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1 Introduction

Since the seminal contributions by Grossman and Stiglitz (1980), there has been a growing lit-

erature in economics and finance that incorporates asymmetric information in the noisy rational

expectations equilibrium framework.1 This literature typically assumes that information structure

is exogenously given. However, agents may endogenously process information given their limited

information capacity. For example, investors in financial markets typically pay attention to some

individual assets or some portfolios (linear combinations) of assets. They can acquire signals about

individual assets or portfolios of assets.

In this paper we propose a multiple asset, noisy rational expectations equilibrium model with

rationally inattentive investors. The model features any finite number of risky assets with arbitrarily

correlated payoffs and a continuum of ex ante identical investors who face information-processing

constraints as in Sims (2003, 2011). Investors observe asset prices and acquire private signals about

the assets to reduce uncertainty about their portfolio. We do not restrict the signal form except

that it is a noisy linear transformation of asset payoffs. Investors optimally choose both the linear

transformation and the precision of the signal subject to an entropy-based information constraint.

After allocating their attention, investors incorporate the information from their private signals

and asset prices through Bayesian updating to form their posterior beliefs about the asset payoffs

and then choose their optimal asset holdings.

We show that each investor will optimally choose a one-dimensional signal that is a noisy

linear combination of all risky assets. In a symmetric linear equilibrium, all investors choose the

same signal form. We find that an unconditional CAPM holds in our model, but is rejected by

econometricans (Type I error). As argued by Andrei, Cujean, and Wilson (2018), there is an

information distance between econometricans and the average investor. Thus the security market

line (SML) from the econometrican’s point of view is different from the true SML in the model.

We find that the econometrican’s SML may not be linear and can be flatter or steeper than the

true SML, unlike the result in Andrei, Cujean and Wilson (2018). Moreover, an increase in the

information capacity reduces both the true SML and the econometrician’s SML. The reason is that

higher capacity allows investors to process more precise signals and hence reduce asset uncertainty

more.

We also show that there is excess comovement in asset prices relative to asset fundamentals, as

in Mondria (2010). We illustrate this result using a numerical example with three risky assets. One

asset is independent of the other two and the other two are arbitrarily correlated. We find that

the asset prices can be positively correlated even when asset payoffs are negatively correlated. The

reason is that each investor receives a single signal, that is a noisy linear combination of all risky

1See Veldkamp (2011) and Angeletos and Chen (2016) for recent surveys of this literature.
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assets with all positive coefficients. If there is good news about one asset, then investors observe a

high realization of the private signal and they attribute part of the effect to one asset and the rest

to the other two assets. This leads to an increase in the prices of all three assets and thus price

comovement of these assets.

We also use the above numerical example to illustrate the contagion effect. We show that an

increase in the variance of one independent asset payoff causes the prices of the other two assets to

decline. This is true even when the payoffs of the other two assets are negatively correlated.

We finally study the implications for the portfolio dispersion. We find that the portfolio holdings

dispersion declines in recessions when risk aversion (a proxy for the price of risk) or the aggregate

volatility is high. The portfolio return dispersion declines with risk aversion, but increases with the

aggregate volatility. Intuitively, higher risk aversion leads to more conservative portfolio choices,

and hence a smaller dispersion of portfolio holdings. On the other hand, higher risk aversion or

higher aggregate risk leads to higher market risk premium. The portfolio return dispersion reflects

the combined effects of portfolio holdings and risk premium. The impact of the portfolio return

dispersion depends on which effect dominates.

Extending our model to incorporate a fraction of uninformed investors, we study how informed

investors can profit from their information advantage. We find that an informed investor earns

an abnormal return. The abnormal return increases with the aggregate risk and the information

capacity, and decreases with the fraction of informed investors. Moreover, it has a U-shaped

relationship with the risk aversion.

Our paper is closely related to the literature on asset pricing models with rational inattention

(Peng (2005), Peng and Xiong (2006), van Nieuwerburgh and Veldkamp (2009, 2010), Mondria

(2010), and Kaperckyz, van Nieuwerburgh, and Veldkamp (henceforth KVV) (2016)).2 Because of

the difficulty in the case of multiple assets, this literature typically makes the signal independence

assumption. That is, investors are assumed to process information about one asset at a time. The

signal vector is equal to the unobservable asset payoff (or risk factor) vector plus a noise. An

undesirable feature is that ex ante independent assets remain ex post independent, and hence such

an assumption cannot explain asset comovement. KVV (2016) relax this assumption by imposing

an invertibility assumption on the signal form. They derive some results different from ours as

detailed in Sections 4 and 5.3. Mondria (2010) does not restrict the signal form, but his approach

only applies to the two-asset case with ex ante independent assets.

An important contribution of our paper is to analyze the general case with any finite number of

correlated assets. We solve for both the linear transformation and the precision of the signal vector.

The difficulty is that the information choice problem is nonconvex, unlike the multivariate linear-

2See Matejka and Mackay (2005), Luo (2008), Woodford (2009), Maćkowiak and Wiederholt (2009), Caplin, Dean,
and Leahy (2018), Miao (2019), Miao, Wu, and Young (2019) for other models with rational inattention. See Sims
(2011) and Maćkowiak, Matějka and Wiederholt (2018) for surveys and additional references cited therein.
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quadratic-Gaussian framework of Sims (2003), Miao (2019), and Miao, Wu, and Young (2019). We

are able to derive a closed-form solution to this problem and find that the optimal signal is one

dimensional. In particular, the optimal signal is a noisy linear combination of risky assets, as in

Mondria (2010) for the two asset-case. Van Nieuwerburgh and Veldkamp (2010) and KVV (2016)

also find that the information choice problem is nonconvex, but their problem is different from ours

and their proofs are also different from ours. In particular, they find that investors specialize in

learning about only one asset or only one risk factor.

Most studies in the literature on information acquisition assume that investors choose the signal

precision only and do not consider the signal form as a linear transformation of states. Unlike the

rational inattention framework of Sims (2003, 2011), some researchers impose information cost other

than the entropy-based cost. This literature is too large for us to cite it all. Recent contributions

include Huang and Liu (2007), Vives (2010), KVV (2016), Andrei and Hasler (2019), and Vives

and Yang (2019), among others.

2 Model

Consider a three-date economy populated by a continuum of ex ante identical investors of measure

one, indexed by i ∈ [0, 1]. Investors are endowed with initial wealth at date 1. They first choose

their private signals given their limited capacity to process information at date 1. At date 2, they

decide on the optimal portfolios given the observation of their private signals and the asset price.

At the last date, investors consume the payoff of their portfolios.

There are n risky assets and one riskless asset. The riskless asset pays constant Rf units of

the consumption good at date 3. The n risky assets pay F units of the consumption good at date

3, where F is a random column vector that is normally distributed with mean F and covariance

matrix ΣF (denoted by F ∼ N
(
F ,ΣF

)
). Assume that ΣF is positive definite, denoted by ΣF � 0.3

Following KVV (2016), we may use the risk factor representation F = ΓY, where Y = [Y1, ..., Yn]′

represents a column vector of n independent risk factors, and Γ is invertible and represents factor

loadings. Let P denote the price vector of the n risky assets. To prevent the equilibrium price from

being fully revealing, we introduce noisy asset supply. Suppose that the supply of the risky assets is

given by a random vector Z ∼ N
(
Z,ΣZ

)
, where ΣZ � 0. Assume that Z and F are independent.

2.1 Information Cost

Investors want to acquire information about the risky assets to reduce the uncertainty of their

portfolios. They have a limited capacity to process information about asset payoffs. They observe

the asset prices and use asset prices and acquired signals to reduce payoff uncertainty. Assume that

3The notation A � B means that the matrix A−B is positive semidefinite.
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investor i can choose signals of the following form

Si = CiF + εi, (1)

where Ci is an ns by n matrix, the noise εi ∼ N (0,Σεi) is independent of F and Z, and Σεi � 0.

We call (Ci,Σεi) an information (signal) structure of investor i, which will be chosen endogenously.

Notice that we do not impose any assumption on Ci. In particular, Ci may not be a square matrix

in that ns 6= n. Given F and εi are Gaussian, the signal vector Si is also Gaussian. As is common

in the literature, assume that investors do not process information about the asset supply.

