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a b s t r a c t

Many economic decisions can be described as an option exercise or optimal stopping

problem under uncertainty. Motivated by experimental evidence such as the Ellsberg

Paradox, we follow Knight (1921) and distinguish risk from uncertainty. To capture this

distinction, we adopt the multiple-priors utility model. We show that the impact of

ambiguity on the option exercise decision depends on the relative degrees of ambiguity

about continuation payoffs and termination payoffs. Consequently, ambiguity may

accelerate or delay option exercise. We apply our results to investment and exit problems,

and show that the myopic NPV rule can be optimal for an agent having an extremely high

degree of ambiguity aversion.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Many economic decisions can be described as dynamic discrete choices under uncertainty. Examples are abundant.
An investor may decide whether and when to invest in a project. A firm may decide whether and when to enter or exit an
industry. It may also decide whether and when to default on debt. A worker may decide whether and when to accept a job
offer or quit his job. All these decisions share three characteristics. First, the decision is irreversible to some extent. Second,
there is uncertainty about future rewards. Third, agents have some flexibility in choosing the timing of the decision. These
three characteristics imply that waiting has positive value. Importantly, all the preceding problems can be viewed as a
problem in which an agent decides when to exercise an ‘‘option’’ analogous to an American call option—it has the right but
not the obligation to buy an asset at some future time of its choosing. This real-options approach has been widely applied in
economics and finance (see Dixit and Pindyck, 1994). The aim of this paper is to analyze an option exercise problem where
there is a distinction between risk and uncertainty in the sense often attributed to Knight (1921), and where agents’ attitudes
toward uncertainty play a nontrivial role.

The standard real-options approach to investment under uncertainty can be summarized as ‘‘a theory of optimal inertia.’’
Dixit (1992) argues that ‘‘firms that refuse to invest even when the currently available rates of return are far in excess of the
cost of capital may be optimally waiting to be surer that this state of affairs is not transitory. Likewise, farmers who carry large
losses may be rationally keeping their operation alive on the chance that the future may be brighter.’’
ll rights reserved.
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However, the standard real-options approach rules out the situation where agents are unsure about the likelihoods of
states of the world. It typically adopts strong assumptions about agents’ beliefs. For example, according to the rational
expectations hypothesis, agents know the objective probability law of the state process and their beliefs are identical to this
probability law. Alternatively, according to the Bayesian approach, an agent’s beliefs are represented by a subjective
probability measure or Bayesian prior. There is no meaningful distinction between risk, where probabilities are available to
guide choice, and uncertainty, where information is too imprecise to be summarized adequately by probabilities. By contrast,
Knight (1921) emphasizes this distinction and argues that uncertainty is more common in decision-making settings.
Henceforth, we refer to such uncertainty as Knightian uncertainty or ambiguity. For experimental evidence, the Ellsberg
Paradox suggests that people prefer to act on known rather than unknown or ambiguous probabilities.2 Ellsberg-type
behavior contradicts the Bayesian paradigm, i.e., the existence of a single probability measure underlying choices.

To incorporate Knightian uncertainty or ambiguity, we adopt the recursive multiple-priors utility model developed by
Epstein and Wang (1994). In that model, the agent’s beliefs are represented by a collection of sets of one-step-ahead
conditional probabilities. These sets of one-step-ahead conditionals capture both the degree of ambiguity and ambiguity
aversion.3 The axiomatic foundation for the recursive multiple-priors utility model is laid out by Epstein and Schneider
(2003). Their axiomatization is based on the static multiple-priors utility model proposed by Gilboa and Schmeidler (1989).

We describe an ambiguity averse agent’s option exercise decision as an optimal stopping problem using the Epstein and
Wang (1994) utility model. We then characterize the optimal stopping rules. The standard real-options approach emphasizes
the importance of risk in determining option value and timing of option exercise. An important implication is that an increase
in risk in the sense of mean preserving spread raises option value and delays option exercise. Recognizing the difference
between risk and ambiguity, we conduct comparative statics analysis with respect to the set of one-step-ahead conditionals.

In our model, the agent is ambiguous about a state process which influences the continuation and termination payoffs.
Importantly, we distinguish between two cases according to whether or not the agent is still ambiguous about the
termination payoff after he exercises the option. This distinction is critical since it may generate opposite comparative statics
results. We show that for both cases, ambiguity lowers the option value. Moreover, if there is no uncertainty after option
exercise, a more ambiguity averse agent will exercise the option earlier. However, if he is also ambiguous about termination
payoffs after option exercise, he may exercise the option later.4 This is because ambiguity lowers the termination payoff and
this effect may dominate the decrease in the option value.

We provide two applications – real investment and firm exit – to illustrate our results. The real investment decision is an
example where an agent decides if and when to exercise an option to pursue upside potential gains. Entry and job search are
similar problems. Under a specification of the set of priors, we show explicitly that if the investment project generates a
stream of future uncertain profits and if the agent is ambiguous about these profits, then a more ambiguity averse agent
invests relatively later. By contrast, if the investment payoff is delivered in lump sum and uncertainty is fully resolved upon
the option exercise, then a more ambiguity averse agent makes the investment sooner.

The exit problem represents an example where an agent decides if and when to exercise an option to avoid downside
potential losses. Other examples include default and liquidation decisions. We show that the exit timing depends crucially on
whether the owner of a firm is ambiguous about the outside value. This ambiguity may dominate the effect of ambiguity
about the profit opportunities if stay in business. Consequently, an ambiguity averse owner may be hesitant to exit, even
though it has lower option value. For both investment and exit problems, we solve some examples explicitly under some
specification of the set of priors. We show that the myopic net present value (NPV) rule can be optimal for an agent having an
extremely high degree of ambiguity aversion.

Our paper contributes to the literature on applications of decision theory to macroeconomics and finance surveyed
recently by Backus et al. (2004). The idea of ambiguity aversion and the multiple-priors utility model have been applied to
asset pricing and portfolio choice problems in a number of papers.5 A different approach based on robust control theory is
proposed by Hansen and Sargent and their coauthors.6 They emphasize ‘‘model uncertainty’’ which is also motivated in part
by the Ellsberg Paradox. We refer readers to Epstein and Schneider (2003) for further discussion on these two approaches.

