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Abstract

This paper studies competitive equilibria of a production economy with aggregate productivity
shocks. There is a continuum of consumers who face borrowing constraints and individual labor en-
dowment shocks. The dynamic economy is described in terms of sequences of aggregate distributions.
The existence of competitive equilibrium is proven and a recursive characterization is established. In
particular, it is shown that for any competitive equilibrium, there is a payoff equivalent competitive
equilibrium that is generated by a suitably defined recursive equilibrium.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It has been documented by a number of empirical studies that the standard representative
agent (or complete markets) model fails to explain many phenomena observed in the data.
This leads to interest in models with heterogeneity and incomplete markets. 1 One class
of such models, called the Bewley-style model, has drawn special attention. A typical
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1 See the survey by Heaton and Lucas [16] and the textbook by Ljunqvist and Sargent [28].
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environment of this model is described in Krusell and Smith [24]. It features a continuum
of consumers making consumption and savings decisions subject to borrowing constraints
and idiosyncratic labor endowment shocks. There is only one asset (capital) serving as a
buffer against individual shocks. Finally, a single firm makes production decisions with
constant-returns-to-scale technology, subject to aggregate productivity shocks. 2

This paper addresses two central open questions. The first is the existence of a sequential
competitive equilibrium for this type of models. The second is whether there is a recursive
characterization of sequential competitive equilibria. Krusell and Smith [24] and a number
of later studies directly pose a recursive equilibrium formulation (henceforth, KS-recursive
equilibrium) and then proceed with numerical solutions without studying its existence and
the relation to sequential competitive equilibria. By contrast, I start with the analysis of
sequential competitive equilibria, and then move on to recursive characterizations.

The key insight of this paper is to reformulate the Bewley-style model along the lines
of Hildenbrand [18] and Hart et al. [15]. Specifically, I describe the dynamic economy
using sequences of aggregate distributions over consumers’ characteristics (individual asset
holdings and the realization of endowment shocks) across the population. These sequences
of aggregate distributions contain the relevant information for equilibrium analysis and
they are the principal objects of study. In particular, given exogenous shocks, aggregate
distributions fully determine prices and aggregate quantities such as aggregate capital. It
turns out that this reformulation is the key to answering the preceding two questions.

To study the existence of sequential competitive equilibria, I begin with a detailed analysis
of a typical individual’s decision problem. After aggregating individual optimal behavior
and deriving the law of motion for aggregate distributions, I establish the existence of a
sequential competitive equilibrium by applying the Brouwer–Schauder–Tychonoff Fixed-
Point Theorem to a compact space of sequences of aggregate distributions (Theorem 1).
This result is established under standard assumptions on preferences and technology and
for fairly general individual and aggregate shock processes. For example, these are assumed
to satisfy the Feller property, but they need not be stationary or Markovian. However, for
technical reasons, I assume that the state space for aggregate shocks is countable.

After imposing the additional assumption that individual and aggregate shocks are time-
homogenous Markov processes, I turn to recursive characterizations of sequential compet-
itive equilibria. I define a notion of recursive equilibrium with the state variables consisting
of individual asset holdings, the realization of individual shocks, the realization of aggregate
shocks, the aggregate distribution, and payoffs (expected discounted utilities). Including the
first three as state variables is standard. It is also natural to include the aggregate distribu-
tion as a state variable because with incomplete markets and heterogeneous consumers,
equilibrium prices generally depend on the distribution of assets across consumers.

Including payoffs as a state variable to make certain decision problems recursive is a
technique widely adopted in the literature on sequential games [5,7,11] and on dynamic
contracts [1,32,36]. Here this state variable serves as a device for selecting continuation
equilibria when the economy unfolds over time.

Theorem 2 demonstrates that given an initial state, the so defined recursive equilibrium
generates a sequential competitive equilibrium. Theorem 3 demonstrates that a recursive

2 See [2,8,9,19,31] for Bewley-style models without aggregate shocks.
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equilibrium exists. Moreover, for any sequential competitive equilibrium, there is a payoff
equivalent sequential competitive equilibrium that is generated by a recursive equilibrium
with the state space including payoffs.

A natural but open question is whether there is a recursive equilibrium with a smaller state
space, for example, the KS-recursive equilibrium that excludes expected payoffs as a state
variable. For a related finitely many agents economy, Kubler and Schmedders [25, Theorem
2] establish the existence of such a recursive equilibrium under the strong condition that
the competitive equilibrium is globally unique for all possible initial values. Although one
can state a similar result for the economies studied here, this strong condition cannot be
checked from primitives.

The above analysis must surmount two technical difficulties. First, there is a difficulty
associated with the presence of aggregate shocks. When they are present, aggregate dis-
tributions are generally random measures that may be correlated with individual shocks.
As pointed out by Bergin and Bernhardt [6], this creates not only difficulties of tractability
but also conceptual problems associated with the meaning of perfect competition. Thus,
I follow Bergin and Bernhardt [6] and assume the conditional no aggregate uncertainty
condition. This requires that, conditional on the history of aggregate shocks, the aggregate
distribution at each date be a constant measure. Second, there are subtle technical problems,
pointed out by Judd [20], associated with an environment that has a continuum of agents,
e.g., measurability and the law of large numbers. This paper deals with these problems in
a manner similar to Feldman and Gilles [13] and Karatzas et al. [21]. 3

I now review the related literature. There is a growing literature on numerical analysis
of Bewley-style models with aggregate shocks [14,23,24,34]. None of these considers the
theoretical issues studied here. My paper is also related to [4,11]. There is also an exten-
sive literature on sequential competitive equilibria for pure-exchange incomplete markets
economies (e.g., [17,27,29,30]). All these papers consider a finite number of heterogeneous
consumers. The traditional method of proving existence of sequential competitive equilibria
is to take limits of equilibria in truncated economies in which trade stops at some finite date.
This requires two conditions: First, the existence of sequential competitive equilibria for
finite-horizon economies must be established. Second, the resulting sequence of equilibria
for finite-horizon economies must converge to a limit under some suitable topology and
this limit is the equilibrium of the original infinite-horizon economy. By contrast, this paper
follows a direct proof strategy. Exploiting the special feature of the continuum agents envi-
ronment, I reformulate the economy in terms of sequences of aggregate distributions. The
space of these sequences endowed with some topology is compact, and hence a topological
fixed point theorem can be applied if a suitably defined map is continuous. A sequential
competitive equilibrium is then delivered by a fixed point of this map. This proof method
is much simpler than the traditional one.

In order to ensure compactness, I impose exogenously fixed borrowing constraints, in-
stead of “nonbinding” endogenous borrowing constraints (that is, borrowing constraints
that rule out Ponzi schemes but nothing else). This assumption is also adopted in [11] and
the applied macroeconomics literature. My proof method does not apply to the case of non-
binding endogenous borrowing constraints. Moreover, the existence of continuous recursive

3 Also see an alternative approach proposed by Sun [35].
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equilibria may not be guaranteed if the exogenous borrowing constraints never bind. This
is because under this condition Krebs [22] proves a nonexistence result for pure-exchange
economies with finitely many agents. Whether or not a similar nonexistence result holds in
the economy studied here is an open question.

The recursive characterization in this paper is different from Duffie et al. [11] who study
finitely many agents economies. 4 The key idea of Duffie et al. [11] is to construct an
expectations correspondence, which specifies, for each possible current state, the transitions
that are consistent with feasibility and satisfy short-run equilibrium conditions. Typically,
the expectations correspondence is constructed using the first-order conditions for all agents.
This procedure seems invalid for the continuum agents economies since there is a continuum
of first-order conditions. Moreover, my result does not require differentiability assumptions
on utility functions, so first-order conditions are not available. My recursive characterization
is achieved by first defining an equilibrium correspondence and a related correspondence,
and then taking a measurable selection. An advantage of my recursive characterization
is that the state space is smaller than that in [11] since the latter generally includes all
endogenous variables, exogenous shocks, and signal variables as state variables.