Each investor i faces the following information-processing constraint

H (F )−H (F |Si, P ) ≤ κ, (2)

where κ > 0 is the parameter of the channel capacity, H denotes the Shannon entropy, and H (·|·)
denotes the conditional entropy.

For any n-dimensional multivariate normal random variableX ∼ N
(
X,Σ

)
, its Shannon entropy

is given by

H (X) =
1

2
log ((2πe)n det Σ) ,

where det (Σ) denotes the determinant of Σ. We will show later that the equilibrium price P is

Gaussian and hence F is Gaussian conditional on Si and P. Thus we can simplify the constraint

(2) as

log det (Var (F ))− log det (Var (F |Si, P )) ≤ 2κ, (3)

where Var denotes the variance-covariance operator.

2.2 Decision Problem

Following van Nieuwerburgh and Veldkamp (2009, 2010) and Mondria (2010), assume that each

investor i has the following utility function:

Ui = E
{
− logE

[
exp

(
−Wi

ρ

)
|Si, P

]}
, (4)

where ρ > 0 is the risk tolerance parameter and Wi denotes the final wealth level at date 3. The

parameter 1/ρ represents risk aversion, which also measures the price of risk as in KVV (2016).

Investor i faces the following budget constraint

Wi = RfWi0 +X ′iR
e, (5)

where Re ≡ F − PRf denotes the excess (dollar) return, Wi0 denotes investor i’s initial wealth

level, and Xi denotes the vector of his/her risky asset holdings.
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Each investor i first chooses a signal structure (Ci,Σεi) at date 1 and then chooses a portfolio

demand Xi given the information conveyed by the signal Si and the price vector P at date 2 to

maximize his/her utility in (4) subject to the budget constraint in (5). When solving this problem,

investor i takes the price vector P and other investors’ information structures as given.

2.3 Equilibrium

An asset market equilibrium with rational inattention consists of a price vector P, a signal structure

(Ci,Σεi) , and a portfolio demand Xi, for each investor i ∈ [0, 1] , such that (i) each investor i solves

his/her decision problem in the previous subsection taking the price P and other investors’ signal

structures as given, and (ii) the market clears in that∫ 1

0
Xidi = Z. (6)

3 Model Solution

When the information structure is exogenously given, the model is essentially the same as that of

Admati (1985). Thus we solve our model in two steps. First, we derive equilibrium with a fixed

information structure as in Admati (1985) and the associated utility level of each investor. Second,

we solve for the optimal information structure for each investor to maximize his/her expected utility

taken the other investors’ information structures as given.

3.1 Equilibrium with Fixed Information Structure

Suppose that the information structure (Ci,Σεi) for each i is exogenously given. As in Admati

(1985), we can show that the equilibrium asset price takes the following linear form

P = A0 +A1F −A2Z, (7)

where

A0 =
ρ

Rf

(
ρΣ−1

F + ρΠΣ−1
Z Π + Π

)−1 (
Σ−1
F F + ΠΣ−1

Z Z
)
, (8)

A1 =
1

Rf

(
ρΣ−1

F + ρΠΣ−1
Z Π + Π

)−1 (
Π + ρΠΣ−1

Z Π
)
, (9)

A2 =
1

Rf

(
ρΣ−1

F + ρΠΣ−1
Z Π + Π

)−1 (
I + ρΠΣ−1

Z

)
. (10)

Notice that A2 is invertible and satisfies A−1
2 A1 = Π, where

Π =

∫ 1

0
ρC ′iΣ

−1
εi Cidi, (11)
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and C ′iΣ
−1
εj Ci is called the signal-to-noise ratio (SNR) for investor i in the engineering literature of

information theory. The SNR is a positive semidefinite matrix. The equilibrium price is determined

by the aggregate SNR, but not a particular Ci or Σεi.

Solving for investor i’s optimal portfolio choice yields the familiar mean-variance rule:

Xi = ρ [Var (Re|Si, P )]−1 E [Re|Si, P ] . (12)

Imposing the market-clearing condition in (6), computing the optimal wealth level in (5), and

substituting the resulting expression in (4), we obtain the following result as in Mondria (2010):

Proposition 1 Investor i’s utility for a fixed information structure (Ci,Σεi) for all i ∈ [0, 1] is

given by4

Ui =
Wi0Rf
ρ

− n

2
+

1

2
Tr
(
V −1
i

(
Ve +R

e
R
e′
))

, (13)

where

R
e ≡ E [Re] =

(
ρΣ−1

F + ρΠΣ−1
Z Π + Π

)−1
Z, (14)

Ve ≡ Var (Re) = ΣF +R2
fA1ΣFA

′
1 +R2

fA2ΣZA
′
2 −RfA1ΣF −RfΣFA

′
1, (15)

Vi ≡ Var (Re|Si, P ) =
(
Σ−1
F + ΠΣ−1

Z Π + C ′iΣ
−1
εi Ci

)−1
. (16)

Here R
e

denotes the vector of unconditional expected excess returns, Ve denotes the uncon-

ditional covariance matrix of excess returns., and Vi denotes the conditional covariance matrix of

excess returns given investor i’s information. Proposition 1 gives investor i’s ex ante expected

utility in equilibrium given a fixed information structure.

3.2 Optimal Information Structure

In this subsection we solve for the optimal information structure (Ci,Σεi) for each infinitesimal

investor i. The decision problem is given by

max
Ci,Σεi�0

Ui

subject to (3), where Ui is given in (13) and equations (14), (15), and (16) hold. When solving

this problem, investor i takes the other investors’ information structures as given. In particular, he

takes Π, R
e
, and Ve as given.

Define

Ω = Ve +R
e
R
e′
. (17)

4Notice that Tr(·) denotes the trace operator.
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Since Ve � 0, we have Ω � 0. Define investor i’s precision matrix of the excess return as Ki = V −1
i .

Then we use Proposition 1 to transform his/her information choice problem above into the following

problem

max
Ki

Tr (KiΩ) (18)

subject to

log det (ΣF ) + log det (Ki) ≤ 2κ, (19)

Ki � G, (20)

where we define

G ≡ Σ−1
F + ΠΣ−1

Z Π � 0. (21)

Inequality (19) follows from the information-processing constraint (3) and inequality (20) is the

no-forgetting constraint analogous to that in Sims (2003). The no-forgetting constraint says that

the excess return after acquiring information Si is less uncertain than that without acquiring in-

formation.

We have eliminated the choice of the matrix Ci in the above problem by using matrix inequality

(20) to replace equality (16). After obtaining Ki or Vi = K−1
i , we use (16) to recover the optimal

information structure (Ci,Σεi) :

C ′iΣ
−1
εi Ci = Ki −G. (22)

Notice that the problem in (18) is not a concave optimization problem because the constraint

set in (19) and (20) is not convex as noticed by van Niewerberg and Veldkemp (2010). This is

different from the linear-quadratic-Gaussian framework studied by Sims (2003), Miao (2019), and

Miao, Wu, and Young (2019). In particular, the solution to the problem in (18) may be at the

corner.

Now we solve the problem in (18). Consider the eigen-decomposition:

G
1
2 ΩG

1
2 = UΩdU

′, (23)

where U is an orthorgonal matrix and Ωd is a diagonal matrix Ωd = diag (dj)
n
j=1 with d1 > 0, ...,

and dn > 0 denoting eigenvalues of G
1
2 ΩG

1
2 . Without loss of generality, let d1 = d2 = ... = dm be

the identical largest elements of Ωd.

Define the matrix

K̃i = U ′G−
1
2KiG

− 1
2U.

Then Ki = G
1
2UK̃iU

′G
1
2 . Substituting this equation into (18), (19), and (20), we find that the

problem in (18) becomes

max
K̃

Tr
(
K̃iΩd

)
(24)
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subject to K̃i � I and

log det (ΣF ) + log det (G) + log det
(
K̃i

)
≤ 2κ.

Given the objective function in (24), only diagonal elements of K̃i matters for the optimization.

Thus we can focus only on the diagonal matrix for K̃i. We have the following result:

Proposition 2 Suppose that d1, d2, ..., dm are the m identical largest eigenvalues of the matrix

G
1
2 ΩG

1
2 , where G is given in (21) and 1 ≤ m ≤ n. Suppose that

λ∗ ≡ exp (2κ)

det
(
I + ΣFΠΣ−1

Z Π
) > 1. (25)

If m = 1, then the solution to (24) is unique and given by

K̃i = I + diag (λ∗ − 1, 0, ..., 0) .