Our paper is related to Nishimura and Ozaki (2004, 2007). Nishimura and Ozaki (2004) apply the Choquet expected utility
model proposed by Schmeidler (1989) to study a job search problem.7 They assume that workers are ambiguous about the
wage offer. They show that ambiguity reduces the reservation wage and speeds up job acceptance. Nishimura and Ozaki
2 One way to describe this paradox (Ellsberg, 1961) is as follows. There are two urns. The first urn contains exactly 50 red and 50 black balls. The second

urn also has 100 balls (either black or red), but the exact numbers of red and black balls are not known. Subjects are offered a bet on drawing a red ball from

the two urns. A majority of subjects choose from the first urn rather than the second. The paradox surfaces after a second bet is offered – a bet on a black ball –

and a majority of subjects still prefers to bet on a ball from the first urn rather than from the second.
3 For a formal definition of ambiguity aversion, see Epstein (1999), Epstein and Zhang (2001), and Ghirardato and Marinacci (2002).
4 Miao and Wang (2007) analyze the effects of risk and risk aversion on investment timing in a continuous time model of irreversible investment under

incomplete markets. They show that whether markets are complete or not after the option is exercised matters for the effects of risk aversion on the timing of

option exercising.
5 See Chen and Epstein (2002), Epstein and Miao (2003), Epstein and Schneider (2006, 2007), Epstein and Wang (1994, 1995), Kogan and Wang (2002),

Miao (2004, 2009), and Routledge and Zin (2009).
6 See, for example, Anderson et al. (2003) and Hansen and Sargent (2001). See Maccheroni et al. (2006) for a related axiomatization.
7 The Choquet expected utility model is another well known model that also addresses ambiguity. It has been applied to study wage contracts by Mukerji

and Tallon (2004). Also see the references therein for other applications.
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(2007) apply the continuous-time multiple-priors utility model developed by Chen and Epstein (2002) to study an
irreversible investment problem. They assume that investors are ambiguous about the investment payoff. They show that
ambiguity delays investment. Our paper reconciles these conflicting results in a general unified framework of the optimal
stopping problem. In particular, both the job search and irreversible investment problems belong to our general ‘‘investment’’
problem analyzed in Section 3.1. The generality of our framework also allows us to address a different type of option exercise
problem such as exit analyzed in Section 3.2. The job search problem in Nishimura and Ozaki (2004) corresponds to our
investment problem with a one-time lump-sum payoff and the irreversible investment problem in Nishimura and Ozaki
(2007) corresponds to our investment problem with a flow payoff. Our Proposition 6 reconciles the conflicting results in the
preceding two papers.

Our paper is also related to Riedel (2009). Riedel (2009) considers a set of time-consistent priors over the full state space as
in Epstein and Schneider (2003) and then extends dynamic programming theory to multiple priors. He studies an optimal
stopping problem similar to our investment problem with a one-time lump-sum payoff. Unlike his approach, we apply the
recursive approach of Epstein and Wang (1994) by specifying sets of one-step-ahead probabilities in an infinite-horizon
Markovian setting. In addition, our framework includes some optimal stopping problems outside the scope of Riedel (2009).

The remainder of this paper proceeds as follows. Section 2 presents the model and results. Section 3 applies the model to
investment and exit problems. Section 4 uses a job matching example based on Jovanovic (1979) to discuss the role of
learning under ambiguity and an alternative smooth ambiguity model of Klibanoff et al. (2005, 2009). Section 5 concludes.
Proofs are relegated to the Appendix.
2. The model

In this section, we first introduce the multiple-priors utility model in Section 2.1. We then present a baseline setup of the
optimal stopping problem in Section 2.2. After that, we present characterization and comparative statics results in Section
2.3. We finally consider extensions in Section 2.4.
2.1. Multiple-priors utility

Before presenting the model, we first provide some background about multiple-priors utility. The static multiple-priors
utility model of Gilboa and Schmeidler (1989) can be described informally as follows. Suppose uncertainty is represented by a
measurable space ðS,F Þ. The decision-maker ranks uncertain prospects or acts, maps from S into an outcome set X . Then, the
multiple-priors utility U(f) of any act f has the functional form:

Uðf Þ ¼min
q2D

Z
uðf Þ dq,

where u : X-R is a von Neumann–Morgenstern utility index and D is a subjective set of probability measures on ðS,F Þ.
Intuitively, the multiplicity of priors models ambiguity about likelihoods of events and the minimum delivers aversion to
such ambiguity. The standard expected utility model is obtained when the set of priors D is a singleton.

The Gilboa and Schmeidler model is generalized to a dynamic setting in discrete time by Epstein and Wang (1994). Their
model can be described briefly as follows. The time t conditional utility from a consumption process c¼ ðctÞtZ1 is defined by
the Bellman equation

VtðcÞ ¼ uðctÞþbmin
q2Pt

Eq
t ½Vtþ1ðcÞ�, ð1Þ

where b 2 ð0,1Þ is the discount factor, Et
q is the conditional expectation operator with respect to measure q, and Pt is a set of

one-step-ahead conditional probabilities, given information available at date t. An important feature of this utility is that it
satisfies dynamic consistency because it is defined recursively in (1). Recently, Epstein and Schneider (2003) provide an
axiomatic foundation for this model. They also develop a reformulation of utility closer to Gilboa and Schmeidler (1989)
where there is a set of priors R over the full state space implied by all histories of events,

VtðcÞ ¼min
q2R

Eq
t

X1
s ¼ t

bs�tuðcsÞ

" #
: ð2Þ

The key to establishing this reformulation is to note that all sets of one-step-ahead conditionals, as one varies over times and
histories, determines a unique set of priorsR over the full state space satisfying the regularity conditions defined in Epstein
and Schneider (2003). Epstein and Schneider (2003) establish that if one defines multiple-priors utility according to (2), an
added restriction onR is needed to ensure dynamic consistency. To avoid this complication, we adopt the Epstein and Wang
model in (1) and specify the sets of one-step-ahead conditionals as a primitive, instead of the set of priors over the full
state space.
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2.2. A baseline setup

Consider an infinite-horizon discrete-time optimal stopping problem. As explained in Dixit and Pindyck (1994), the
optimal stopping problem can be applied to study an agent’s option exercise decision. The agent’s choice is binary. In each
period, he decides whether to stop a process and take a termination payoff, or continue for one more period, and make the
same decision in the future.

Formally, uncertainty is generated by a Markovian state process ðxtÞtZ1 taking values in X ¼ ½a,b� � R. The probability
kernel of ðxtÞtZ1 is given by P : X-MðXÞ, where MðXÞ is the space of probability measures on X endowed with the weak
convergence topology. Continuation at date t generates a payoff pðxtÞ, while stopping at date t yields a payoff OðxtÞ, where p
and O are functions that map X into R. At any time t, after observing xt, the agent decides whether to stop or to continue. This
decision is irreversible in that if the agent chooses to stop, he will not make further choices. In order to focus on the beliefs
instead of tastes, we suppose that the agent is risk neutral and discounts future payoff flows according to b 2 ð0,1Þ.

It is important to point out that, in the preceding setup, if the agent decides to stop, uncertainty is fully resolved. He faces
ambiguity during periods of continuation only. In Section 2.4, we will consider a more general case where there is uncertainty about
the termination payoff and the agent is ambiguous about this payoff. We will show that ambiguity may have different impact on the
agent’s option exercise decision, depending on the relative degrees of ambiguity about different sources of uncertainty.