The remainder of the paper proceeds as follows. Section 2 sets up the model. Section
3 analyzes the existence of a sequential competitive equilibrium. Section 4 studies recur-
sive characterizations of sequential competitive equilibria. Section 5 concludes. Proofs are
relegated to an appendix.

2. The model

Consider an economy with a large number of infinitely lived consumers subject to indi-
vidual endowment shocks and a single firm subject to aggregate productivity shocks. This
economy is similar to that studied by Krusell and Smith [24]. Time is discrete and denoted
by t = 0, 1, 2, . . . . Uncertainty is represented by a probability space (� × Z∞, F, P ) on
which all stochastic processes are defined. The state space � captures individual shocks,
while the state space Z∞ captures aggregate shocks. Let Z0 = Z, Zt+1 = Z0 ×Zt , z0 = z0,
and denote by zt = (z0, z1, . . . , zt ) ∈ Zt an aggregate shock history at time t. Finally, let
z∞ = (z0, z1, z2, . . .) ∈ Z∞ be the complete history and z0 = z0 ∈ Z0 be a deterministic
constant.

Notation. For any Euclidean subspace D, denote by C(D) the space of bounded and
continuous functions on D endowed with the sup-norm, by B(D) the Borel �-algebra
of D, and by P(D) the space of probability measures on B(D) endowed with the weak
convergence topology. For any Euclidean sets D and E, B(D) ⊗ B(E) denotes the product
�-algebra.

4 One important difference is that Duffie et al. [11] study recursive equilibria that admit ergodic distributions,
while I do not consider existence of ergodic distributions. The idea of Duffie et al. [11] is pursued further by Kubler
and Schmedders [25,26] for exchange economies.
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2.1. Consumers

Consumers are distributed on the interval I = [0, 1] according to the Lebesgue measure�.
Consumers are ex ante identical in that they have the same preferences and their endowment
shock processes are drawn from the same distribution. However, consumers are ex post
heterogeneous in the sense that they experience idiosyncratic endowment shocks. 5

Information structure and endowments: Consumer i ∈ I is endowed with one unit of
labor at each date t and a deterministic asset level ai

0 ∈ R++ at the beginning of time 0.
Labor endowment is subject to random shocks represented by a stochastic process (si

t )t �0
valued in S ⊂ R+, where si

0 is a deterministic constant. Let S0 = S, St+1 = S0 × St ,
s0i = si

0, and denote by sti = (si
0, s

i
1, . . . , s

i
t ) ∈ St an individual shock history. Let the

initial (probability) distribution of asset holdings and endowment shocks be given by

�0(A × S) = �(i ∈ I : (ai
0, s

i
0) ∈ A × S), A × S ∈ B(R++) × B(S).

At the beginning of date t , consumer i observes his labor endowment shock si
t and the

aggregate productivity shock zt . His information is represented by a �-algebra F i
t generated

by past and current shocks {si
n, zn}tn=0. 6 The following assumptions on the shock processes

are maintained.

Assumption 1. Z ⊂ [z, z] ⊂ R++ is a bounded and countable set endowed with the
discrete topology; S ⊂ R+ is compact.

Assumption 2. For �-a.e. i,

(a) given the history (sit , zt ) = (st , zt ), (si
t+1, zt+1) is drawn from the distribution Qt+1

(·, st , zt );
(b) Qt+1(S × Z, ·) is measurable for all S × Z ∈ B(S) × B(Z);
(c) Qt+1 has the Feller property:

∫
h(s′, z′)Qt+1(ds′, dz′, ·) is a continuous function on

St × Zt for any real-valued, bounded, and continuous function h on S × Z.

Remark 2.1. It merits emphasis that the state space of aggregate shocks is assumed to be
countable, which avoids measurability problems that may arise in dynamic programming.
See [7] for the treatment when this space is uncountable.

Consumption space: There is a single good. A consumption plan ci ≡ (ci
t )

∞
t=0 for con-

sumer i is a nonnegative real-valued process such that ci
t is F i

t -measurable. 7 Denote by Ci

the set of all consumption plans for consumer i.

5 The extension to the case of ex ante heterogeneous consumers is in the working paper version of the paper,
which is available upon request.

6 Alternatively, one can consider the case where each consumer observes the aggregate shocks after he makes
choices so that F i

t is generated by {si
n, zn−1}t

n=0, z−1 is null.
7 Because of this measurability, I may write the value of ci

t at state (�, z∞) for consumer i simply as ci
t (�, zt ).

Similar notation applies to other adapted processes.
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Budget and borrowing constraints: An asset accumulation plan (ai
t+1)t �0 for consumer

i is a real-valued process such that ai
t+1 is F i

t -measurable.
In each period t, consumer i consumes ci

t and accumulates assets ai
t+1 subject to the

familiar budget constraint:

ci
t + ai

t+1 = (1 + rt )a
i
t + wts

i
t , ai

0 given, (1)

where rt is the rental rate and wt is the wage rate. For simplicity, assume that all consumers
cannot borrow so that:

ai
t+1 �0 for all i ∈ I. (2)

Finally, let A = [0, ∞), and denote by Ai the set of all asset accumulation plans of
consumer i that satisfy the budget constraint (1) and the borrowing constraint (2). A con-
sumption plan c ∈ Ci corresponding to an asset accumulation plan a ∈ Ai is called (budget)
feasible.

Preferences: Consumer i’s preferences are represented by an expected utility function
defined on Ci :

U(ci) = E

[ ∞∑
t=0

�t u(ci
t )

]
, (ci

t ) ∈ Ci ,

where � ∈ (0, 1) is the discount factor and u : R+ → R is the felicity function satisfying:

Assumption 3. The function u is bounded, continuous, and strictly concave.

Decision problem. Consumer i’s problem is given by

sup
(ci

t ,a
i
t+1)t � 0∈Ci×Ai

U(ci). (3)

The plans (ci
t )t �0 and (ai

t+1)t �0 are optimal if the above supremum is achieved by (ci
t ,

ai
t+1)t �0 ∈ Ci × Ai .

Allocation: An allocation ((ci
t , a

i
t+1)t �0)i∈I is a collection of consumption and asset

accumulation plans (ci
t , a

i
t+1)t �0, i ∈ I . An allocation ((ci

t , a
i
t+1)t �0)i∈I is admissible if

both ci
t = ct (i, �, zt ) and ai

t+1 = at+1(i, �, zt ) are B(I ) ⊗ Ft -measurable where Ft is the
smallest �-algebra containing F i

t for all i ∈ I , Ft = ∨i∈I F i
t , t �0. This measurability

requirement ensures certain integrals are well defined (see [10] for discussion of the diffi-
culties that arise if it is violated). Since both ci

t and ai
t+1 are F i

t -measurable for all fixed
i ∈ I , they are also Ft -measurable. Thus, the essential content of admissibility is that ci

t and
ai
t+1 must be B(I )-measurable for each fixed (�, zt ) ∈ � × Zt . To ensure that admissible

allocations exist, I assume: 8

Assumption 4. For each t , st : I × � × Z∞ → S is B(I ) ⊗ Ft -measurable.

8 The proof of existence of admissible allocations follows from a similar argument in [21]. So I omit it.
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2.2. The firm

There is a single firm renting capital at (net) rate rt and hiring labor at wage wt at date t .
It produces output Yt with the constant-returns-to-scale technology F : R+ × R+ → R+:

Yt = ztF (Kt , Nt ) + (1 − �)Kt ,

where aggregate capital Kt is Ft−1-measurable, aggregate labor Nt is Ft -measurable, and
� ∈ (0, 1) is the depreciation rate. Capital is transformed from consumers’ accumulated
assets and aggregate labor supply Nt is given exogenously.