If m ≥ 2, then there are multiple solutions to (24) given by

K̃i = I + (λ∗ − 1) v∗v∗′

where v∗ = [a∗1, a
∗
2, ..., a

∗
n]′ is a column vector satisfying

∑m
i=1 (a∗i )

2 = 1 and a∗i = 0 for i > m. The

optimal precision matrix is given by

V −1
i = Ki = G

1
2UK̃iU

′G
1
2 ,

The optimal information structure (Ci,Σεi) satisfies

C ′iΣ
−1
εi Ci = (λ∗ − 1)G

1
2Uv∗v∗′U ′G

1
2 , (26)

and the optimal signal is one-dimensional.

If the largest eigenvalue ofG
1
2 ΩG

1
2 is unique, then let d1 be the unique largest eigenvalue without

loss of generality. Every investor i will allocate all attention to d1 to reduce uncertainty associated

with d1. Moreover, every investor i will not attend to other eigenvalues by setting K̃i` = 1 for

` 6= 1. Thus the diagonal matrix K̃i is the same for every investor i and hence the optimal precision

matrix of the excess return is also the same for every investor i. It follows from (26) that the SNR

C ′iΣ
−1
εi Ci is also the same for every investor i as v∗v∗′ = [1, 0, ..., 0]′ [1, 0, ..., 0] .

Notice that the optimal information structure (Ci,Σεi) is not unique. A particular solution is

given by

Σεi =
(
K̃i1 − 1

)−1
> 0,

and

Ci = [1, 0, ..., 0]1×n U
′G

1
2 .
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Thus Ci is the first principal component of the matrix G
1
2 ΩG

1
2 . For any solution, the optimal

signal is one dimensional. Investor i learns a linear combination of all risky assets in that Ci is a

one-dimensional vector. We can write investor i’s one-dimensional signal as

Si =
n∑
j=1

CijFj + εi,

where Cij and Fj are the jth components of the vectors Ci and F , respectively.

Following Mondria (2010), we can normalize the signal weight on the first risky asset to one by

setting Ci = Ci/Ci1 if Ci1 6= 0. Then the new signal structure is
(
Ci,Σεi

)
, where the noise variance

is given by Σεi = ΣεiC
2
i1. Alternatively, we can normalize Σεi to 1 and let Ci1 > 0.

If G
1
2 ΩG

1
2 has m ≥ 2 identical largest eigenvalues, then the optimal information structure is not

unique even after normalization. The optimal signal is still one dimensional because the dimension

is determined by the rank of v∗v∗′ as shown in (26). Each investor acquires a signal that is a linear

combination of the risky assets, but the normalized signal may not be identical for all investors.

We will show next that this is the source of the existence of an asymmetric equilibrium.

3.3 Equilibrium under Rational Inattention

The existence of an equilibrium under rational inattention depends on the existence of an optimal

information structure (Ci,Σεi) for all i that satisfies equation (26). This is a fixed point problem.

We are unable to prove the existence for the general case.5 Here we provide an algorithm to solve

for an equilibrium. Specifically, let Φi ≡ C ′iΣ
−1
εi Ci denote the SNR for all i ∈ [0, 1] . The algorithm

consists of the following steps:

Step 1. Given a guess for Φi for all i, we can determine Π in equation (11).

Step 2. Solve for A0, A1, and A2 in equations (8), (9), and (10).

Step 3. Solve for R
e
, Ve, Ω, and G using equations (14), (15), (17), and (21).

Step 4. Compute the eigen-decomposition (23) and derive U and Ωd.

Step 5. Derive K̃i and Ki, and use (26) to determine an update of Φi for all i.

Step 6. Iterate the above steps until convergence.

As discussed in the previous subsection, if G
1
2 ΩG

1
2 has a unique largest eigenvalue, then all

investors choose the same information structure up to normalization. In this case, if an equilibrium

exists, then it must be symmetric. If G
1
2 ΩG

1
2 has multiple largest eigenvalues, then different

investors may choose different normalized information structures. Thus an asymmetric equilibrium

may arise. We will focus on symmetric equilibrium in which Ci = C and Σεi = Σε for all i. As

an accuracy check of our solution method, we find that our algorithm delivers almost the same

numerical solutions as those in Mondria (2010), which provides a closed-form solution for the two-

asset case.
5See Mondria (2010) for a proof for the case with two risky assets.
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4 Properties of Equilibrium

In this section we analyze properties of the equilibrium under rational inattention. We will focus

on the unique linear symmetric equilibrium only.

4.1 Asset Returns

Since the random supply vector Z and the market portfolio are not observable, the CAPM is

difficult to test empirically. We thus derive an unconditional CAPM, similar to Andrei, Cujean,

and Wilson (2018). As is well known, it is analytically more convenient to work with the dollar

return instead of the rate of return in the CARA-normal framework because the rate of returns

is not Gaussian. Recall that Re = F − RfP is the vector of excess dollar returns on the n risky

assets. Define R
e
m = Z

′
Re as the excess dollar return on the average market portfolio. We then

obtain the following result.

Proposition 3 In the linear symmetric equilibrium the excess (dollar) return and the average

dollar market return satisfy the following unconditional CAPM:

E [Re] = βmE
[
R̄em
]
, (27)

where

βm =
Cov(Re, R̄em|Si, P )

Var(R̄em|Si, P )
=

Var (Re|Si, P )Z

Z
′
Var (Re|Si, P )Z

.

Notice that in the linear symmetric equilibrium the above expression for the vector βm is

independent of investor i. Computing βm only requires to know the conditional variance of excess

returns Var (Re|Si, P ) for the average investor. If we plot E
[
Rej

]
against βmj for different asset

j, we obtain the security market line (SML). The slope of this line is the market risk premium

E
[
R̄em
]
. The market beta is equal to 1. From an econometrician’s point of view, beta is computed

as the linear regression coefficient of the realized excess return Re on the average market return

R̄em:

β̃m =
Cov

(
Re, R̄em

)
Var

(
R̄em
) .

This vector of betas is different from the true vector of betas βm from the investors’ point of view

in the model. As Andrei, Cujean, and Wilson (2018) point out, there is an information distance

between econometricans and investors because the unconditional covariance matrix of excess returns

satisfies

Var (Re) = Var [E (Re|Si, P )] + E [Var (Re|Si, P )] .

Investors’ betas are computed based on the unexplained component E [Var (Re|Si, P )] = Var (Re|Si, P ) .
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Andrei, Cujean, and Wilson (2018) show that their model delivers a linear relation between

E
[
Rej

]
and β̃mj but the slope is flatter than that of the true SML. The perceived SML rotates

clockwise around the market portfolio, which flattens its slope and creates a positive intercept. We

find that their result does not hold in our model. The main reason is that they assume that there

is only one unobservable common risk factor in asset payoffs and investors receive signals about the

common factor only. By contrast, we assume that investors receive signals about the unobservable

asset payoffs which may contain several risk factors and asset specific idiosyncratic risks. Moreover,

the information structure is endogenous in our model.

Now we use some numerical examples to study the impact of information choice on asset returns.

Consider a factor specification of asset payoffs as in KVV (2016). There are five risky assets in the

market, with asset payoffs given by F = ΓY , where Y represents the risk factors and Γ represents

the risk loadings. Let

Γ =


1 0 0 0 0.1
0 1 0 0 0.2
0 0 1 0 0.3
0 0 0 1 0.4
0 0 0 0 1

 .
As in KVV (2016), we can interpret the last component Y5 of Y as the aggregate risk factor because

all of the risky assets are exposed to Y5. The component Yi represents the idiosyncratic risk for

asset i = 1, 2, 3, 4. Since Γ is invertible, KVV (2016) construct from the original assets a set of

synthetic assets whose payoffs are given by Y = Γ−1F . The resulting payoff covariance matrix is

diagonal. They also assume that the supply of each synthetic assets is independent and then work

on the space of synthetic assets. Our solution method directly works with the original assets.