In standard models, the agent’s preferences are represented by time-additive expected utility. As in the rational
expectations paradigm, P can be interpreted as the objective probability law governing the state process ðxtÞtZ1, and is known
to the agent. The expectation in the utility function is taken with respect to this law. Alternatively, according to the Savage
utility representation theorem, P is a subjective (one-step-ahead) prior and represents the agent’s beliefs. By either approach,
the standard stopping problem can be described by the following Bellman equation:

FðxÞ ¼max OðxÞ,pðxÞþb
Z

FðxuÞPðdxu; xÞ

� �
, ð3Þ

where the value function F can be interpreted as an option value.
To fix ideas, we make the following assumptions. These assumptions are standard in dynamic programming theory (see

Stokey et al., 1989).

Assumption 1. p : X-R is bounded, continuous, and increasing.

Assumption 2. O : X-R is bounded, continuous, and increasing.

Assumption 3. P is increasing and satisfies the Feller property. That is,
R

f ðxuÞPðdxu; xÞ is increasing in x for any increasing
function f and is continuous in x for any bounded and continuous function f.

The following proposition describes the solution to problem (3).

Proposition 1. Let Assumptions1–3 hold. Then there exists a unique bounded, continuous and increasing function F solving the

dynamic programming problem (3). Moreover, if there is a unique threshold value x� 2 X such that

pðxÞþb
Z

FðxuÞPðdxu; xÞ4 ðo ÞOðxÞ for xox� ð4Þ

and

pðxÞþb
Z

FðxuÞPðdxu; xÞo ð4 ÞOðxÞ for x4x�, ð5Þ

then the agent continues (stops) when xox� and stops (continues) when x4x�. Finally, xn is the solution to

pðx�Þþb
Z

FðxuÞPðdxu; x�Þ ¼Oðx�Þ: ð6Þ

This proposition is illustrated in Fig. 1. The threshold value xn partitions the set X into two regions—continuation and
stopping regions.8 The top diagram of Fig. 1 illustrates the situation where

pðxÞþb
Z

FðxuÞPðdxu; xÞ4OðxÞ for xox� ð7Þ

and

pðxÞþb
Z

FðxuÞPðdxu; xÞoOðxÞ for x4x�: ð8Þ

In this case, we say that the continuation payoff curve crosses the termination payoff curve from above. Under this condition,
the agent exercises the option when the process ðxtÞtZ1 first reaches the point xn from below. The continuation region is given
8 For ease of presentation, we do not give primitive assumptions about the structure of these regions. See page 129 in Dixit and Pindyck (1994) for such

an assumption. For the applications below, our assumptions can be easily verified.



Fig. 1. Value functions and exercising thresholds in the standard model. The top diagram illustrates an option exercise problem such as investment.

The bottom diagram illustrates an option exercise problem such as exit.
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by fx 2 X : xox�g and the stopping region is given by fx 2 X : x4x�g. This case describes economic problems such as
investment, where the agent’s payoff increases with the state variable. The bottom diagram of Fig. 1 depicts economic
problems such as disinvestment or firm exit, where the agent’s payoff decreases in the state variable. The interpretation is
similar.

In the above model, a role for Knightian uncertainty is excluded a priori, either because the agent has precise information
about the probability law as in the rational expectations approach or because the Savage axioms imply that the agent is
indifferent to it. To incorporate Knightian uncertainty and uncertainty aversion, we follow the multiple-priors utility
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approach (Gilboa and Schmeidler, 1989; Epstein and Wang, 1994) and assume that beliefs are too vague to be represented by
a single probability measure and are represented instead by a set of probability measures. More formally, we model beliefs by
a probability kernel correspondence P : X4MðXÞ. Given any x 2 X, we think of PðxÞ as the set of conditional probability
measures representing beliefs about the next period’s state. The multi-valued nature of P reflects uncertainty aversion of
preferences.

A larger set P may mean the environment is more ambiguous. It may also mean the agent is more ambiguity averse (see
Epstein, 1999). Thus, for the multiple-priors model, ambiguity and ambiguity aversion are confounded. In this paper, we will
follow the latter interpretation when conducting comparative static analysis. We emphasize also that ambiguity and
ambiguity aversion can be about any moments of the distribution including mean, variance and higher-order moments.

The stopping problem under Knightian uncertainty can be described by the following Bellman equation:

VðxÞ ¼max OðxÞ,pðxÞþb
Z

VðxuÞPðdxu; xÞ

� �
, ð9Þ

where we adopt the notation throughoutZ
f ðxuÞPðdxu; xÞ � min

Q ð�;xÞ2PðxÞ

Z
f ðxuÞQ ðdxu; xÞ, ð10Þ

for any Borel function f : X-R. Note that if P ¼ fPg, then the model reduces to the standard model (3).
To analyze problem (9), the following assumption is adopted.

Assumption 4. The probability kernel correspondence P : X4MðXÞ is nonempty valued, continuous, compact-valued, and
convex-valued, and PðxÞ 2 PðxÞ for any x 2 X. Moreover,

R
f ðxuÞPðdxu; xÞ is increasing in x for any increasing function f : X-R.

This assumption is a generalization of Assumption 3 to correspondence. It ensures that
R

f ðxuÞPðdxu; xÞ is bounded,
continuous, and increasing in x for any bounded, continuous, and increasing function f : X-R. A sufficient condition for the
monotonicity of

R
f ðxuÞPðdxu; �Þ is that given any Q ð�; xÞ 2 PðxÞ,

R
f ðxuÞQ ðdxu; xÞ is increasing in x for any increasing function

f : X-R. Notice that Assumption 4 is quite general in the sense that it captures the fact that ambiguity may vary with the
state. However, in some examples in Section 3, we consider an IID case in order to derive closed form solutions.

2.3. Erosion of option value

We now analyze the implications of ambiguity and ambiguity aversion on the option exercise decision for the preceding
baseline model. We first characterize the solution to problem (9) in the following proposition:

Proposition 2. Let Assumptions1–4 hold. Then there is a unique bounded, continuous, and increasing function V solving the

dynamic programming problem (9). Moreover, if there exists a unique threshold value x�� 2 X such that

pðxÞþb
Z

VðxuÞPðdxu; xÞ4ðoÞOðxÞ for x4x�� ð11Þ

and

pðxÞþb
Z

VðxuÞPðdxu; xÞoð4ÞOðxÞ for xox��, ð12Þ

then the agent stops (continues) when xox�� and continues (stops) when x4x��. Finally, xnn is the solution to

pðx��Þþb
Z

VðxuÞPðdxu; x��Þ ¼Oðx��Þ: ð13Þ

This proposition implies that the agent’s option exercise decision under Knightian uncertainty has similar features to that
in the standard model described in Proposition 1. It is interesting to compare the option value and option exercise time in
these two models.