Assumption 5. (a) Nt is uniformly bounded, 0�Nt �N̂ . (b) F is homogeneous of degree
one, strictly increasing, strictly concave, continuously differentiable, and satisfies: F(0, ·) =
F(·, 0) = 0, limK→0 F1(K, N̂) = ∞, and limK→∞ F1(K, N̂) = 0.

Remark 2.2. This assumption implies that there is a maximal sustainable capital stock K̂

which is given by the unique solution to the equation zF (K, N̂) = �K .

By Assumption 5, competitive profit maximization implies that for all t �0,

rt = ztF1(Kt , Nt ) − �, (4)

wt = ztF2(Kt , Nt ). (5)

Note that prices rt and wt are Ft -measurable.

2.3. Competitive equilibrium

I first define sequential competitive equilibrium in the standard way.

Definition 1. A sequential competitive equilibrium (((ai
t+1, c

i
t )t �0)i∈I , (rt , wt )t �0) con-

sists of an admissible allocation ((ai
t+1, c

i
t )t �0)i∈I and price processes (rt , wt )t �0 such

that: (i) Given prices (wt, rt )t �0, (ai
t+1, c

i
t )t �0 solves problem (3) for �-a.e. i. (ii) Given

prices (wt, rt )t �0, the firm maximizes profits so that (4) and (5) are satisfied for all t �0.
(iii) Markets clear, i.e., for all t �0,∫

I

si
t �(di) = Nt, (6)

Ct + Kt+1 = ztF (Kt , Nt ) + (1 − �)Kt , (7)

where Ct = ∫
I
ci
t�(di) and Kt = ∫

I
ai
t �(di).

To analyze the existence and properties of sequential competitive equilibria, it is important
to introduce the notion of aggregate distribution. Such a distribution is defined over the
individual states across the population. An individual state is a pair of individual asset
holdings and the history of individual shocks. More formally, if individual asset holdings
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and the shock history at date t �0 are ai
t and sti , respectively, i ∈ I , then the aggregate

distribution, �t ∈ P(A × St ), is defined by

�t (A × B) = �(i ∈ I : (at (i), s
t (i)) ∈ A × B), A × B ∈ B(A) × B(St ). (8)

Thus, �t (A × B) is the measure of consumers whose asset holdings and shock histories at
date t lie in the set A × B. Note that �t is a random measure since ai

t = ai
t (�, zt−1) and

si
t = si

t (�, zt ) are random variables.
Any aggregate variable can be written as an expectation with respect to the so defined

aggregate distribution; for example,

Kt =
∫

I

ai
t �(di) =

∫
A×St

a�t (da, dst ),

Nt =
∫

I

si
t �(di) =

∫
A×St

s�t (da, dst ),

Ct =
∫

I

ci
t�(di) = (1 + rt )Kt + wtNt − Kt+1.

The last equation follows from integration of Eq. (1). It implies the resource constraint (7)
by the homogeneity of F and (4)–(5). Finally, Eqs. (4) and (5) induce pricing functions
rt : P(A × St ) × Z → R and wt : P(A × St ) × Z → R+ as follows:

rt (�t , zt ) = ztF1

(∫
A×St

a�t (da, dst ),

∫
A×St

s�t (da, dst )

)
− �, (9)

wt(�t , zt ) = ztF2

(∫
A×St

a�t (da, dst ),

∫
A×St

s�t (da, dst )

)
. (10)

From the above discussion, conclude that aggregate distributions contain all the relevant
information for equilibrium analysis. Henceforth, they will be the focus of study.

3. Existence of competitive equilibrium

I begin by analyzing a single consumer’s decision problem. I then discuss aggregation.
I finally present the existence result. Notice that the model reduces to the case without
aggregate shocks when Z contains only one element. Thus, all results to follow are valid
for this case. 9

3.1. The one-person decision problem

Consider a single consumer’s decision problem, given a sequence of aggregate distribu-
tions � = {�t }t �0. So the consumer index is suppressed.

In general, the aggregate distribution at date t is a measurable function of the individual-
relevant state � and the history of aggregate shocks zt (see (8)). However, Section 3.2
will show that under some conditions, equilibrium aggregate distributions do not depend
on the individual-relevant state �. Therefore, this subsection assumes that the aggregate

9 Aiyagari [2] and Miao [31] study stationary equilibria for economies without aggregate shocks.
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distribution �t is a function from the set of histories of aggregate shocks Zt to P(A × St ).
Let P(A × St )Zt

denote the set of such functions endowed with the product (or pointwise
convergence) topology. Let P∞(A × S) ≡ ×∞

t=0P(A × St )Zt

. Then � is an element in
P∞(A × S).

It is convenient to analyze an individual’s consumption and savings decisions by dynamic
programming. Let Vt (at , s

t , zt , �) denote the maximized expected discounted utility of the
consumer at date t, when his asset holdings are at and the sequence of aggregate distributions
is �, given the individual shock history st and the aggregate shock history zt . Then, at date
t �0, the consumer solves the following dynamic programming problem:

Vt (at , s
t , zt , �) = sup

at+1∈�(at ,st ,zt ,�t (zt ))

u((1 + rt (�t (z
t ), zt ))at + wt(�t (z

t ), zt )st − at+1)

+�
∫

S× Z
Vt+1(at+1, s

t+1, zt+1, �)Qt+1(dst+1, dzt+1, s
t , zt ), (11)

where

�(at , st , zt , �t (z
t )) = [0, (1 + rt (�t (z

t ), zt ))at + wt(�t (z
t ), zt )st ].

The associated policy correspondence is defined by gt+1 : A×St ×Zt ×P∞(A×S) → A,
with gt+1(at , s

t , zt , �) ⊂ �(at , st , zt , �t (z
t )). If gt+1 is single valued, it is called a policy

function. If gt+1(at , s
t , zt , �) is the set of maximizers of problem (11), it is called an optimal

policy correspondence.
To understand problem (11), consider an n-period truncation. At date n, the consumer

solves the following problem:

V n
n (an, sn, z

n, �n(z
n)) = max

a′∈�(an,sn,zn,�n(zn))
u((1 + rn(�n(z

n), zn)an

+wn(�n(z
n), zn)sn − a′).

At date n − 1, by the principle of optimally, the consumer solves the following problem:

V n
n−1(an−1, s

n−1, zn−1, �n−1(z
n−1), �n)

= max
a′∈�(an−1,sn−1,zn−1,�n−1(z

n−1))
u((1 + rn−1(�n−1(z

n−1), zn−1)an−1

+wn−1(�n−1(z
n−1), zn−1)sn−1 − a′)

+�
∫

S×Z
V n

n (a′, sn, zn, �n(z
n))Qn(dzn, dsn, s

n−1, zn−1).

In general, at any date 0� t �n, the consumer solves the problem:

V n
t (at , s

t , zt , �t (z
t ), �t+1, . . . , �n)

= max
a′∈�(at ,st ,zt ,�t (zt ))

u((1 + rt (�t (z
t ), zt )at + wt(�t (z

t ), zt )st − a′)

+�
∫

S× Z
V n

t+1(a
′, st+1, zt+1, �t+1(z

t+1), �t+2, . . . , �n)

×Qt+1(dzt+1, dst+1, s
t , zt ).

Problem (11) corresponds to the limiting case as n → ∞.
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More formally, let V denote the set of uniformly bounded and continuous real-valued
functions on A × St × Zt × P∞(A × S). Let V∞ denote the set of sequences v =
(v0, v1, v2, . . .). of such functions. Note that V∞ is a complete metric space if endowed
with the norm

||v|| = sup
(t,at ,st ,zt ,�)

∣∣vt (at , s
t , zt , �)

∣∣ .
Then an application of the Contraction Mapping Theorem yields:

Lemma 1. Given Assumptions 1–5, then there is a unique sequence of functions {Vt }t �0 ∈
V ∞ and a unique sequence of continuous policy functions {gt+1}t �0 solving (11).