As baseline values, set the risk tolerance parameter as ρ = 0.25, and the information capacity pa-

rameter as κ = 0.1. The payoffs of synthetic assets are Gaussian with mean [1, 1, 1, 1, 1]′ and covari-

ance matrix diag(0.152, 0.152, 0.152, 0.152, 0.182). The supply of synthetic assets (denoted by ZY ) is

Gaussian with mean [0.15, 0.15, 0.15, 0.15, 0.4]′ and covariance matrix diag(0.12, 0.12, 0.12, 0.12, 0.52).

Following KVV (2016), we deduce that the supply of the original risky assets is given by Z = ΓZY .

Panel A of Figure 1 shows that the observed SML is flatter than the true SML, a result that

is discussed in Andrei, Cujean, and Wilson (2018). If we raise the degree of risk aversion from

1/ρ = 1/0.25 to 1/ρ = 1/0.225, both of the true SML and the observed SML shift up. This is

because investors will demand higher excess returns if they are more risk averse. Panel B of Figure

1 shows the impact when the aggregate volatility is raised from 0.18 to 0.20. In this case, the

market risk premium is higher and both the true SML and the observed SML shift up. This figure

also shows that the observed SML may not be linear.

Figure 2 shows the impact of information capacity on asset returns. We find that an increase in

information capacity κ causes both the true SML and the observed SML to shift down. Intuitively,
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a higher information capacity helps investors to reduce uncertainty through learning. Therefore,

investors demand lower risk premium on risky assets, leading to lower SMLs. Panel B of Figure

2 shows that the observed SML can be steeper than the true SML, unlike the result in Andrei,

Cujean, and Wilson (2018). The parameter values of this panel are the same as the baseline

values except that we set the aggregate volatility as 0.10 and the covariance matrix of ZY as

diag(0.42, 0.32, 0.22, 0.12, 0.52).

4.2 Comovement and Contagion

Since investors optimally acquire a noisy linear combination of asset payoffs as their private signals,

investors are unable to distinguish among various sources of asset payoff shocks when processing

private signals. This generates potential asset price comovement and provides a new channel

of volatility transmission (Mondria, 2010). In this section we use some numerical examples to

illustrate the role of endogenous information choice in generating asset price comovement and

financial contagion.

By (7), we can derive the unconditional expectation of asset prices

E[P ] = A0 +A1F −A2Z. (28)

and the unconditional covariance matrix of asset prices

Var (P ) = A1ΣFA
′
1 +A2ΣZA

′
2. (29)

Following Mondria (2010), we use (29) to derive the unconditional correlation of asset prices to

characterize asset price comovement.

Consider the following three-asset example with the covariance matrix of asset payoffs given by

ΣF =

0.152 0 0
0 0.152 0.152φ
0 0.152φ 0.152

 ,
where φ denotes the payoff correlation between assets 2 and 3, and asset 1’s payoff is independent

of these two assets. Other parameter values are set as κ = 0.1, ρ = 0.25, F = [1, 1, 1, 1, 1]′,

Z = [1/3, 1/3, 1/3]′, and ΣZ = diag(0.102, 0.102, 0.102). We consider two cases with φ = 0.75 and

φ = −0.75.

As shown in Section 3.2, investors choose the same information structure in the unique linear

symmetric equilibrium. The optimal signal structure is a noisy linear combination of the three

assets with the coefficient vector denoted by C = [C1, C2, C3]. We normalize the noise variance Σε

to 1 and let C1 > 0. Since assets 2 and 3 are symmetric ex-ante, they have the same equilibrium

properties. More specifically, investors will allocate the same attention between these two assets, i.e.

C2 = C3. Furthermore, assets 2 and 3 have the same unconditional expected prices, E[P2] = E[P3],

and the same correlation with asset 1, Corr(P1, P2) = Corr(P1, P3).
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Figure 3: Correlation and contagion: transmission of payoff shocks

We study the impact of asset 1’s payoff volatility σF1 on the attention allocation C1 and C2,

the prices of assets 2 and 3, and the correlations of asset prices. We also study the comparative

statics with respect to ρ and κ.

Figure 3 shows that prices of assets 1 and 2 (or 3) are positively correlated when asset 1 is

independent of assets 2 and 3. Mondria (2010) finds this result for the two-asset case. We also

find that prices of assets 2 and 3 are positively correlated even when their payoffs are negatively

correlated. To see the intuition, we first consider the attention allocation described by the endoge-

nous signal structure. We find that investors acquire a one-dimensional signal that is a noisy linear

combination of the three assets with positive coefficients C1 > 0, C2 > 0, and C3 = C2 > 0. Thus,

conditional on the noisy asset supply shock Z, a high realization of the signal could be attributed

to a high payoff realization for any of the three assets, leading to comovement of prices of these

three assets. Since a positive supply shock Z decreases the asset price, it dampens the comovement

effect. If the asset supply effect is weak enough, we will obtain the comovement result. Proposition

5 of Mondria (2010) gives an explicit condition for the two-asset case. Given the complexity of our

three-asset case, we are unable to provide an analogous condition.

Figure 3 also shows that as asset 1’s payoff volatility increases, the correlations become smaller.

This is essentially because higher payoff uncertainty tightens the information-processing constraint

(2) or (19). Due to a smaller information capacity, private signals become less precise. We also
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Figure 4: Correlation and contagion: information capacity κ

find that there exist transmissions of payoff risk. More specifically, when the payoff risk of asset 1

increases, not only the prices of asset 1 but also those of assets 2 and 3 decrease. This is due to

the reallocation of investors’ attention. Intuitively, investors pay more attention to asset 1 relative

to the other two assets when asset 1’s payoff volatility is relatively larger. As a result, the payoff

risks of assets 2 and 3 are perceived to be higher. Higher posterior risks make assets 2 and 3 less

desirable and reduce their prices. This result is analogous to Propositions 7 and 8 of Mondria

(2010) for the two-asset case.

Figure 4 shows the impact of the information capacity κ. We find that asset price correlations

increase with the information capacity κ. As κ increases, private signals become more precise and

eventually become the dominating force, which leads to positive price correlations, even when the

asset payoffs are negatively correlated. Moreover, as investors can process more information, the

posterior variances of asset prices become smaller, leading to higher expected asset prices.

Figure 5 shows the impact of risk aversion. We find that as investors are more risk averse, asset

price correlations are smaller. Intuitively, more risk averse investors will be less responsive to their

private signals when making portfolio choice decisions. This makes asset prices less informative

about future payoffs. Thus the price correlations become weaker. Moreover, since risk premium

increases with risk aversion, expected asset prices decreases with risk aversion. We also find that

asset price correlations are more sensitive to risk aversion if asset payoffs are negatively correlated.
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This is because when payoffs are ex-ante negatively correlated, the asset payoff correlations and

the private signals work towards different directions. With higher risk aversion, private signals are

less important and so asset prices decrease faster due to the negative payoff correlation.

4.3 Portfolio Dispersion

In this section we study our model implications for the dispersion across investor portfolio holdings

and portfolio excess returns. As KVV (2016) show, both portfolio dispersions would fall if in-

vestment strategies were passive during recessions. However, when investors endogenously process

information and actively trade based on that information, the prediction may be different.

We first use equation (12) to derive the equilibrium portfolio strategies.

Proposition 4 In the symmetric linear equilibrium investor i’s holdings of risky assets are given

by

Xi = ρ [Var (Re|Si, P )]−1 [E (F |Si, P )− Em(F )] + Z

= ρC ′Σ−1
ε εi + Z, (30)

where Em(F ) =
∫
E[F |Si, P ]di denotes the market average expectation of the payoff vector.
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As in Biais, Bossaerts, and Spatt (2010), there is a winner’s curse problem for the equilibrium

portfolios: investor i invests more than the market portfolio Z in asset j when his/her expectation

about the payoffs E (F |Si, P ) is greater than the average expectation Em(F ), while he invests less

otherwise. Moreover, investor i’s equilibrium portfolio responds to his/her idiosyncratic signal

noise, conditional on the noisy supply Z.

Equation (30) holds for any fixed information structure (C,Σε). Under rational inattention,

information structure is endogenous in the sense that both C and Σε are endogenously chosen. In

particular, we have shown that the private signal is one dimensional so that εi is a scalar noise. In

response to the signal noise, investor i will adjust holdings of all assets because he may believe the

noise comes from the payoff shock to any asset in his/her portfolio. By contrast, if investors acquire

a separate signal for each asset, i.e., C is an n−dimensional identity matrix, then they would adjust

only one particular asset holdings in response to the signal noise on that asset.