Proposition 3. Let assumptions in Propositions 1 and 2 hold. Then V rF. Moreover, for both V and F, if the continuation payoff

curves cross the termination payoff curves from above then x��rx�. On the other hand, if the continuation payoff curves cross the

termination payoff curves from below, then x��Zx�.

In the standard model, an expected utility maximizer views the world as purely risky. For the decision problems such as
investment, waiting has value because the agent can avoid the downside risk, while realizing the upside potential. Similarly,
for the decision problems such as exit, waiting has value because the agent hopes there is some chance that the future may be
brighter. Now, if the agent has imprecise knowledge about the likelihoods of the state of the world and hence perceives the
future as ambiguous, then waiting will have less value for an ambiguity averse agent because he acts on the worst scenario.

The threshold value under Knightian uncertainty can be either bigger or smaller than that in the standard model,
depending on the shapes of the continuation and termination payoff curves (see Fig. 2). More specifically, if the continuation
payoff curve crosses the termination payoff curve from above, then the threshold value under Knightian uncertainty is
smaller than that in the standard model. The opposite conclusion can be obtained if the continuation payoff curve crosses the



Fig. 2. Comparison of the standard model and the model under Knightian uncertainty.
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termination payoff curve from below. For both cases, an uncertainty averse agent exercises the option earlier than an agent
with expected utility because the former has less option value.

The following proposition concerns comparative statics.

Proposition 4. Let the assumptions in Proposition 2 hold. Consider two probability kernel correspondences P1 and P2. Let the

corresponding value functions be VP1 and VP2 and the corresponding threshold values be xP1 and xP2 . If P1ðxÞ � P2ðxÞ, then

VP1 ZVP2 . Moreover, if the continuation payoff curves cross the termination payoff curves from above (below), then xP1 Z ðr ÞxP2 .



Fig. 3. Option value and exercising thresholds under Knightian uncertainty for two different sets of priors P1 � P2.
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Recall that the set of priors captures both ambiguity and ambiguity aversion. Holding everything else constant, a larger set
of priors delivers a lower utility to the agent because he is more ambiguity averse. Intuitively, the option value is lower if the
agent is more ambiguity averse. As a result, a more ambiguity averse agent is less willing to hold the option and hence
exercises the option earlier (see Fig. 3). Our interpretation of this proposition is based on the definition of absolute and
comparative ambiguity aversion proposed by Ghirardato and Marinacci (2002).9 Their theory may also provide a behavioral
9 See Epstein (1999) and Epstein and Zhang (2001) for a different definition.
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foundation of the interpretation that the set of priors describes the degree of ambiguity. A similar interpretation is also given
in Nishimura and Ozaki (2004).

2.4. Ambiguity about termination payoffs

So far, we have assumed that once the agent exercises the option, uncertainty is fully resolved, and that the agent bears
ambiguity from waiting only. As will be illustrated in the applications in Section 3, in reality there are many instances in
which there is uncertainty about termination payoffs. We now show that if the agent is ambiguous about termination payoffs,
ambiguity may have a different impact on the agent’s option exercise decision.

To illustrate, we first consider a simple case where the termination payoffOðxtÞ does not depend on the state xt. Suppose it
is a random variable with distribution Q. In addition to ambiguity about the state process ðxtÞtZ1, the agent is also ambiguous
about the termination payoff O. He has a set of priors Q over O. In this case, the agent is ambiguous about two different
sources of uncertainty. Section 3.3 will show that an instance of this case is the exit problem. We now formally replace
Assumption 2 with:

Assumption 5. O is a random variable with distribution Q and Q is weakly compact and contains Q.

The agent’s decision problem can be described by the following Bellman equation:

VðxÞ ¼max min
q2Q

Z
O dq,pðxÞþb

Z
VðxuÞPðdxu; xÞ

� �
: ð14Þ

When Q¼ fQg and P ¼ fPg, the preceding problem reduces to the standard one for an expected utility maximizer.
One can prove a characterization proposition for (14) similar to Proposition 2. In particular, there is a threshold value such

that the agent exercises the option the first time the process ðxtÞtZ1 falls below this value. However, there is no clear-cut result
about comparative statics and the comparison with the standard model as in Propositions 3–4. This is because ambiguity
lowers both the continuation payoff and the termination payoff. The overall impact on the option exercise decision depends
on which effect dominates. If we fix ambiguity about the continuation payoff and consider the impact of ambiguity about the
termination payoff only, we have the following clean comparative statics result analogous to Proposition 4.

Proposition 5. Let Assumptions 1 and 3–5 hold and fix P. Consider two sets of priors Q1 and Q2. Let the corresponding value

functions be VQ1 and VQ2 and the corresponding threshold values be xQ1 and xQ2 . If Q1 � Q2, then VQ1 ZVQ2 and xQ1 ZxQ2 .

This proposition shows that although ambiguity about termination payoffs lowers the option value from continuation, the
agent exercises the option later if he is more ambiguous about the termination payoffs. The intuition is that ambiguity lowers
the termination payoff and this effect dominates.

In the previous case, there is no future uncertainty about termination payoffs. In reality, there are many instances in which
there is ongoing uncertainty about termination payoffs after the agent exercises the option. For example, an agent decides
whether and when to invest in a project which can generate a stream of future uncertain profits. Then the termination payoff
OðxÞ depends on the future uncertainty about the profits generated by the project. To incorporate this case, we assume that
OðxÞ satisfies the following Bellman equation:

OðxÞ ¼FðxÞþb
Z

OðxuÞPðdxu; xÞ, ð15Þ

where the period payoff F : X-R is an increasing and continuous function. Note that by the Blackwell Theorem, there is a
unique bounded and continuous function O satisfying (15). In the standard model with expected utility, we have

OðxÞ ¼FðxÞþb
Z

OðxuÞPðdxu; xÞ: ð16Þ

That is, OðxÞ is equal to the expected discounted payoffs,

OðxÞ ¼ E
X1
t ¼ 0

btFðxtÞ

�����x0 ¼ x

" #
: ð17Þ

When OðxÞ is given by (15), the agent’s decision problem is still described by the dynamic programming equation (4).
Again, we can show that ambiguity lowers the option value V(x). However, since ambiguity about the state process ðxtÞtZ0

lowers both the option value and the termination payoff, there is no general comparative statics result about the option
exercise timing. We will illustrate this point in the next section.

