 1
]2

×
∑n∧(t−1)

k=1 Lk(1 − 2qt−1/n2) + 1
1 − 2qt−1/n2

. (A63)

Using the above two expressions for λt/λt−1 we can derive the cubic equation
(A51). Then it is easy to derive the expressions for �t, λt, At, and Bt in the
proposition.

It remains to show that the equilibrium is unique. Looking at the expression
for λt and the second-order conditions, we see that they are satisfied only if
0 < qt < n2/2. Hence, it suffices to show that there is a unique root to the cubic
equation (A51) in the interval (0, n2/2). The left-hand side of equation (A51) is
negative for qt−1 sufficiently small, and positive at qt−1 = 0, so there is one neg-
ative root. Further, it is negative at qt−1 = n2/2, so there is a root in the interval
qt−1 ∈ (0, n2/2). Finally, since the left-hand side is positive for qt−1 sufficiently
large, it follows that the third root is for qt−1 > n2/2. Q.E.D.

PROPOSITION 5: Suppose there are three periods and two informed traders who
observe δi at date 1, i = 1, 2, respectively, and assume further that the innovations
are distributed independently. Then in equilibrium:

(a) The constants in the trading strategies (3) are given by

[
β1

3

β2
3

]
= 1

λ3

[
2 θ12

3

θ21
3 2

]−1 [
1 + θ12

3

1 + θ21
3

]
, (A64)

[
β1

2

β2
2

]
=


 2 − 2λ2 B1

2

(
φ1

2

)2 (
1 − 2λ2 B1

2

(
φ1

2

)2)
θ12

2(
1 − 2λ2 B2

2

(
φ2

2

)2)
θ21

2 2 − 2λ2 B2
2

(
φ2

2

)2




−1

×
(

1
λ2

[
1 + θ12

2

1 + θ21
2

]
− 2

[
B1

2φ1
2

B2
2φ2

2

])
,
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[
β1

1

β2
1

]
=


2 − 2λ1 B1

1

(
φ1

1

)2 0

0 2 − 2λ1 B2
1

(
φ2

1

)2




−1 (
1
λ1

[
1

1

]
− 2

[
B1

1φ1
1

B2
1φ2

1

])
,

where

θ12
3 = Cov(δ1, δ2 | �2)

Var(δ1 | �2)
, θ21

3 = Cov(δ1, δ2 | �2)
Var(δ2 | �2)

,

θ12
2 = Cov(δ1, δ2 | �1)

Var(δ1 | �1)
, θ21

2 = Cov(δ1, δ2 | �1)
Var(δ2 | �1)

,

φi
2 = βi

2 Var(δi | �1) + β
j

2 Cov(δi, δ j | �1)

β1
2 Var(δ1 | �1) + (

β1
2 + β2

2

)
Cov(δ1, δ2 | �1) + β2

2 Var(δ2 | �1)
, and

φi
1 = βi

1 Var(δi)

β1
1 Var(δ1) + β2

1 Var(δ2)
.

(b) The period pricing constants, λt, are given by

λ3 = β1
3 Var(δ1 | �2) + (

β2
3 + β1

3

)
Cov(δ1, δ2 | �2) + β2

3 Var(δ2 | �2)(
β1

3

)2 Var(δ1 | �2) + 2β1
3β2

3 Cov(δ1, δ2 | �2) + (
β2

3

)2 Var(δ2 | �2) + σ 2
u

,

λ2 = β1
2 Var(δ1 | �1) + (

β1
2 + β2

2

)
Cov(δ1, δ2 | �1) + β2

2 Var(δ2 | �1)(
β1

2

)2 Var(δ1 | �1) + 2β1
2β2

2 Cov(δ1, δ2 | �1) + (
β2

2

)2 Var(δ2 | �1) + σ 2
u

,

and

λ1 = β1
1 Var(δ1) + β2

1 Var(δ2)(
β1

1

)2 Var(δ1) + (
β2

1

)2 Var(δ2) + σ 2
u

. (A65)

(c) The conditional covariances between innovations are:

Cov(δ1, δ2 | �2)

=
[
β1

2β2
2 Cov(δ1, δ2 | �1) + σ 2

u

]
Cov(δ1, δ2 | �1) − β1

2β2
2 Var(δ1 | �1) Var(δ2 | �1)(

β1
2

)2 Var(δ1 | �1) + 2β1
2β2

2 Cov(δ1, δ2 | �1) + (
β2

2

)2 Var(δ2 | �1) + σ 2
u

,

and

Cov(δ1, δ2 | �1) = −β1
1β2

1 Var(δ1) Var(δ2)(
β1

1

)2 Var(δ1) + (
β2

1

)2 Var(δ2) + σ 2
u

. (A66)

Proof: Follows as a special case of Proposition 1. To use Proposition 5 to
characterize outcomes where informed agent 1 learns δ1 in the first period and
informed trader 2 learns δ2 in the second period, set β2

1 = 0, so informed trader
2 does not trade at date 1. Q.E.D.
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