To understand the aggregate implications, we follow KVV (2016) to define the dispersion of

portfolio holdings as ∫
E
[
(Xi − Z)′ (Xi − Z)

]
di, (31)

and define the dispersion of the portfolio excess return as∫
E
[(

(Xi − Z)′Re
)2]

di. (32)

Then we have the following result:

Proposition 5 In the symmetric linear equilibrium, the dispersion of portfolio holdings is given by∫
E
[
(Xi − Z)′ (Xi − Z)

]
di = ρ2Tr(C ′Σ−1

ε C),

and the dispersion of portfolio returns is given by∫
E
[(

(Xi − Z)′Re
)2]

di = ρ2Tr
(
C ′Σ−1

ε CE[ReRe′]
)

= ρTr (ΠΩ) .

This proposition shows that the SNR C ′Σ−1
ε C shows up in both dispersion measures. The

formulas above apply to any fixed information structure. When the information structure is chosen

endogenously, changes in the SNR affect both dispersions. Since we are unable to derive analytical

comparative statics results, we use numerical examples to illustrate the impact of information

capacity κ, risk aversion 1/ρ, and aggregate risk on portfolio dispersion. We still adopt the five-

asset specification as in Section 4.1.

Panels A and B of Figure 6 show that a higher information capacity raises both the portfolio

holdings dispersion and the portfolio return dispersion. Intuitively, a higher information capacity

allows investors to process more precise private signals. Thus investors’ portfolio holdings will be
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Figure 6: The impact of information capacity κ, risk aversion 1/ρ, and aggregate risk on the
portfolio dispersion.

more responsive to private signals, leading to a rise in the dispersion of portfolio holdings, and

hence in the dispersion of portfolio excess returns.

Panels C and D of Figure 6 show that both the portfolio holdings dispersion and the portfolio

return dispersion decrease with risk aversion. Intuitively, if investors are more risk averse, then

their portfolio choices will be less responsive to their private signals. The common prior beliefs and

the public price signal will drive investors to make similar portfolio choices. Hence there will be

less heterogeneity in portfolio holdings. The portfolio return dispersion depends on both portfolio

holdings and risk premium. Higher risk aversion raises risk premium. We find that the effect of

a smaller portfolio holdings dispersion dominates the effect of higher risk premium, causing the

dispersion of portfolio returns to decrease with risk aversion.

This result is qualitatively different from Proposition 4 in KVV (2016), which shows that under

appropriate conditions, higher risk aversion leads to a higher dispersion of portfolio returns. In the

KVV model, the impact of risk aversion on the portfolio return dispersion is mainly driven by the

changes in risk premium. By contrast, our numerical examples show that this effect is dominated.

Finally we study the impact of aggregate risk on portfolio dispersions. All other things being

equal, we increase the aggregate volatility from 0.15 to 0.25. Panels E and F of Figure 6 show

that with higher aggregate risk, the dispersion of portfolio holdings is smaller but the dispersion of
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portfolio excess returns is larger.

To understand this result, we notice that with higher aggregate risk the information-processing

constraint is effectively tighter. Investors have to reduce the precision of private signals to respect

the information-processing constraint. Investors will then be less responsive to their private signals.

Therefore there will be smaller dispersion of portfolio holdings. Moreover, with higher aggregate

risk, investors will demand higher risk premium. The impact of higher risk premium dominates the

impact of lower portfolio holdings dispersion, causing the dispersion of portfolio returns to increase.

This result is in contrast to Proposition 3 in KVV (2016), which shows that under suitable

conditions, an increase in the payoff uncertainty for any risk factors will weakly increase both the

portfolio holdings dispersion and the portfolio return dispersion. Their model differs from ours in

several ways, which will be discussed further in Section 5.3.

5 Extensions and Discussions

In this section we discuss some of our model assumptions and an extension. We first introduce a

fraction of uninformed investors into our model. Next we study a model in which asset prices are

not in the information-processing constraint as in Mondria (2010). Finally we compare with the

model of KVV (2016).

5.1 Uninformed Investors

In the model of Section 2 we have assumed that all investors can process information by acquiring

signals. In this subsection we suppose that a fraction 1− λ ∈ (0, 1) of investors are uninformed in

the sense that they cannot acquire additional signals about asset payoffs. In particular, the signal

precisions of these uninformed investors are given by Σ−1
εi = 0. Both informed and uninformed

investors observe the information in prices, which are public signals.

We focus on the symmetric linear equilibrium in which all informed investors choose the same

information structure (C,Σε) . As discussed in Section 3.1, the equilibrium is still characterized by

(7), (8), (9), (10) and (11), but the expression for Π becomes

Π = λρC ′Σ−1
ε C, (33)

where (C,Σ−1
ε ) is the information structure of the informed investors in a symmetric linear equilib-

rium. The optimal information structure of informed investors is still characterized by proposition

2.

It is interesting to understand whether informed investors outperform the market. Following

KVV (2016), we use the abnormal return E [(Xi − Z)′Re] to measure informed investor i’s perfor-

mance. This abnormal return is equal to informed investor i’s expected portfolio excess return,
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minus the expected market excess return. The following proposition characterizes the abnormal

return.

Proposition 6 In the symmetric linear equilibrium with uninformed investors, we have

E
[
(Xi − Z)′Re

]
=

1− λ
λ

Tr (ΠΩ) ,

for any informed investor i.

Clearly, if there is no uninformed investors in the market (i.e., λ = 1), then all investors are

symmetric and there is no abnormal return. Since we are unable to derive analytical comparative

statics results, we use numerical solutions. We still choose the baseline parameter values given in

Section 4.1. We also set λ = 0.7. Figure 7 presents the results.

We find that the abnormal return increases with the aggregate risk and information capacity κ,

decreases with the fraction λ of informed investors. Moreover, it has a U-shaped relationship with

the risk aversion 1/ρ. The intuition is the following. The abnormal return depends on the combined

effects of an informed investor’s portfolio holdings and the excess returns. An increase in the

aggregate risk raises the risk premium. Moreover, the value of information becomes more important

as payoff uncertainty increases. As a result, informed investors gain more excess returns. Similarly,

with a higher information capacity, informed investors have a larger information advantage over

uninformed investors. Thus, informed investors earn higher abnormal returns. If there are more

informed investors in the market, then there will be fewer uninformed investors from whom informed

investors can make profits. Thus the abnormal return will be lower.

There are two effects of an increase in risk aversion. First, an informed investor’s portfolio

holdings will deviate less from the market portfolio Z in response to shocks. Second, higher risk

aversion raises risk premium. For a low degree of risk aversion, the first effect dominates, but for a

high degree of risk aversion, the second effect dominates. We then obtain the U-shaped relationship.

5.2 Prices Are Not in the Information-Processing Constraint

Mondria (2010) assumes that asset prices are not in an investor’s information set when processing

information. He specifies the following information-processing constraint

H(F )−H(F |Si) ≤ κ for all i.

Mondria (2010) shows that using this constraint and (2) deliver similar results for the two-asset

case. We will show that this is also true for the general multiple-asset case in the model of Section

2.

Using properties of the normal distribution, the above information-processing constraint can be

rewritten as
1

2
log det (ΣF ) +

1

2
log det

(
Σ−1
F + C ′iΣ

−1
εi Ci

)
≤ κ.
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Figure 7: The abnormal return to the informed investors

For any given information structure, the optimal portfolio choice at date 2 is the same as in the

model of Section 2. Then by Proposition 1, investor i chooses a signal structure (Σεi, Ci) to solve

the following problem

max
Σεi�0,Ci

Tr (KiΩ) ,

subject to
1

2
log det (ΣF ) +

1

2
log det (Ki) ≤ κ,

Ki � G,

where the precision matrix is given by

Ki = Σ−1
F + C ′iΣ

−1
εi Ci.

and the matrix G satisfies

G ≡ Σ−1
F � 0. (34)

This problem is the same as that described by (18), (19), (20) and (21), except that G has a

different definition. Thus Proposition 2 still applies. We have verified numerically that the results

in Section 4 also apply.
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5.3 KVV Approach

Van Nieuwerburgh and Veldkamp (2010) and KVV (2016) study models with multiple risky as-

sets under rational inattention by making the signal independence assumption.6 Adapting their

assumption in our model setup of Section 2, we assume that investors process information about

one asset at a time. In particular, in the signal form (1), Ci is constrained to be an n-dimensional

identity matrix, and Σεi is diagonal with jth element K−1
ij ≥ 0.