3. Applications

This section applies our results to two classes of problems: real investment and firm exit. The real investment decision is
an example where an agent decides whether or not to exercise an option to pursue upside potential. The exit problem
represents an example where an agent decides whether or not to exercise an option to avoid downside loss.
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3.1. Investment

A classic application of the option exercise problem is the irreversible investment decision.10 The standard real-options
approach makes the analogy of investment to the exercising of an American call option on the underlying project.11 Formally,
consider an investment opportunity which generates stochastic values given by a Markov process ðxtÞtZ1. Investment costs
I40. Then we can cast the investment problem into our framework by setting

OðxÞ ¼ x�I, ð18Þ

pðxÞ ¼ 0: ð19Þ

We can also write the agent’s investment decision problem as follows:

VðxÞ ¼max x�I,b
Z

VðxuÞPðdxu; xÞ

� �
: ð20Þ

Note that, according to this setup, once the investor makes the investment, he obtains net rewards x� I and uncertainty is fully
resolved. In reality, it is often the case that investment rewards come from the uncertain future. For example, after the
investor invests in a project or develops a new product, the project can generate a stream of future uncertain profits. The
investor may be ambiguous about future profit flows. To incorporate this case, we presume that the period t profit is given by
xt. Then the discounted total project value at date t is given by

OðxtÞ ¼ xtþb
Z

OðxuÞPðdxu; xtÞ, ð21Þ

and the investor’s decision problem is formulated as

VðxÞ ¼max OðxÞ�I,b
Z

VðxuÞPðdxu; xÞ

� �
: ð22Þ

The standard real-options model predicts that there is an option value of waiting, because investment is irreversible and
flexibility in timing has value. Another main prediction of the standard real investment model is that an increase in risk in the
sense of mean-preserving spread raises the option value and delays investment (see Dixit and Pindyck, 1994). This derives
from the fundamental insight behind the option pricing theory, in that firms may capture the upside gains and minimizes the
downside loss by waiting for the risk of project value to be partially resolved.

While the standard real-options model predicts a monotonic relationship between investment and risk, our model makes
an important distinction between risk and uncertainty. We argue that risk (which can be described by a single probability
measure) and uncertainty (multiplicity of priors) have different effects on investment timing. Specifically, our model predicts
that Knightian uncertainty lowers the option value of waiting (see Fig. 4). Moreover, under formulation (20), Propositions 3–4
imply that an increase in ambiguity pulls the investment trigger earlier and hence speeds up investment. These propositions
also imply that the more ambiguity averse the investor is, the earlier he makes the investment.

As pointed in Section 2.4, this conclusion is not generally true if there is ongoing uncertainty about the termination payoff.
For the investment problem under the formulation in (21)–(22), the investor may be ambiguous about the future profit
opportunities of the investment project. He may well hesitate to invest.

We now consider a concrete parametric example to illustrate the above analysis. Recall X=[a,b]. Following Epstein and
Wang (1994), we consider an IID e�contamination specification of the set of one-step-ahead priors. That is, let

PðxÞ ¼ fð1�eÞmþem : m 2MðXÞg for all x, ð23Þ

where e 2 ½0,1� andm is any distribution over X. The interpretation is the following:m represents the ‘‘true’’ distribution of the
reward. The investor does not know this distribution precisely. With probability e, he believes that the reward may be
distributed according to some other distribution. Here emay represent the degree of ambiguity and ambiguity aversion. This
can be justified by observing that, if e is larger, the setPðxÞ is larger in the sense of set inclusion. When e¼ 0,PðxÞ ¼ fmg and the
model reduces to the standard one with expected utility. When e¼ 1, the investor is completely ignorant about the ‘‘true’’
distribution. The following proposition characterizes the optimal investment trigger.
10 See Bernanke (1983), Brennan and Schwartz (1985), and McDonald and Siegel (1986) for important early contributions. See Dixit and Pindyck (1994)

for a textbook treatment.
11 We emphasize that there is an important distinction between financial options and real options. The standard method of solving financial option

problems is to assume that there exist spanning assets so that the complete markets contingent claims analysis can be applied. The real-options literature

sometimes adopts the same spanning assumption and then use the financial option pricing technique. However, unlike financial options, real options and the

underlying investment opportunities are often not traded in the market. We thus assume there is no spanning asset and instead follow Dixit and Pindyck

(1994) by solving the agent’s dynamic programming problem. Unlike the complete-markets financial options analysis, in the latter real-options approach (as

in Dixit and Pindyck, 1994), the mean of asset payoffs matters for the real option exercise under incomplete markets. Miao and Wang (2007) further extend

the real-options analysis to explicitly allow for non-spanned risk under incomplete markets and risk-averse decision makers.



Fig. 4. Investment timing under Knightian uncertainty and in the standard model. The upper (dashed) curve corresponds to the value function F(x) in the

standard model. The lower (solid) curve corresponds to the value function V(x) under Knightian uncertainty.
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Proposition 6. Assume (23). (i) For problem (20), the investment threshold xn satisfies the equation12

x��I¼
bð1�eÞ

1�b

Z b

x�
ðx�x�Þ dm: ð24Þ

Moreover, xn decreases in e. (ii) For problem (22), the investment threshold xn satisfies the equation

x�þ
b

1�b
ðð1�eÞEm½x�þeaÞ�I¼

bð1�eÞ
1�b

Z b

x�
ðx�x�Þ dm: ð25Þ

Moreover, xn increases in e.

The interpretation of (24) is the following. The left-hand side of (24) represents the net benefit from investment. The right-
hand side represents the opportunity cost of waiting. Because waiting has positive option value, the investment threshold
exceeds the investment cost I. Eq. (24) states that at the investment threshold, the investor is indifferent between investing
and waiting. It is also clear from (24) that because ambiguity lowers the option value, the right-hand side of (24) is less than
that in the standard model with e¼ 0. Moreover, an increase in e lowers the investment threshold. Thus, an increase in
ambiguity speeds up investment and a more ambiguity averse investor invests relatively earlier.

The interpretation of (25) is similar. The difference is that there is future uncertainty about profit opportunities of the
investment project. Under the e�contamination specification in (23), using (21) one can verify that the value of the
investment project is given by

OðxÞ ¼ xþ
b

1�b
ðð1�eÞEm½x�þeaÞ: ð26Þ

When e is increased, ambiguity lowers both the project value represented by the left-hand side of (25) and the option value
from waiting represented by the right-hand side of (25). Proposition 6 demonstrates that the former effect dominates so that
the investor delays the investment.

It is interesting to note that when e approaches 1, the investor has no idea about the true distribution of the profit.
Ambiguity erodes away completely the option value from waiting. Specifically, for problem (20) in which there is no
ambiguity about termination payoff, the investment threshold becomes xn= I. For problem (22) in which there is ambiguity
about both termination and continuation payoffs, the investment threshold satisfies x�þb=ð1�bÞa¼ I. Note that for both
12 We have implicitly assumed that there are parameter values such that there exists an interior solution. We will not state such an assumption explicitly

both in this proposition and in Proposition 7.