3.2. Aggregation and the law of motion for aggregate distributions

This subsection studies the question of aggregation of individual behavior to form aggre-
gate behavior and derives the law of motion for the aggregate distributions induced by the
sequences of individual optimal policy functions {gt+1}t �0 and individual shocks (si

t )t �0.
In perfectly competitive markets, each consumer has no influence over prices, and all

consumers together determine prices. The continuum formulation and a suitable law of
large numbers make this possible. To see this, recall that the aggregate distribution at date
t , �t (�, zt ), is defined in (8). It is a random measure that depends on the state (�, zt ). In
models without aggregate shocks (e.g., [2,31]), perfect competition implies that equilibrium
aggregate distributions must be deterministic. The latter can be achieved by assuming a
no aggregate uncertainty condition on the shock processes and the underlying probability
spaces, introduced in [6, Definition 1] for models of anonymous sequential games. Feldman
and Gilles’ construction [13, Proposition 2] shows that this condition is not vacuous and their
construction is applied directly by Miao [31] to a Bewley-style model without aggregate
shocks.

Say that a process X = (Xt )t �0, Xt : I × � → D, where D is a Euclidean space
and Xt is jointly measurable, satisfies no aggregate uncertainty if there exists a nonrandom
measure � such that �(i ∈ I : X(i, �) ∈ D) = �(D), D ∈ B(D), for P-a.e. �. 10 Note
that whether or not a process X has the no aggregate uncertainty property depends on the
underlying probability space. The implication of the no aggregate uncertainty condition is
that �(i ∈ I : X(i, �) ∈ D) = P(� ∈ � : X(i, �) ∈ D) if each Xi is drawn from the
same distribution. In this case, the measure � is in fact this common distribution. Thus, the
empirical distribution of a sample of random variables (Xi

t )i∈I is the same as the theoretical
distribution from which all these random variables are drawn.

To accommodate the case where aggregate shocks are present, I follow [6] and introduce
a notion of conditional no aggregate uncertainty. A process X = (Xt )t �0, Xt : I × � ×
Z∞ → D, satisfies the conditional no aggregate uncertainty condition if given the history
of aggregate shocks z∞ ∈ Z∞, X satisfies the no aggregate uncertainty condition. I now
assume:

10 Note that this definition is slightly different from [6, Definition 1].
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Assumption 6. The individual shock process si = (si
t )t �0, st : I × � × Z∞ → S,

satisfies the conditional no aggregate uncertainty condition relative to the probability space
(� × Z∞, F, P ).

This assumption implies that given the history z∞,

�(i ∈ I : s(i, �, z∞) ∈ B) = Pz(� ∈ � : si(�, z∞) ∈ B), B ∈ B(S∞),

where Pz is the conditional measure on � given z∞. Thus, conditional on the history of
aggregate shocks zt , aggregate labor endowments satisfy∫

I

si
t �(di) =

∫
A×St

s�t (da, dst ) =
∫

�
si
t (�, zt )Pz(d�), ∀t �0, ∀i ∈ I,

which is deterministic. This property, along with the labor market clearing condition (6),
puts a restriction on aggregate labor supply Nt ; namely, Nt must depend on zt only.

Assumption 6 permits derivation of the law of motion for aggregate distributions, as I
now show. Because consumers are ex ante identical, they will choose the same optimal
asset accumulation policy. Thus, given the individual state (ai

t , s
ti ), the history of aggregate

shocks zt , and the sequence of aggregate distributions �, let the asset holdings next period
be ai

t+1 = gt+1(a
i
t , s

ti , zt , �) for �-a.e. i.
Fixing a history of shocks zt+1 and using (8) and Bayes’ Rule, one can derive that for

any Borel sets A ∈ B(A), B = B1 × B2 ∈ B(St ) × B(S),

�t+1(�, zt+1)(A × B) = �(i ∈ I : (at+1(i), s
t+1(i)) ∈ A × B)

=
∫

A×B1

�(i ∈ I : (gt+1(a
i
t , s

ti , zt , �), st+1,i )

∈ A × B | (ai
t , s

ti ) = (at , s
t ))

· �(i ∈ I : (ai
t , s

ti ) ∈ dat × dst )

=
∫

A×B1

�(i ∈ I : (gt+1(at , s
t , zt , �), si

t+1(z
t+1))

∈ A × B2 | sti = st )�t (dat , dst )

=
∫

A×B1

1A(g(a, st , zt , �))�(i ∈ I : st+1(i, �, zt+1)

∈ B2 | sti = st )�t (dat , dst ).

Applying the conditional no aggregate uncertainty condition, one obtains

�(i ∈ I : st+1(i, �, zt+1) ∈ B2 | sti = st ) = Qt+1
(
B2, zt+1, s

t , zt
)
.

This implies that, conditional on the history of aggregate shocks zt+1 and the history of
individual shocks st , �(i ∈ I : st+1(i, �, zt+1) ∈ B2 | sti = st ) does not depend on
individual uncertainty. Therefore, if �0 is a nonrandom measure, then the conditional no
aggregate uncertainty condition implies that, conditional on any history of aggregate shocks,
the aggregate distribution at each date does not depend on individual uncertainty. Thus, the
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date t aggregate distribution �t can be identified as a map from Zt to P(A×St ), as assumed
in Section 3.1.

The above discussion is summarized in the following lemma:

Lemma 2. Under the conditional no aggregate uncertainty condition Assumption 6, along
a history of aggregate shocks z∞ = (z0, z1, . . .), the sequence of equilibrium aggregate
distributions � = (�t )t �0 evolves according to

�t+1(z
t+1)(A × B) =

∫
A×B1

1A(gt+1(at , s
t , zt , �))Qt+1

(
B2, zt+1, s

t , zt
)

×�t (dat , dst )(zt ),

for any Borel sets A ∈ B(A) and B = B1 × B2 ∈ B(St ) × B (S).

3.3. The existence theorem

I now state one main result of the paper.

Theorem 1. Given Assumptions 1–6, there exists a sequential competitive equilibrium.
Moreover, the set of equilibrium sequences of aggregate distributions are compact.

The idea of the proof can be described as follows. Consider a sequence of aggregate
distributions � = (

�t (z
t )

)
t �0 ∈ P∞(A × S) along a history of aggregate shocks z∞.

Denote by P0∞(A × S) the set of all such sequences satisfying the labor market clearing
condition∫

A×St
s�t (da, dst ) = Nt, t �0.

A sequence of optimal asset accumulation policies {gt+1}t �0 can be derived from Lemma 1.

Define a new sequence of aggregate distributions �̃ =
(̃
�t (z

t )
)

t �0
by: �̃0(z

0) = �0(z0),

�̃t+1(z
t+1)(A × B) =

∫
A×B1

1A(gt+1(at , s
t , zt , �))Qt+1(B2, zt+1, s

t , zt )

×�t (dat , dst ), (12)

for all Borel sets A ∈ B(A) and B = B1 × B2 ∈ B(St ) × B (S), t �0. Furthermore,
define a map 	 : P0∞(A × S) → P0∞(A × S) by 	(�) = �̃. Then the fixed point of 	,
�∗ = (�∗

0, �
∗
1, �

∗
2, . . .), induces a sequential competitive equilibrium (((ai

t+1, c
i
t )t �0)i∈I ,

(rt , wt )t �0). Specifically, for any histories of shocks (sti , zt ), let

ai
t+1 = gt+1(a

i
t , s

i
t , zt , (�

∗

)
� t ), ci

t = (1 + rt )a
i
t + wts

i
t − ai

t+1,

rt = ztF1(Kt , Nt ) − �, wt = ztF2(Kt , Nt ),

Kt =
∫

A×St
a�∗

t (da, dst ),

∫
A×St

s�∗
t (da, dst ) = Nt,

where ai
0, si

0, z0, and �∗
0 = �0 are given.
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However, P0∞(A×S) is not a compact set since A is not compact. To apply the Brouwer–
Schauder–Tychonoff Fixed-Point Theorem [3, Corollary 16.52], one needs the domain of 	
to be compact. Thus, I construct another compact set so that 	 is a self-map in this domain.