KVV (2016) also assume that the information-processing constraint is given by

n∑
j=1

Kij ≤ κ. (35)

That is, the sum of signal precisions does not exceed an upper bound. Investor i’s objective is to

choose Ki1, ..., and Kin to maximize Tr
(
Σ−1
εi Ω

)
. Under the above assumptions, we can show that

investors will specialize in learning only one asset (also see KVV (2016)). That is, the signal is

one dimensional and is equal to the payoff of only one asset plus a noise. The specialized asset

corresponds to any largest diagonal element of the matrix Ω in (17). Without loss of generality, let

the first diagonal elemement is the largest. Then Ki1 = κ and Kij = 0 for all j 6= 1.

An implication of the signal independence assumption is that ex ante independent asset remain

ex post independent, as formalized by the following result.

Proposition 7 Suppose that ΣF and ΣZ are diagonal matrices. Suppose that each investor i

acquires a signal Si = F + εi, εi ∼ N (0,Σεi) , where Σεi is diagonal with jth element K−1
ij ≥ 0.

Then Var (P ) is diagonal in equilibrium.

By Proposition 5 and (35), we can show that in a symmetric linear equilibrium the dispersion

of portfolio holdings is given by∫
E
[
(Xi − Z)′ (Xi − Z)

]
di = ρ2Tr(C ′Σ−1

ε C) = ρ2κ,

which is a constant. Here C is an n-dimensional identity matrix. The dispersion of portfolio excess

returns is given by ∫
E
[(

(Xi − Z)′Re
)2]

di = ρTr (ΠΩ) = ρ2κΩkk,

where Ωkk is the largest diagonal element of Ω. In this case the portfolio return dispersion increases

with risk aversion and aggregate risk as in Propositions 3 and 4 of KVV (2016).

The model of KVV (2016) differs from ours in that they consider a risk factor specification of

asset payoffs and assume that investors acquire information about one risk factor at a time. They

also include both informed and uninformed investors. Thus their portfolio dispersion expressions

in their Propositions 3 and 4 are different from our formulas.

6See Peng (2005), Peng and Xiong (2006), and Maćkowiak and Wiederholt (2009) for similar assumptions.
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In Appendix B of KVV (2016), they consider a more general signal form in (1) that allows Ci

and Σεi to be invertible. After transformation, they argue that they can apply the method outlined

above.7 By contrast, our model does not restrict the form of matrix Ci and Σεi and implies that

investors will endogenously choose a signal, which is a noisy linear combination of risky assets,

instead of specializing in a single risky asset or risk factor. In particular, Ci is not a square matrix.

6 Conclusion

We have analyzed a noisy rational expectations equilibrium model with rationally inattentive in-

vestors. We have solved the difficult problem with any finite number of assets with arbitrary

correlation by relaxing the signal independence assumption. Our solution approach is useful to

analyze other finance models with multiple assets. We have also derived some testable predictions

that are different from the existing literature. It would be interesting to test these predictions for

future research.

7In particular, the transformed signal takes the form S̃i = F + ε̃i, where Var (ε̃i) is diagonal and invertible. A
problem of this approach is that the optimal signal precision matrix is not invertible, inconsistent with the invertibility
assumption of Var (ε̃i) .
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7 Proofs

Proof of Proposition 1: The proof essentially follows from Mondria (2010). For completeness,

we sketch the key steps. First, by the projection theorem, we can compute

Vi = Var (Re|Si, P ) = Var (F |Si, P ) =
(
Σ−1
F + ΠΣ−1

Z Π + C ′iΣ
−1
εi Ci

)−1
.

Taking expectations on the two sides of the market-clearing condition yields

Z = E
[∫

Xidi

]
=

(
ρ

∫
V −1
i di

)
E {E [Re|Si, P ]} =

(
ρΣ−1

F + ρΠΣ−1
Z Π + Π

)
R
e

where R
e ≡ E [Re] . Thus we obtain

R
e

=
(
ρΣ−1

F + ρΠΣ−1
Z Π + Π

)−1
Z.

Using the budget constraint, we compute

E [Wi|Si, P ] = Wi0Rf +X ′iE [Re|Si, P ] = Wi0Rf + ρE [Re|Si, P ]′ [Var (Re|Si, P )]−1 E [Re|Si, P ] ,

where we have plugged in the optimal portfolio rule given in (12). Similarly, we compute

Var [Wi|Si, P ] = X ′iVar [Re|Si, P ]Xi = ρ2E [Re|Si, P ]′ [Var (Re|Si, P )]−1 E [Re|Si, P ] .

Thus the initial utility at date zero is given by

Ui =
1

ρ
E
(
E [Wi|Si, P ]− 1

2ρ
Var [Wi|Si, P ]

)
=

Wi0Rf
ρ

+
1

2
E
{
E [Re|Si, P ]′ [Var (Re|Si, P )]−1 E [Re|Si, P ]

}
Notice that E [Re|Si, P ] is normal with mean R

e
= E [Re] and variance Var (E [Re|Si, P ]) . Notice

that

Var (E [Re|Sj , P ]) = Var (Re)−Var (Re|Si, P ) .

Moreover, if x = (x1, ..., xn)′ ∼ N (µ, V ) and q = x′Ax, then E [q] = Tr (AV ) + µ′Aµ. Using the

preceding two formulas, we compute

E
{
E [Re|Si, P ]′ [Var (Re|Si, P )]−1 E [Re|Si, P ]

}
= Tr

(
[Var (Re|Si, P )]−1 Var (E [Re|Si, P ])

)
+R

e′
[Var (Re|Si, P )]−1R

e

= Tr
(

[Var (Re|Si, P )]−1 Var (Re)− I
)

+R
e′

[Var (Re|Si, P )]−1R
e

= Tr
(
V −1
i

(
Ve +R

e
R
e′
))
− n

where we define Vi ≡ Var (Re|Si, P ) and

Ve ≡ Var (Re) = ΣF +R2
fA1ΣFA

′
1 +R2

fA2ΣZA
′
2 −RfA1ΣF −RfΣFA

′
1. (36)

We then obtain the utility value in the proposition. Q.E.D.
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Proof of Proposition 2: Given the discussion in Section 3.2, we only need to study the following

problem:

max
K̃i

Tr
(
K̃iΩd

)
(37)

subject to K̃i � I and

log det (ΣF ) + log det (G) + log det
(
K̃i

)
≤ 2κ. (38)

Since K̃i = U ′G−
1
2KiG

− 1
2U , K̃i is a real symmetric matrix. If K̃i is not a diagonal matrix, we

consider the eigen-decomposition K̃i = Q′ΛQ, where Q is an orthogonal matrix and Λ is a diagonal

matrix whose diagonal elements are the eigenvalues of K̃i, denoted by λ1, λ2, ..., and λn. Since

Tr
(
K̃iΩd

)
= Tr

(
Q′ΛQΩd

)
= Tr

(
ΛQΩdQ

′) ,
K̃i � I ⇐⇒ Q′ΛQ � I ⇐⇒ Λ � QQ′ = I,

log det
(
K̃i

)
= log det

(
Q′ΛQ

)
= log det (Λ) ,

we can rewrite the problem above as

max
Λ,Q

Tr
(
ΛQΩdQ

′) (39)

subject to Λ � I and

log det (ΣF ) + log det (G) + log det (Λ) ≤ 2κ. (40)

Let the diagonal elements of the matrix QΩdQ
′ be ω1, ω2, ..., and ωn. Then the problem in (39)

is equivalent to the following problem:

max
{λi}ni=1,Q

n∑
i=1

λiωi (41)

subject to λi ≥ 1, i = 1, ..., n,

λ1λ2 · · · λn ≤
exp (2κ)

det (ΣFG)
.