Fig. 5. Firm exit under different degrees of Knightian uncertainty. The upper (dashed) curve corresponds to the value function VP1 ðxÞ and the lower (solid)

curve corresponds to the value function VP2 ðxÞ where P1 � P2.
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problems, the investor adopts the myopic NPV investment rule. Further, if the investor is also ambiguous about the future
profits from the project after investment, the investor computes the NPV of the project according to the worst-case scenario,
in which he believes that the cash flow in each period in the future takes the minimum value a.

3.2. Exit

Exit is an important problem in industrial organization and macroeconomics.13 We may describe a stylized exit model as
follows. Consider a firm in an industry. The process ðxtÞtZ1 could be interpreted as a demand shock or a productivity shock.
Staying in business at date t generates profits PðxtÞ and incurs a fixed cost cf 40. The owner/manager may decide to exit and
seek outside opportunities. Let the outside opportunity value be a constant g40. Then the problem fits into our framework by
setting

OðxÞ ¼ g, ð27Þ

pðxÞ ¼PðxÞ�cf , ð28Þ

where we assume Pð�Þ is increasing and continuous.
According to the standard real-options approach, the exit trigger is lower than that predicted by the textbook Marshallian

net present value principle. This implies that firms stay in business for a long period of time while absorbing operating losses.
Only when the upside potential gain is low enough, will the firm not absorb losses and abandon operation. The standard real-
options approach also predicts that an increase in risk in the sense of mean preserving spread raises the option value, and
hence lowers the exit trigger. This implies that firms should stay in business longer in riskier situations, even though they
suffer substantial losses. However, this prediction seems to be inconsistent with the large amount of quick exit in the IT
industry in recent years.

The Knightian uncertainty theory may shed light on this issue. In recent years, due to economic recessions, firms are more
ambiguous about the industry demand and their productivity. They are less sure about the likelihoods of when the economy
will recover. Intuitively, the set of probability measures that firms may conceive is larger in recessions. Thus, by Proposition 4,
the option value of the firm is lower and the exit trigger is higher. This induces firms to exit earlier (see Fig. 5).

The previous argument relies crucially on the fact that the outside value g is a constant. In reality, there may be uncertainty
about the outside value. For example, the outside value could represent the scrapping value of the firm and the firm is
uncertain about its market value. The outside value could also represent the profit opportunity of a new business and the firm
13 See Hopenhayn (1992) for an industry equilibrium model of entry and exit.
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is uncertain about this opportunity. Proposition 5 shows that, ceteris paribus, if the owner/manager is more ambiguous about
the outside value, he will be more hesitant to exit. Thus, the overall effect of ambiguity on the exit timing depends on the
relative degrees of ambiguity about different sources.

To illustrate, we consider a parametric example. We simply take PðxÞ ¼ x 2 X ¼ ½a,b�. We still adopt the IID
e�contamination specification (23) for the process ðxtÞtZ0. When the outside value g is a constant, the owner’s decision
problem is described by the following Bellman equation:

VðxÞ ¼max g,x�cf þb
Z b

a
VðxuÞPðdxu; xÞ

( )
: ð29Þ

When the owner/manager is also ambiguous about the outside value, we adopt the following Z�contamination specification
for the outside value g 2 ½g,g�,

Q¼ fð1�ZÞnþZm : m 2Mð½g,g�Þg, Z 2 ½0,1�, ð30Þ

where n is a distribution over ½g,g� and may represent the ‘‘true’’ distribution of g. The interpretation is that the owner/
manager is not sure about the true distribution of the outside value and believes other distributions are possible with
probability Z. Note that Z can be interpreted as a parameter measuring the degree of ambiguity and ambiguity aversion about
the outside value. In this case, the owner/manager’s decision problem is described by the following Bellman equation:

VðxÞ ¼max min
q2Q

Z g

g
g dq,x�cf þb

Z b

a
VðxuÞPðdxu; xÞ

( )
: ð31Þ

The following proposition characterizes the solutions to problems (29) and (31).

Proposition 7. Assume (23) and (30). (i) For problem (29), the exit threshold xn satisfies the equation

ð1�bÞg¼ x��cf þbð1�eÞ
Z b

x�
ðx�x�Þ dm: ð32Þ

Moreover, xn increases in e. (ii) For problem (31), the exit threshold xn satisfies the equation

ð1�bÞðð1�ZÞEn½g�þZgÞ ¼ x��cf þbð1�eÞ
Z b

x�
ðx�x�Þ dm: ð33Þ

Moreover, xn increases in e and decreases in Z.

The interpretation of (32) is the following. The left-hand side of (32) represents the per period outside value if the firm
chooses to exit. The right-hand side represents the payoff if the firm chooses to stay. In particular, the first term represents the
immediate profits and the second term represents the option value of waiting. At the exit threshold value, the owner/
manager is indifferent between exit and stay. From (32), the impact of ambiguity is transparent. An increase in e lowers the
option value of stay in business by raising the exit threshold. Hence, the firm exits earlier.

The interpretation of (33) is similar. Note that, as one fixes e and increases Z, the outside value and the exit trigger are
reduced. Thus, ceteris paribus, ambiguity about the outside value delays exit. If the owner/manager is more ambiguous about
the outside value, it exits later. If one increases both e and Z, either effects may dominate and the overall effect on the exit
timing depends on the relative degrees of ambiguity about these two sources of uncertainty.

Note that as in the investment problem, when e is equal to 1, the option value of waiting to exit is equal to zero. Thus, the
owner/manager just follows the simple myopic NPV rule, by using the worst-case scenario belief.

4. Discussions

Our analysis has two major limitations. First, Assumption 4 rules out the situation where ambiguity arises because the
agent does not know something about the structure of payoffs. In Section 4.1, we relax this assumption. We adopt the learning
model of Epstein and Schneider (2007) and derive the set of one-step-ahead conditionalsPt from the agent’s learning process.
We focus on the questions as to how Pt evolves over time and what is the impact of ambiguity on option exercise in the
long run.

The second limitation concerns the interpretation of our comparative statics results. We interpret an increase in the set of
priors as either an increase in ambiguity aversion or an increase in the degree of ambiguity. This interpretation confounds
ambiguity and ambiguity attitude. This limitation is inherent in the multiple-priors utility model and many other models of
ambiguity such as the Choquet expected utility model of Schmeidler (1989) and the variational utility model of Maccheroni
et al. (2006). In Section 4.2, we discuss a recent smooth ambiguity model of Klibanoff et al. (2005, 2009) which allows a
separation between ambiguity and ambiguity attitude.14
14 The a�maxmin model of Ghirardato et al. (2004) and the neo-additive capacity model of Chateauneuf et al. (2007) also permit a limited separation.
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4.1. Learning under ambiguity

Instead of considering a general setup as in Section 2, we use an example to illustrate the impact of learning on option
exercise under ambiguity. The example is based on the job matching/quit model described in Section 10.10 in Stokey et al.
(1989), which is a simplified discrete-time version of Jovanovic (1979). In each period, the risk–neutral worker may either
continue with his current job match or quit the job and immediately obtain a constant one-time payment g (outside option
value). If he stays with his current job match, in each period, the match generates output that is either one with probability y
or zero with probability ð1�yÞ. Let S={0,1} denote the state space and let state s 2 S denote the realized output: st=1 for one
and st=0 for no output in period t. At time t, the worker’s information consists of history st=(s1,s2,y,st). This payoff is
identically and independently distributed. The probability y is constant but unknown. Based on past information about
success, he may learn about the value of match productivity y. The worker is infinitely lived and discounts future payoffs
using the discount factor 0obo1.