The set is constructed as follows. Because of Assumption 5 and the resource constraint,
one can restrict attention to the set of sequences of aggregate distributions (�t )t �0 such that
Kt = ∫

A×St a�t (da, dst )�K̂ . Then let

P̂(A × St )(zt ) =
{
�(zt ) ∈ P(A × St ) :

∫
A×St

a�(zt )(da, dst )�K̂,

×
∫

A×St
s�(zt )(da, dst ) = Nt(z

t )

}
,

P̂∞(A × S) = ×∞
t=0 ×zt∈Zt P̂(A × St )(zt ).

Lemma 3. P̂∞(A × S) is a compact and convex subset of a locally convex Hausdorff
space.

One can now apply the Brouwer–Schauder–Tychonoff Fixed-Point Theorem to the map
	 : P̂∞(A × S) → P̂∞(A × S). Any fixed point induces a competitive equilibrium.

4. Recursive characterization

To permit a recursive characterization of sequential competitive equilibria, I make two
stationarity assumptions:

Assumption 7. Qt+1(S × Z, st , zt ) = Q(S × Z, st , zt ) for all t �0 and S × Z ∈ B(S) ×
B(Z).

Assumption 8. Aggregate labor endowments at any date t �0 is given by a measurable
function N : Zt → (0, N̂ ].

Given these assumptions, the economy is the same as that studied by Krusell and Smith
[24]. These two assumptions also imply that past histories of individual shocks do not affect
current decisions. Thus, the aggregate distribution of asset holdings and individual shocks
at date t , �t , can be defined as

�t (A × B) = �(i ∈ I : (ai
t , s

i
t ) ∈ A × B), A × B ∈ B(A) × B(S). (13)

The set of all aggregate distributions is denoted by P∞(A × S) = ×∞
t=0P(A × S)Zt

.
Under Assumptions 1–8, the pricing functions (4) and (5) become r : P(A×S)×Z → R,

w : P(A × S) × Z → R+,

r(�, z) = zF1

(∫
A×S

a�(da, ds),

∫
A×S

s�(da, ds)

)
− �, (14)

w(�, z) = zF2

(∫
A×S

a�(da, ds),

∫
A×S

s�(da, ds)

)
. (15)
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Moreover, a typical consumer’s decision problem at date t (11) can be rewritten as the
following dynamic programming equation:

V (at , st , zt , (�
)
� t ) = sup
a′∈�(at ,st ,zt ,�t )

u((1 + r(�t , zt ))at + w(�t , zt )st − a′)

+�
∫

S× Z
V (a′, s′, z′, (�
)
� t+1)Q(ds′, dz′, st , zt ). (16)

This problem is studied in Lemma 4.
To derive a recursive characterization, it is important to select state variables. A current

state must be a sufficient statistic for the future evolution of the system. With incomplete
markets and heterogeneous consumers, equilibrium prices generally depend on the distribu-
tion of assets across the consumers. Thus, it is natural to include the aggregate distribution
as a state variable. The question is whether it constitutes a sufficient endogenous aggregate
state. To answer this question, I define a notion of equilibrium correspondence in the next
subsection.

4.1. Equilibrium correspondence

I first provide a lemma characterizing an equilibrium sequence of aggregate distributions.

Lemma 4. Let Assumptions 1–8 hold. Then:

(i) There is a unique continuous and bounded function V : A×S×Z×P∞(A×S) → R

and a unique continuous policy function g : A × S × Z × P∞(A × S) → A solving
problem (16).

(ii) Any equilibrium sequence of aggregate distributions (�t )t �0 is characterized by the
following equations: for t �0, A × B ∈ B(A) × B(S),∫

A×S
s�t (z

t )(da, ds) = N(zt ), (17)

�t+1(z
t+1)(A × B) =

∫
A×S

1A(g(at , st , zt , (�
)
� t ))Q(B, zt+1, st , zt )

×�t (z
t )(dat , dst ), (18)

where �0 is given.

Eq. (17) is the labor market clearing condition. Eq. (18) says that the evolution of (�t )t �0
must be consistent with consumers’ optimal behavior. It embodies rational expectations.

I now define an equilibrium correspondence E : Z × P(A × S) → P∞(A × S),
where E(z, �) is the set of equilibrium sequences of aggregate distributions associated with
an initial aggregate state (z, �). Theorem 1 shows that E(z, �) is nonempty and compact
so that the correspondence E is well defined. An important property of the equilibrium
correspondence is described in the following lemma.

Lemma 5. Under Assumptions 1–8, the equilibrium correspondence E is upper hemicon-
tinuous.
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Because the equilibrium correspondence is generally not single-valued, there may be
multiple equilibrium trajectories that are consistent with a given initial aggregate distribu-
tion and a given initial value of aggregate shock. This implies that the current aggregate
distribution is typically not a sufficient (endogenous) statistic for the future evolution of the
aggregate distributions (or prices). This motivates the need for additional state variables.

Before I turn to recursive characterizations in the next subsection, I define another cor-
respondence. Let

X = {(z, �, v) ∈ Z × P(A × S) × C(A × S × Z × P(A × S)) : ∃�

∈ E(z, �), v(·, z, �) = V (·, z, �))}.
Define a correspondence � : X → P∞(A × S) as

�(z, �, v) = {� ∈ E(z, �) : v(·, z, �) = V (·, z, �)}. (19)

Thus, the correspondence � assigns to any point (z, �, v) ∈ X the set of equilibrium se-
quences of aggregate distributions � with the property that the expected payoff to consumer
i is v(a, s, z, �) when the initial state is (ai

0, s
i
0, z0, �0) = (a, s, z, �). Since E(z, �) is

nonempty by Theorem 1, the correspondence � is well defined. Using Lemma 5, one can
establish the following lemma, which is important for the recursive characterization studied
in the next subsection.

Lemma 6. Under Assumptions 1–8, the correspondence � is upper hemicontinuous.

4.2. Recursive equilibria

I now turn to recursive characterization of sequential competitive equilibria. The key
to recursive characterization is the selection of state variables. Inspired by the literature
on sequential games [5,7,11], and on dynamic contracts [1,32,36], I include the expected
payoffs (expected discounted utilities) as an additional endogenous state variable and define
a recursive equilibrium as follows.

Definition 2. A recursive (competitive) equilibrium ((f, T v, G), (r, w)) consists of a mea-
surable policy function f : A×S×Z×P(A×S)×C(A×S×Z×P(A×S)) → A, a mea-
surable map T v : Z×P(A×S)×C(A×S×Z×P(A×S)) → C(A×S×Z×P(A×S)),
a measurable map G : Z × P(A × S) × C(A × S × Z × P(A × S)) × Z → P(A × S),
and measurable pricing functions r : P(A × S) × Z → R and w : P(A × S) × Z → R+
such that:

(i) Given the pricing functions r and w, the policy function f solves the following problem

v(a, s, z, �) = sup
a′∈�(a,s,z,�)

u((1 + r(�, z))a + w(�, z)s − a′)

+�
∫

S× Z
v′(a′, s′, z′, �′)Q(ds′, dz′, s, z),

where v ∈ C(A × S × Z × P(A × S)) and

v′(·) = T v(z, �, v)(·) ∈ C(A × S × Z × P(A × S)) and �′ = G(z, �, v, z′).
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(ii) The firm maximizes profits so that r and w satisfy (14) and (15).
(iii) The sequence of aggregate distributions induced by G is such that labor markets

clear:
∫

A×S s�t (da, ds) = N(zt ), ∀zt ∈ Zt , where �t+1 = G(zt , �t , vt , zt+1) and �0 is
given.