Notice that the constraint set is not convex. Thus the solution must be at the corner. Without loss

of generality, suppose that ω1, ..., ω` are the identical maximum among ω1, ω2, ..., and ωn. Then the

solution to problem (41) for any given ω1, ω2, ..., and ωn is not unique and given by

λ∗k =
exp (2κ)

det (ΣFG)
> 1 for 1 ≤ k ≤ ` and λ∗i = 1 for i 6= k. (42)

If ` = 1, the solution is unique with λ∗1 = exp(2κ)
det(ΣFG) and λ∗i = 1 for all i > 1.

Next we solve for Q. Let Λ∗ = diag (λ∗i )
n
i=1 and Q′ = (aij)n×n . Since the jth diagonal element

of the matrix Q′Λ∗Q is
∑n

i=1 λ
∗
i a

2
ji, we can rewrite (41) or (39) as

max
Q

Tr
(
Q′Λ∗QΩd

)
= max

Q
d1

n∑
i=1

λ∗i a
2
1i + d2

n∑
i=1

λ∗i a
2
2i + ...+ dn

n∑
i=1

λ∗i a
2
ni, (43)
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where d1, d2, ..., and dn are the diagonal elements of Ωd. Since Q is an orthogonal matrix, we have∑n
i=1 a

2
ji = 1 for any j = 1, 2..., n. Thus it follows from (42) that

n∑
i=1

λ∗i a
2
ji = λ∗ka

2
jk +

(
1− a2

jk

)
.

The we can derive that

max
Q

Tr
(
Q′Λ∗QΩd

)
= max

Q
d1

(
λ∗ka

2
1k + 1− a2

1k

)
(44)

+d2

(
λ∗ka

2
2k + 1− a2

2k

)
+ ...+ dn

(
λ∗ka

2
nk + 1− a2

nk

)
.

Since Q is an orthogonal matrix, we have

n∑
i=1

a2
ik = 1. (45)

Without loss of generality, let d1, ..., dm be the identical largest eigenvalues of Ωd. Then the problem

in (44) becomes

max
Q

Tr
(
Q′Λ∗QΩd

)
= max

aik
d1

[
λ∗k
(
a2

1k + ...+ a2
mk

)
+m−

(
a2

1k + ...+ a2
mk

)]
(46)

+dm+1

(
λ∗ka

2
m+1,k + 1− a2

m+1,k

)
+ ...+ dn

(
λ∗ka

2
nk + 1− a2

nk

)
subject to (45). Since λ∗k > 1, the solution to the above problem is given by a2

1k + ... + a2
mk = 1

and thus a2
m+1,k = ... = a2

nk = 0. There is no restriction on the other elements of Q except that Q

must be an orthogonal matrix. Thus

d1λ
∗
k + (m− 1) d1 + dm+1 + ...+ dn = max

Q
Tr
(
Q′Λ∗QΩd

)
,

where Q is an orthogonal matrix.

Note that we can show that

K̃i = Q′Λ∗Q = Q′Q+Q′ (Λ∗ − I)Q = I + (λ∗k − 1) vkv
′
k,

where Q = [v1, ..., vn]′ with all vi = [a1i, a2i, ..., ani]
′ being column vectors. Let v∗ = vk. We then

obtain the optimal signal structure stated in the proposition. Moreover, the dimension of the

optimal signal is determined by the rank of K̃i − I or v∗v∗′ by (22) or (26), which is equal to 1.

If m = 1, we have a1k = 1 and ajk = 0 for all j ≥ 1. Then we have K̃i = Q′Λ∗Q =

diag (λ∗k, 1, ..., 1) , where λ∗k is given by (42). The solution for K̃i is unique.

If m ≥ 2, the solution for K̃i is not unique. For example, let Q′ = (aij) be an elementary matrix

where row 1 and row k are switched where 1 ≤ k ≤ `. Then QΩdQ
′ is the same as Ωd except that

the elements dk and d1 are switched. But the largest elements of QΩdQ
′ and Ωd are the same so

that ` = m ≥ 2. We have K̃i = Q′Λ∗Q, which is the same as the diagonal matrix Λ∗ except that

the elements λ∗k and λ∗1 are switched. Notice that a non-diagonal solution K̃i = I + (λ∗k − 1) vkv
′
k

is also possible. Q.E.D.
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Proof of Proposition 3: From the first-order condition for investor i’s optimization problem,

we have

E
[
u′ (Wi)R

e
j |Si, P

]
= 0,

where

u (W ) = − exp

(
−W
ρ

)
.

Using the covariance decomposition yields

E
[
u′ (Wi) |Si, P

]
E
[
Rej |Si, P

]
= −Cov

(
u′ (Wi) , R

e
j |Si, P

)
.

By Stein’s Lemma, we have

E
[
u′ (Wi) |Si, P

]
E
[
Rej |Si, P

]
= −E

[
u′′ (Wi) |Si, P

]
Cov

(
Wi, R

e
j |Si, P

)
.

By the specification of the CARA utility, we have

−E [u′′ (Wi) |Si, P ]

E [u′ (Wi) |Si, P ]
=

1

ρ
.

Thus we obtain

E
[
Rej |Si, P

]
=

1

ρ
Cov

(
Wi, R

e
j |Si, P

)
.

By the budget constraint (5), we have

E
[
Rej |Si, P

]
=

1

ρ
X ′iCov

(
F,Rej |Si, P

)
,

where we have taken X ′i out of the conditional covariance operator as Xi is measurable with respect

the investor i’s information set {Si, P} . Integrating over i yields∫
E
[
Rej |Si, P

]
di =

1

ρ

∫
X ′iCov

(
F,Rej |Si, P

)
di.

Notice that we have

Var(F |Si, P ) = (Σ−1
F + ΠΣ−1

Z Π + C ′iΣ
−1
εi Ci)

−1.

In a symmetric equilibrium C ′iΣ
−1
εi Ci is identical for all investors and thus Var(F |Si, P ) and Cov (F,Rj |Si, P )

are independent of investor i. It follows from the market-clearing condition that∫
E
[
Rej |Si, P

]
di =

1

ρ
Cov (Fj , F |Si, P )Z. (47)

Taking unconditional expectations on the two sides of equation (47) yields

E
[
Rej
]

=
1

ρ
Cov (Fj , F |Si, P )Z. (48)

Using the Gaussian property we rewrite the above equation in the vector form as

E [Re] =
1

ρ
Cov (F −RfP, F −RfP |Si, P )Z =

1

ρ
Var (Re|Si, P )Z. (49)

Pre-multiplying both sides of the equation above by Z
′

yields

E
(
R
e
m

)
= Z

′E (Re) =
1

ρ
Z
′
Var(Re|Si, P )Z.

Combining the above two equations yields (27). Q.E.D.
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Proof of Proposition 4: From investor i’s first-order condition, we have

Xi = ρ [Var (Re|Si, P )]−1 E [Re|Si, P ]

= ρ [Var (Re|Si, P )]−1 [E (F |Si, P )− PRf ] . (50)

From the market-clearing condition, we obtain

PRf =

∫
E(F |Si, P )di− 1

ρ
Var(F |Si, P )Z. (51)

Substituting this equation into (50) shows

Xi = ρ [Var (Re|Si, P )]−1

[
E (F |Si, P )−

∫
E(F |Si, P )di+

1

ρ
Var(F |Si, P )Z

]
= ρ [Var (Re|Si, P )]−1

[
E (F |Si, P )−

∫
E(F |Si, P )di

]
+ Z. (52)

Given that Si, P and F are jointly normal, we know that E(F |Si, P ) has the following representation

E(F |Si, P ) = B0 +B1Si +B2P, (53)

where B0, B1 and B2 are constant matrices. From Admati (1985), we have

B1 = Var(F |Si, P )C ′Σ−1
ε , (54)

in the symmetric linear equilibrium.

Combining (53) and (54) yields

E (F |Si, P )−
∫

E(F |Si, P )di = B1

[
εi −

∫
εidi

]
= Var(F |Si, P )C ′Σ−1

ε εi, (55)

where we have use the fact that the integration of noises is zero.

Substituting the above equation into (52) leads to the desired result. Q.E.D.