(iv) The law of motion for aggregate distributions G is generated by the individual optimal
policy f , i.e., for all A × B ∈ B(A) × B(S),

G(z, �, v, z′)(A × B) =
∫

A×S
1A(f (a, s, z, �, v))Q(B, z′, s, z)�(da, ds).

Remark 4.1. If individual shocks and aggregate shocks are independent, thenQ(B, z′, s, z)
does not depend on z′ so that G does not depend on z′. In this case, �′ = G(z, �, v). Note
that requirement (iv) embodies rational expectations. It is justified by the analysis in Section
3.2 and Lemmas 2 and 4.

The following theorem shows that given an initial state, a recursive equilibrium generates
a sequential competitive equilibrium.

Theorem 2. Let Assumptions 1–8 hold. Given the initial state ((ai
0, s

i
0)i∈I , z0, �0, v0), a

recursive equilibrium ((f, T v, G), r, w) generates a sequential competitive equilibrium
(((ai

t+1, c
i
t )t �0)i∈I , (rt , wt )t �0) in which consumer i’s expected discounted utilities are

given by v0(a
i
0, s

i
0, z0, �0).

The dynamics of the sequential competitive equilibrium (((ai
t+1, c

i
t )t �0)i∈I , (rt , wt )t �0)

is described as follows. Given the initial state ((ai
0, s

i
0)i∈I , z0, �0, v0), the interest rate and

the wage rate are given by r0 = r(�0, z0) and w0 = w(�0, z0), respectively. Consumer
i accumulates assets ai

1 = f (ai
0, s

i
0, z0, �0, v0) and consumes the remaining wealth ci

0 =
(1+ r0)a

i
0 +w0s

i
0 −ai

1. At date 1, when the realizations of individual shocks and aggregate
shocks are (si

1)i∈I and z1, the date 1 state ((ai
1, s

i
1)i∈I , z1, �1, v1) is determined by the maps

(f, G, T v). In particular, �1 = G(z0, �0, v0, z1), v1 = T v(z0, �0, v0). Then the date 1 prices
are given by r1 = r(�1, z1) and w1 = w(�1, z1). Under these prices, consumer i accumulates
assets ai

2 = f (ai
1, s

i
1, z1, �1, v1) and consumes the remaining wealth ci

1 = (1 + r1)a
i
1 +

w1s
i
1−ai

2. The state then moves to date 2, and so on. Finally, the expected payoff to consumer
i in the equilibrium (((ai

t+1, c
i
t )t �0)i∈I , (rt , wt )t �0) is given by v0(a

i
0, s

i
0, z0, �0).

Does a recursive equilibrium defined earlier exist? Can any sequential competitive equi-
librium be generated by such a recursive equilibrium? The following theorem answers these
questions.

Theorem 3. Under Assumptions 1–8, there exists a recursive equilibrium. Moreover, for
any competitive equilibrium (((ai

t+1, c
i
t )t �0)i∈I , (rt , wt )t �0) with the sequence of ag-

gregate distributions �∗, there exists a payoff equivalent competitive equilibrium that is
generated by a recursive equilibrium.

This theorem implies that a recursive equilibrium exists. Moreover, any payoff implied
by a sequential competitive equilibrium can be generated by a recursive equilibrium. Notice
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that the sequential competitive equilibrium generated by the recursive equilibrium may be
different from the equilibrium (((ai

t+1, c
i
t )t �0)i∈I ,(rt , wt )t �0). But they imply the same

expected discounted utilities.
The key to the proof of the theorem is to construct an equilibrium sequence of aggregate

distributions � = (�t )t �0 such that its law of motion satisfies (iv) in Definition 2. This
is achieved by taking a measurable selection � from the correspondence �. Then �t+1 is
obtained as the second component of �(zt , �t , vt ). The payoff vt+1(at+1, st+1, zt+1, �t+1)

is obtained as the continuation utility at date t+1, V (at+1, st+1, zt+1, �(zt , �t , vt )), implied
by the equilibrium sequence of aggregate distributions �(zt , �t , vt ) when the economy starts
at date t . This reflects rational expectations formed at the previous date. Moreover, vt+1
serves as a device to select the ‘continuation’ equilibrium �(zt+1, �t+1, vt+1) when the
economy starts at date t + 1. Finally, since the dynamics of the constructed equilibrium
is stationary, the maps (f, T v, G) can be constructed so that a recursive equilibrium is
obtained.

Turn to another recursive characterization proposed by Krusell and Smith [24], which
assumes that the aggregate distribution does constitute a sufficient endogenous (aggregate)
state.

Definition 3. A KS-recursive (competitive) equilibrium ((v, h, H), (r, w)) consists of a
value function v : A × S × Z × P(A × S) → R, a measurable policy function h :
A × S × Z × P(A × S) → A, a measurable map H : P(A × S) × Z2 → P(A × S),
and measurable pricing functions r : P(A × S) × Z → R and w : P(A × S) × Z → R+
such that:

(i) Given the function H and the pricing functions r and w, v and h solve the problem:

v(a, s, z, �) = sup
a′∈�(a,s,z,�)

u((1 + r(�, z))a + w(�, z)s − a′)

+�
∫

S×Z
v(a′, s′, z′, �′)Q(ds′, dz′, s, z), (20)

subject to �′ = H(�, z, z′).
(ii) The firm maximizes profits so that r and w satisfy (14) and (15).
(iii) The sequence of aggregate distributions induced by H is such that labor markets clear:∫

A×S s�t (da, ds) = N(zt ), ∀zt ∈ Zt , where �t+1 = H(�t , zt , zt+1) and �0 is given.
(iv) The law of motion for aggregate distributions H is generated by the individual optimal

policy h, i.e., for all A × B ∈ B(A) × B(S),

H(�, z, z′)(A × B) =
∫

A×S
1A(h(a, s, z, �))Q(B, z′, s, z)�(da, ds).11 (21)

It is straightforward to show that a KS-recursive equilibrium generates a sequential com-
petitive equilibrium. Does a KS-recursive equilibrium exist? For a related finitely many
agents economy, Kubler and Schmedders [25, Theorem 2] establish the existence of such a
recursive equilibrium under the strong condition that the competitive equilibrium is glob-
ally unique for all possible initial values. Although one can state a similar result for the

11 This condition can be justified by a similar analysis to that in Section 3.2.
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economies studied here, this strong condition cannot be checked from primitives. It is an
open question whether a KS-recursive equilibrium exists without this condition.

5. Conclusion

In this paper, I describe the Bewley-style model with aggregate shocks in terms of se-
quences of aggregate distributions. Using this formulation, I resolve two central open ques-
tions. Specifically, I establish the existence of a sequential competitive equilibrium and
provide a recursive characterization of sequential competitive equilibria. There are still
some open questions remaining. For example, how to design efficient numerical methods
to solve Bewley models with aggregate shocks? Does there exist a recursive equilibrium
defined in [24]? I leave these questions for future research.
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Appendix

Proof of Lemma 1. Define an operator T on V∞ as follows. For v ∈ V∞, let t th compo-
nent of T v(at , s

t , zt , �) be the expression

(T v)t (at , s
t , zt , �) = max

at+1∈�(at ,st ,zt ,�t (zt ))
u((1 + rt (�t (z

t ), zt ))at

+wt(�t (z
t ), zt )st − at+1)

+�
∫

S×Z
vt+1(at+1, s

t+1, zt+1, �)

×Qt+1(dst+1, dzt+1, s
t , zt ), (22)

I first show that T v ∈ V∞. It is immediate that each (T v)t is bounded. To show continuity
of (T v)t , I apply the Maximum Theorem. Consider a sequence (at+1, at , s

t , zt , �)n →
(at+1, at , s

t , zt , �), n = 1, 2, . . . . Since Z is countable, (zt )n = zt for all n large enough.
By (9)-(10) and the definition of weak convergence, rt (�

n
t ((z

t )n), (zt )
n) → rt (�t (z

t ), zt ),
wt(�

n
t ((z

t )n), (zt )
n) → wt(�t (z

t ), zt ). Thus, � is a continuous correspondence. Moreover,
the first term on the right-hand side of (22) is continuous in (at+1, at , s

t , zt , �) since u is
continuous.
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Turn to continuity of the second term. For n sufficiently large,∫
S×Z

vt+1((at+1)
n, (st )n, st+1, (z

t )n, zt+1, �
n)Qt+1(dst+1, dzt+1, (s

t )n, (zt )n)

=
∫

S× Z
vt+1((at+1)

n, (st )n, st+1, z
t+1, �n)Qt+1(dst+1, dzt+1, (s

t )n, zt ).

Thus, it is sufficient to show that the following expression converges to zero:∣∣∣∣∫
S× Z

vt+1((at+1)
n, (st )n, st+1, z

t+1, �n)Qt+1(dst+1, dzt+1, (s
t )n, zt )

−
∫

S× Z
vt+1(at+1, s

t+1, zt+1, �)Qt+1(dst+1, dzt+1, s
t , zt )

∣∣∣∣
�

∣∣∣∣∫
S× Z

vt+1((at+1)
n, (st )n, st+1, z

t+1, �n)Qt+1(dst+1, dzt+1, (s
t )n, zt )

−
∫

S× Z
vt+1(at+1, s

t+1, zt+1, �)Qt+1(dst+1, dzt+1, (s
t )n, zt )

∣∣∣∣
+

∣∣∣∣∫
S× Z

vt+1(at+1, s
t+1, zt+1, �)Qt+1(dst+1, dzt+1, (s

t )n, zt )

−
∫

S× Z
vt+1(at+1, s

t+1, zt+1, �)Qt+1(dst+1, dzt+1, s
t , zt )

∣∣∣∣ . (23)

Since ((at+1)
n, (st )n, st+1, z

t+1, �n) → (at+1, s
t+1, zt+1, �), there is a compact set D ⊂

A×St+1 ×Zt+1 ×P∞(A×S) such that ((at+1)
n, (st )n, st+1, z

t+1, �n) ∈ D for all n large
enough, and (at+1, s

t+1, zt+1, �) ∈ D. Since vt+1 is continuous, it is uniformly continuous
on D. Thus, for every ε > 0, there exists N > 1 such that for all n > N , st+1 ∈ S, and
zt+1 ∈ Zt+1,∣∣∣vt+1((at+1)

n, (st )n, st+1, z
t+1, �n) − vt+1(at+1, s

t+1, zt+1, �)

∣∣∣ < ε.

This implies that the first absolute value in (23) vanishes as n → ∞. The second absolute
value also vanishes by the Feller property.

Next, T is a contraction by a straightforward application of the Blackwell Theorem
adapted to the infinite dimensional space V∞ (see [12, Lamma A.1]). Finally, apply-
ing the Contraction Mapping Theorem and the Maximum Theorem yields the desired
results. �

Proof of Lemma 2. See the main text. �

Proof of Lemma 3. I first show P̂(A×St ) is compact. Then P̂∞(A×St ) is also compact
under the product topology. For any � ∈ P̂(A × St ) and a0 > 0,

K̂ �
∫

A×St
a�(da, dst )�

∫
[a0,∞]×St

a�(da, dst )�a0�([a0, ∞) × St ).

This implies that for any ε > 0, there exists an a0 large enough such that �([a0, ∞) ×
St ) < ε. Thus, P̂(A × St ) is tight and hence relatively compact (see [3, Theorem 14.22]).
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Furthermore, P̂(A×St ) is closed with respect to the weak convergence topology. It follows
that P̂(A × St ) is compact. �

Proof of Theorem 1. I verify that the map 	 : P̂∞(A × S) → P∞(A × S) defined
in Section 3.3 satisfies the conditions of the Brouwer–Schauder–Tychonoff Fixed Point
Theorem [3, Corollary 16.52]. I first show that 	 maps from P̂∞(A × S) into itself. Let
� = (�0, �1, . . .) ∈ P̂∞(A × S). Then 	(�) = �̃ = (̃�0, �̃1, . . .) is defined as in (12). It
follows from (12) and Assumption 5 that∫

A×St
ã�t+1(da, dst+1) =

∫
A×St

gt+1(at , s
t , zt , �)�t (dat , dst )

�
∫

A×St

[
(1 + rt (�t , zt ))at + wt(�t , zt )st

]
�t (dat , dst )

= (1 + rt (�t , zt ))Kt + wt(�t , zt )Nt

= (1 − �)Kt + ztF (Kt , Nt )

� (1 − �)K̂ + zF (K̂, N̂) = K̂.

Thus, 	(�) ∈ P̂∞(A × S).
Finally, I show that 	 is continuous. Fix a history of aggregate shocks z∞. Let the

sequence of aggregate shocks �n → � (n → ∞), �n, � ∈ P̂∞(A × S). Let �̃ = 	 (�),

�̃n = 	 (�n), and �̃n =
(̃
�
n

t

)
t �0

, n = 1, 2, . . . . By definition of 	, �̃
n

0 = �n
0 → �0 =

�̃0. For any t �0, it follows from (12) that for any bounded and continuous function h :
A × St+1 → R, as n → ∞,∫

A×St+1
h(at , s

t+1)̃�
n

t+1(dat , dst+1)

=
∫

A×St

∫
S

h(gt+1(at , s
t , zt , �n), st+1)Qt+1(dst+1, zt+1, s

t , zt )�n
t (dat , dst )

converges to∫
A×St

∫
S

h(gt+1(at , s
t , zt , �), st+1)Qt+1(dst+1, zt+1, s

t , zt )�t (dat , dst )

=
∫

A×St+1
h(at , s

t+1)̃�t+1(dat , dst+1),

where I have used the facts that �n
t converges to �t weakly and that gt+1 is continuous in

at , s
t , and �n by Lemma 1. Thus, �̃

n

t+1 converges to �t+1 weakly for all t �0. This implies
that �̃n → �̃, and hence 	 is continuous. �

Proof of Lemma 4. (i) Let W denote the set of uniformly bounded and continuous real-
valued functions on A × S × Z × P∞(A × S), where P∞(A × S) = ×∞

t=0P(A × S)Zt

.
Let W∞ denote the set of sequences W = (W, W, W, . . . .) of such functions. Note that
W∞ is a complete metric space if endowed with the norm∣∣∣∣W ∣∣∣∣ = sup

(a,s,z,�)

|W(a, s, z, �)| .
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Let the pricing functions r : P(A×S)×Z → R and w : P(A×S)×Z → R+ be defined
as in (14) and (15).

Next, let W = (W, W, . . .) ∈ W∞. Given any sequence of aggregate distributions
(�t )t �0, rewrite problem (22) as

(T W)t (at , st , zt , (�
)
� t ) = sup
at+1∈�(at ,st ,zt ,�t )

u((1 + r(�t , zt ))at

+w(�t , zt )st − at+1)

+�
∫

S× Z
W(at+1, st+1, zt+1, (�
)
� t+1)

×Q(dst+1, dzt+1, st , zt ),

where I have applied Assumptions 7 and 8. Since the expression on the right side of the
above equation is a time invariant function of (at , st , zt , (�
)
� t ), the operator T maps a
sequence of time invariant function to another sequence of time invariant function. Thus,
the fixed point of T is a sequence of time invariant function, denoted by (V , V, . . . .) where
V : A × S × Z ×P∞(A × S) → R is continuous. The corresponding sequence of optimal
policies is also time invariant, denoted by (g, g, . . .) where g : A×S×Z×P∞(A×S) →
R. Moreover, g is continuous by the Maximum Theorem.