Proof of Proposition 5: We focus on the symmetric linear equilibrium in which Ci = C and

Σεi = Σε for all i. To get a more explicit expression of the portfolio holdings dispersion, substituting

(30) into (31) yields∫
E
[
(Xi − Z)′ (Xi − Z)

]
di = ρ2

∫
E
[
ε′iΣ
−1
ε CC ′Σ−1

ε εi
]
di = ρ2Tr(Σ−1

ε CC ′),

where we notice that ε′iΣ
−1
ε CC ′Σ−1

ε εi follows central χ2 distribution. By the cyclic property of

trace, the preceding equation can be rewritten as∫
E
[
(Xi − Z)′ (Xi − Z)

]
di = ρ2Tr(C ′Σ−1

ε C) = ρTr(Π),

which says that the portfolio dispersion is simply the trace of signal-to-noise ratio adjusted by ρ2.

29



For the dispersion of portfolio excess returns, we have

(Xi − Z)′Re = ρε′iΣ
−1
ε CRe.

It follows that∫
E
[(

(Xi − Z)′Re
)2]

di = ρ2

∫
E
[
ε′iΣ
−1
ε CReRe′C ′Σ−1

ε εi
]
di

= ρ2

∫
E
[
E(ε′iΣ

−1
ε CReRe′C ′Σ−1

ε εi|Z,F )
]
di. (56)

Conditional on Z and F , ε′iΣ
−1
ε CReRe′C ′Σ−1

ε εi follows a central χ2 distribution. This implies that

E(ε′iΣ
−1
ε CReRe′C ′Σ−1

ε εi|Z,F ) = Tr
(
Σ−1
ε CReRe′C ′

)
.

Substitution of the preceding equation into (56) shows∫
E
[(

(Xi − Z)′Re
)2]

di = ρ2

∫
E
[
Tr
(
Σ−1
ε CReRe′C ′

)]
di

= ρ2

∫
E
[
Tr
(
C ′Σ−1

ε CReRe′
)]
di.

By the linearity of expectation and trace, we obtain∫
E
[(

(Xi − Z)′Re
)2]

di = ρ2

∫
Tr
(
C ′Σ−1

ε CE
[
ReRe′

])
di

= ρTr

(∫
ρC ′Σ−1

ε CdiE
[
ReRe′

])
= ρTr

(
ΠE[ReRe′]

)
. (57)

Furthermore, we notice that

Ve = Var(Re) = E[ReRe′]− E[Re]E[Re′] = E[ReRe′]−ReRe′.

Replacing E[ReRe′] in (57) yields∫
E
[(

(Xi − Z)′Re
)2]

di = ρTr
(

Π(Ve +R
e
R
e′

)
)

= ρTr (ΠΩ) .

The proof is completed. Q.E.D.

Proof of Proposition 6 We focus on the symmetric linear equilibrium in which all informed

investors choose the same information structure (C,Σε) . We also have Σ−1
εi = 0 for any uninformed

investor i.

Each investor i’s first-order condition implies that

Xi = ρ [Var (Re|Si, P )]−1 E [Re|Si, P ]

= ρ [Var (Re|Si, P )]−1 [E (F |Si, P )− PRf ] .
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From the market-clearing condition, we have

Z =

∫ 1

0
Xidi =

∫ 1

0
ρ [Var (Re|Si, P )]−1 [E (F |Si, P )− PRf ] di. (58)

From Admati (1985), we know

E(F |Si, P ) = B0,i +B1,iSi +B2,iP,

where

B1,i = Var(Re|Si, P )C ′iΣ
−1
εi ,

B2,i = RfVar(Re|Si, P )ΠΣ−1
Z A−1

2 ,

B0,i = Vari(R
e|Si, P )B̃0.

Here Π is defined in (11) and B̃0 is a constant that is independent of investor i. Note that B1,i,

B2,i and B0,i depend on whether investor i is informed or uninformed.

Substituting the above expressions into (58) yields

Z =

∫ 1

0
ρ
[
B̃0 + C ′iΣ

−1
εi Si +RfΠΣ−1

Z A−1
2 P

]
di− ρ

∫ 1

0
[Var(Re|Si, P )]−1 diPRf

=

∫ 1

0
ρ
[
B̃0 + C ′iΣ

−1
εi (CiF + εi) +RfΠΣ−1

Z A−1
2 P

]
di− ρ

∫ 1

0
[Var(Re|Si, P )]−1 diPRf

= ρB̃0 + ΠF + ρRfΠΣ−1
Z A−1

2 P − ρ
∫ 1

0
[Var(Re|Si, P )]−1 diPRf ,

where we notice that the integration of noises is equal to zero.

Similarly, for an informed investor i, we can derive

Xi = ρ(B̃0 + C ′Σ−1
ε Si +RfΠΣ−1

Z A−1
2 P − [Var(Re|Si, P )]−1 PRf ).

Combining the above two equations together yields

Xi − Z =ρ(B̃0 + C ′Σ−1
ε Si +RfΠΣ−1

Z A−1
2 P − [Var (Re|Si, P )]−1 PRf )

−
[
ρB̃0 + ΠF + ρRfΠΣ−1

Z A−1
2 P − ρ

∫ 1

0
[Var(Re|Si, P )]−1 diPRf

]
=(ρC ′Σ−1

ε Si −ΠF )− ρ
(

[Var (Re|Si, P )]−1 −
∫ 1

0
[Var(Re|Si, P )]−1 di

)
PRf

=(ρC ′Σ−1
ε C −Π)F + ρC ′Σ−1

ε εi − ρ
(

[Var (Re|Si, P )]−1 −
∫ 1

0
[Var(Re|Si, P )]−1 di

)
PRf ,

for an informed investor i.

Note that

[Var (Re|Si, P )]−1 = Σ−1
F + ΠΣ−1

Z Π + C ′iΣ
−1
εi Ci,
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where C ′iΣ
−1
εi Ci = C ′Σ−1

ε C if investor i is informed, and C ′iΣ
−1
εi Ci = 0 if investor i is uninformed.

We have

∫ 1

0
[Var(Re|Si, P )]−1 di = Σ−1

F + ΠΣ−1
Z Π + Π/ρ,

where Π is given by (33). Thus we have

[Var (Re|Si, P )]−1 −
∫ 1

0
[Var(Re|Si, P )]−1 di = C ′Σ−1

ε C −Π/ρ.

Substituting the condition above into the expression for Xi − Z gives

Xi − Z = ρ

(
[Vari (Re|Si, P )]−1 −

∫ 1

0
[Vari(R

e|Si, P )]−1 di

)
(F − PRf ) + ρC ′Σ−1

ε εi

= ρ
(
C ′Σ−1

ε C − 1/ρΠ
)

(F − PRf ) + ρC ′Σ−1
ε εi,

for an informed investor i.

As a result, the expected portfolio excess return is given by

E
[
(Xi − Z)′(F − PRf )

]
= E

[
(F − PRf )′(ρC ′Σ−1

ε C −Π)(F − PRf )
]
.

By (33) and a standard result from statistics,8 we have

E
[
(Xi − Z)′(F − PRf )

]
= Tr

[
(ρC ′Σ−1

ε C −Π)Ve
]

+ R̄e′(ρC ′Σ−1
εi C −Π)R̄e

=
1− λ
λ

Tr (ΠVe) +
1− λ
λ

R̄e′ΠR̄e

=
1− λ
λ

Tr (ΠVe) +
1− λ
λ

Tr(R̄e′ΠR̄e)

=
1− λ
λ

Tr (ΠVe) +
1− λ
λ

Tr(ΠR̄eR̄e′)

=
1− λ
λ

Tr
[
Π(Ve + R̄eR̄e′)

]
=

1− λ
λ

Tr [ΠΩ] ,

for an informed investor i, where R̄e and Ve are the ex-ante mean and variance of the asset excess

returns. Q.E.D.

Proof of Proposition 7: Recall that the variance-covariance matrix of asset prices is given by

Var (P ) = A1ΣFA
′
1 +A2ΣZA

′
2,

where A1 and A2 satisfy (9) and (10). Given the signal independence assumption, Π is diagonal.

Since ΣF and ΣZ are diagonal by assumption, A1 and A2 are also diagonal. Thus Var(P ) is also

diagonal. Q.E.D.
8If x ∼ N(µ, V ) and q = x′Ax, then E [q] = Tr(AV ) + µ′Aµ.
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