Part (ii) follows from Lemma 2 and Assumptions 7 and 8. �

Proof of Lemma 5. Using a similar argument surrounding Lemma 3, one can restrict the
range of the correspondence E to be a compact space. By Theorem 1, E is closed-valued.
Thus, to show that E is upper hemicontinuous, it suffices to show that E has a closed graph
by the Closed Graph Theorem [3, Theorem 16.12].

Let (zn, �n) be a sequence converging to (z, �), n = 1, 2, . . . . Let ((�t )t �0)
n ∈ E(zn, �n)

(�0 = �) be a sequence of equilibrium sequences of aggregate distributions that converges
to (�t )t �0. One needs to show that (�t )t �0 ∈ E(z, �). To this end, I apply Lemma 4. I first
show (�t )t �0 satisfies (18). By the definition of weak convergence, for any bounded and
continuous function f on A × S,∫

A×S
f (a, s)�n

1(z1)(da, ds)

converges to∫
A×S

f (a, s)�1(z
1)(da, ds),

as n → ∞. Let g be the function defined in Lemma 4(i). Since g is continuous, as n → ∞,∫
A×S

∫
S

f (g(a0, s0, z
n, (�n


 )
�0), s
′)Q(ds′, z1, s0, z0)�

n
0(da0, ds0)

converges to∫
A×S

∫
S

f (g(a0, s0, z, (�
)
�0), s
′)Q(ds′, z1, s0, z0)�0(da0, ds0).
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Since ((�t )t �0)
n ∈ E(zn, �n), it follows from Lemma 4 that∫

A×S
f (a, s)�n

1(z1)(da, ds) =
∫

A×S

∫
S

f (g(a0, s0, z
n, (�n


 )
�0), s
′)

×Q(ds′, z1, s0, z0)�
n
0(da0, ds0).

Taking limits yields∫
A×S

f (a, s)�1(z
1)(da, ds) =

∫
A×S

∫
S

f (g(a0, s0, z, (�
)
�0), s
′)

×Q(ds′, z1, s0, z0)�0(da0, ds0).

Since this is true for any bounded and continuous function f , it follows that

�1(z
1)(A × B) =

∫
A×S

1A(g(a0, s0, z, (�
)
�0)Q(B, z1, s0, z0)�0(da0, ds0),

for any A × B ∈ B(A) × B(S). Thus, Eq. (18) holds for t = 0. Similarly, one can derive
that for any t �1, �t satisfies (18).

Finally, since each ((�t )t �0)
n satisfies (17), the limit (�t )t �0 also satisfies (17). Thus,

by Lemma 4, (�t )t �0 is an equilibrium sequence of aggregate distributions, i.e., (�t )t �0 ∈
E(z, �). �

Proof of Lemma 6. By a similar argument to that in Lemma 5, it suffices to show that
� has a closed graph. This follows immediately from its definition and the fact that V is
continuous and E is upper hemicontinuous established in Lemma 5. �

Proof of Theorem 2. I show that the tuple (((ai
t+1, c

i
t )t �0)i∈I , (rt , wt )t �0) described be-

low the statement of Theorem 2 in the main text constitutes a sequential competitive equi-
librium. First, it is clear that given prices (rt ) and (wt), the firm maximizes profits. Second,
I verify the market clearing condition. Integrating with respect to the measure � yields:

Ct + Kt+1 =
∫

I

ci
t�(di) +

∫
I

ai
t+1�(di)

= (1 + rt )

∫
I

ai
t �(di) + wt

∫
I

si
t �(di)

= (1 + rt )Kt + wtNt

= ztF (Kt , Nt ) + (1 − �)Kt ,

where the last equality follows from the construction of rt and wt and the homogeneity
of F . Finally, given the constructed sequence of aggregate distributions (�t )t �0, by part
(i) in Definition 2 and the principle of optimality, one can show that for any consumer i,
(ai

t+1, c
i
t )t �0 is optimal. 12 Moreover, the implied expected discounted utilities are given

by v0(a
i
0, s

i
0, z0, �0). �

Proof of Theorem 3. I first construct a recursive equilibrium. I then show that for any
sequential competitive equilibrium (((ai

t+1, c
i
t )t �0)i∈I , (rt , wt )t �0) with implied sequence

12 See [33, Theorem 9.2]. Although the problem here is slightly different, one can use a similar repeated substi-
tution method to prove the optimality.
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of aggregate distributions �∗, there exists another payoff equivalent sequential competitive
equilibrium, that is generated by the recursive equilibrium.

Step 1: By Lemma 4, there exist continuous functions V and g solving the dynamic
programming problem (16). By Theorem 1, a sequential competitive equilibrium exists.
Thus the correspondence � defined in (19) is well defined. Since it is upper hemicontinuous
by Lemma 6, it follows from [18] that there exists a measurable selection � from �. I use �
to construct a recursive equilibrium with the expanded state space.

Define the pricing functions (r, w) as in (14) and (15). Define the maps

f (a, s, z, �, v) = g(a, s, z, �(z, �, v)),

G(z, �, v, z′)(A × B) =
∫

A×S
1A(g(a, s, z, �(z, �, v))Q(B, z′, s, z)�(da, ds),

where A×B ∈ B (A)×B (S). Since by definition �(z, �, v) is an equilibrium sequence of
aggregate distributions, it must satisfy (18) in Lemma 4. Thus, by the above construction of
G(z, �, v, z′), G(z, �, v, z′) is in fact the second component of the sequence of aggregate
distributions �(z, �, v). Let �′ = G(z, �, v, z′). Thus, given the state (z, �, v) today and the
aggregate shock z′ tomorrow, �′ is the equilibrium aggregate distribution tomorrow. Define

T v(z, �, v)(a′, s′, z′, �′) = V (a′, s′, z′, �(z, �, v)),

I claim that ((f, T v, G), (r, w)) is a recursive equilibrium.
To verify this, one only needs to check part (i) in Definition 2 since parts (ii)–(iv) are

easily verified. To this end, consider the following dynamic programming problem:

V (a, s, z, �(z, �, v)) = sup
a′∈�(a,s,z,�)

u((1 + r(�, z))a + w(�, z)s − a)

+�
∫

S× Z
V (a′, s′, z′, �(z, �, v))Q(ds′, dz′, s, z). (24)

By construction and Lemma 4, the policy function f (a, s, z, �, v) = g(a, s, z, �(z, �, v))

solves the above problem. By the definition of � and � in (19), and the above construction
of T v , problem (24) can be rewritten as

v (a, s, z, �) = sup
a′∈�(a,s,z,�)

u((1 + r(�, z))a + w(�, z)s − a′)

+�
∫

S× Z
T v(z, �, v)(a′, s′, z′, �′)Q(ds′, dz′, s, z).

This verifies part (i) in Definition 2.
Step 2: Consider the sequential competitive equilibrium (((ai

t+1, c
i
t )t �0)i∈I , (rt , wt )t �0)

with implied sequence of aggregate distributions �∗. Let v0(a
i
0, s

i
0, z0, �0) = V (ai

0, s
i
0,

z0, �∗) be the expected discounted utilities of consumer i. Then, one can use the argument
after Theorem 2 in the main text to show that given the initial state ((ai

0, s
i
0)i∈I , z0,

�0, v0), the constructed recursive equilibrium generates a sequential competitive equili-
brium, in which each consumer i has expected discounted utilities v0(a

i
0, s

i
0, z0, �0) =

V (ai
0, s

i
0, z0, �∗). �
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