We first consider the Bayesian learning case. Let pt be the period-t conditional expected value of st +1 given information st,
i.e. pt ¼ Etðstþ1Þ ¼ EtðyÞ for tZ1. Assume that the prior distribution p0 follows a uniform distribution. Then, we have the
following Bayesian belief updating rule:

ptþ1 ¼
ðtþ2Þptþstþ1

tþ3
, tZ0: ð34Þ

Using (34) recursively, it is immediate to obtain ðtþ3Þptþ1 ¼ 2p0þ
Ptþ1

j ¼ 1 sj. Let ftþ1 denote the empirical frequency:
ftþ1 ¼

Ptþ1
j ¼ 1 sj=ðtþ1Þ. Therefore, in the long run, the posterior probability of success is given by the empirical frequency of

success, i.e. pt+ 1 converges to f1 as t-1 almost surely.
Next, we formulate a Bayesian worker’s stationary dynamic programming problem as follows:

VðftÞ ¼maxfg,JðftÞg, ð35Þ

where

JðftÞ ¼ ptþb ptV
tftþ1

tþ1

� �
þð1�ptÞV

tft

tþ1

� �� �
: ð36Þ

In the long run, the rule for job quit is given by a threshold policy with a cutoff level pn, which solves g¼ p�þbg. That is,
p� ¼ ð1�bÞg. If the empirical frequency of success f is less than the cutoff value p� ¼ ð1�bÞg, then the worker quits his job.
Otherwise, he stays on the job.

We now turn to our model with ambiguity. Unlike the Bayesian learning model, the worker may lack confidence in his
initial information about the environment. That is, he may not have a unique prior distribution over parameter values. In
addition, the worker may be ambiguous about signals of payoffs given a parameter value. That is, he is unsure about how
parameters are reflected in data. Thus, he considers that multiple likelihoods are possible.

To capture such learning under ambiguity, we adopt the learning model of Epstein and Schneider (2007). The Epstein and
Schneider (2007) model is summarized by the tuple ðY,M0,L,aÞ where Y is the space of parameter y,M0 is a set of prior
probability measures on Y, L is a set of likelihoods, and a 2 ð0,1� describes the speed of learning. Define a theory as a pair
ðm0,‘tÞ, where m0 2 L and ‘t ¼ ð‘1, . . . ,‘tÞ 2 Lt is a sequence of likelihoods. Let mtð�; s

t ,m0,‘tÞ denote the posterior derived from
the theory ðm0,‘tÞ by Bayes’ Rule, given the history st. This posterior can be computed recursively as follows:

dmtð�; s
t ,m0,‘tÞ ¼

‘tðstj�Þ dmt�1ð�; s
t�1,m0,‘t�1ÞR

Y‘tðstjyÞ dmt�1ðy; st�1,m0,‘t�1Þ
: ð37Þ

The set of posteriors contains posteriors that are based on theories not rejected by a likelihood ratio test:

Ma
t ðs

tÞ ¼ mtð�; s
t ,m0,‘tÞ : m0 2M0,‘t 2 Lt ,

Z
Pt

j ¼ 1‘ðsjjyÞ dm0ðyÞZa max
~m02M0 , ~‘

t
2Lt

Z
Pt

j ¼ 1
~‘ðsjjyÞd ~m0ðyÞ

( )
: ð38Þ

The set of one-step-conditional beliefs is defined by

Ptðs
tÞ ¼ ptð�Þ ¼

Z
‘ð�jyÞ dmtðyÞ : mt 2Ma

t ðs
tÞ,‘ 2 L

� �
: ð39Þ

Our specification is as follows. The worker perceives the success probability as ðyþltÞ, where y 2 ½0,1� is fixed and can be
learned, while lt is driven by many poorly understood factors and can never be learned. We assume that lt 2 ½�l,l� where
l 2 ð0,1=2Þ, and flt : tZ1g is i.i.d. We setY� ½l,1�l�. The set of priorsM0 onY consists of all Dirac measures. For simplicity,
we use y 2M0 to denote a Dirac measure on y 2 Y. The set L consists of all ‘ð�jyÞ such that

‘ðs¼ 1jyÞ ¼ yþl for jljrl: ð40Þ

The Dirac measure specification of the set of priors implies that the posterior setMa
t ðs

tÞ also consists of Dirac measures, to
which we turn next.



J. Miao, N. Wang / Journal of Economic Dynamics & Control 35 (2011) 442–461456
Let lt denote ðl1, . . . ,ltÞ. The likelihood of a sample st under some theory, here identified with a pair ðy,lt
Þ, is given by

Lðst ,y,lt
Þ ¼Pt

j ¼ 1ðyþljÞ
sj ð1�y�ljÞ

1�sj : ð41Þ

For fixed y, the theory that maximizes this likelihood is given by l�j ¼ l if sj=1, andl�j ¼�l if sj=0. By (38), the posterior set can
be written as

Ma
t ¼ y :

1

t
logLðst ,y,l�tÞZmax

~y2Y

1

t
logLðst , ~y,l�tÞþ

1

t
loga

� �
: ð42Þ

Using the empirical frequency of success ft �
Pt

i ¼ 1 si=t, we can derive

1

t
logLðst ,y,l�tÞ ¼ f ðy;ftÞ �ftlogðyþlÞþð1�ftÞlogð1�yþlÞ: ð43Þ

Thus, ft is sufficient to summarize the history st. It follows that the likelihood ratio criterion in (42) becomes

f ðy;ftÞZmax
~y2Y

f ð ~y;ftÞþ
1

t
loga: ð44Þ

We can easily show that the function f is strictly concave and achieves a unique maximum at the value y�ðftÞ in Y defined by

y�ðftÞ ¼

l if ft o
2l

1þ2l
,

ftþlð2ft�1Þ if ft 2
2l

1þ2l
,

1

1þ2l

" #
,

1�l if ft 4
1

1þ2l
:

8>>>>>>>>><
>>>>>>>>>:

ð45Þ

Let y2ðftÞ4y1ðftÞ be the two values such that Eq. (44) holds with equality. Let yðftÞ4yðftÞ be the two values such that
½yðftÞ,yðftÞ� ¼Y \ ½y1ðftÞ,y2ðftÞ�. Then the set of posteriors consists of Dirac measures over values in the interval is
½yðftÞ,yðftÞ�. Finally, consider the set of one-step-ahead conditionalsPt . By (39) and (40), we can show that this set consists of
all probability measures with conditional probability of st +1=1 given in the interval ½p

t
ðftÞ,ptðftÞ�, where

p
t
ðftÞ ¼ yðftÞ�l, ptðftÞ ¼ yðftÞþl: ð46Þ

We may simply write

PtðftÞ ¼ ½pt
ðftÞ,ptðftÞ�: ð47Þ

We now formulate an ambiguity averse worker’s dynamic programming problem as follows:

VtðftÞ ¼maxfg,JtðftÞg, ð48Þ

where

JtðftÞ ¼ min
pt2Pt ðft Þ

ptþb ptVtþ1
tftþ1

tþ1

� �
þð1�ptÞVtþ1

tft

tþ1

� �� �
: ð49Þ

Here VtðftÞ is the worker’s value function. From the preceding equation, we can see that the one-step-ahead conditional
probability pt of st + 1=1 also represents the conditional expected return on the task at time (t+1). Thus, we may interpret the
multiplicity of PtðftÞ as ambiguity about the task return.

We are particularly interested in the long-run impact of ambiguity on option exercise. One may conjecture that ambiguity
may disappear in the long run due to learning. This situation does not happen in our model. The following proposition
characterizes the long-run behavior.

Proposition 8. Suppose limt-1ft ¼f and 0ogo1=ð1�bÞ.15 Then in the long run as t-1, (i) every sequence of posteriors from

the setMa
t converges to the Dirac measure on y�ðfÞwhere y�ð�Þ is given by (45); (ii) the set of one-step-ahead beliefs converges to

½y�ðfÞ�l,y�ðfÞþl�; and (iii) the value function converges to

VðfÞ �
g if y�ðfÞogð1�bÞþl,

y�ðfÞ�l
1�b

if y�ðfÞZgð1�bÞþl:

8><
>: ð50Þ

Part (i) of Proposition 8 shows that the posterior set shrinks to a singleton y�ðfÞ in the long run. From Eq. (45), we deduce
that this singleton y�ðfÞ is generally different from the long-run empirical frequency f, in contrast to the Bayesian model. In
particular, for ft in the intermediate region, i.e. 2l=ð1þ2lÞrft r1=ð1þ2lÞ, Eq. (45) shows that y�ðftÞ ¼ftþlð2ft�1Þ. In
the limit, y�ðfÞ is not equal to f unless f¼ 1=2. Only when f¼ 1=2, the posterior converges to the truth in that y�ðfÞ ¼f.
15 The latter assumption ensures that neither immediate quiting nor never quiting is optimal in the standard Bayesian model.
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Importantly, Part (ii) of Proposition 8 shows that ambiguity persists in the long run because the set of one-step-ahead
beliefs does not converge to a singleton. Instead, it converges to an interval with width 2l. This also implies that the worker
perceives that the long-run expected task return lies in an interval with width 2l.

Finally, we explain the intuition for Part (iii) of Proposition 8 as follows. Using Eqs. (48) and (49), we deduce that the
Bellman equation in the long run limit satisfies

VðfÞ ¼max g, min
p2PðfÞ

pþbVðfÞ
� �

: ð51Þ

Thus, the cutoff value in the long-run limit satisfies g¼minp2PðfÞpþbg. Note that minp2PðfÞp¼ y�ðfÞ�l by Parts (i)–(ii) of
Proposition 8. Combing these two facts, we obtain the cutoff rule expressed in y�ðfÞ in Part (iii). the worker quits his job if and
only if y�ðfÞrlþgð1�bÞ. Since this cutoff value lþgð1�bÞ is higher than the Bayesian cutoff value p� ¼ gð1�bÞ by l, the
ambiguity averse worker is more likely to quit the job than the Bayesian worker even in the long run. Even in the long run,
ambiguity persists, the ambiguity averse worker undervalues the expected payoff on the job and hence prefers to quit sooner.
The intuition for this result is similar to what we described earlier.

4.2. An alternative model of ambiguity

Most dynamic ambiguity models extend the multiple-priors utility model of Gilboa and Schmeidler (1989) and the
Choquet expected utility model of Schmeidler (1989). Our paper follows one of such models proposed by Epstein and Wang
(1994) and Epstein and Schneider (2003). All these models suffer from the limitation that ambiguity and ambiguity attitude
are confounded. Recently, Klibanoff et al. (2005, 2009) propose a smooth ambiguity model that allows a separation between
these two distinct concepts, which is analogous to the separation between risk and risk attitude. In this model, an agent’s
preferences can be represented by the following recursive utility:

Utðc; s
tÞ ¼ uðcðstÞÞþbv�1

Z
Y

v

Z
S

Utþ1ðc; s
t ,stþ1Þ dpyðstþ1; s

tÞ

� �
dmðyjstÞ

� �
: ð52Þ

The interpretation is the following. The increasing function u represents risk preferences, pyð�js
tÞ represents one-step-ahead

belief given the history st, and mð�jstÞ represents the posterior given the history st. Posteriors are updated using the Bayes rule.
The setY, which describes the multiplicity ofpy, captures ambiguity. Importantly, the increasing function v captures attitude
towards ambiguity. Thus, ambiguity and ambiguity attitude are separated. Ju and Miao (2010) and Hayashi and Miao (2010)
generalize (Klibanoff et al., 2005, 2009) model to allow for a three-way separation among intertemporal substitution, risk
aversion, and ambiguity aversion.

If v is a concave function, then the agent is ambiguity averse. Comparative ambiguity aversion can be characterized by the
relative concavity of v. In particular, agent A is more ambiguous averse than agent B if they share the same risk preferences u

and vA is a monotone concave transformation of vB. The definition and characterization of the notion of ‘‘degree of ambiguity’’
and ‘‘comparative ambiguity’’ in the smooth ambiguity model have not been fully developed in the literature.16 Thus, in our
application below we do not consider this issue.

We now apply the smooth ambiguity model to the job matching problem in the previous subsection. We can describe the
worker’s dynamic programming problem as follows:

VtðftÞ ¼maxfg,JtðftÞg, ð53Þ

where

JtðftÞ ¼ v�1

Z
Y

v yþb yVtþ1
tftþ1

tþ1

� �
þð1�yÞVtþ1

tft

tþ1

� �� �� �
dmtðyÞ

� �
: ð54Þ

We claim that a more ambiguity averse agent quits the job sooner. This result is consistent with what we derived earlier using
the multiple-priors utility model. An advantage of the smooth ambiguity model is that the comparative static result refers to
comparative ambiguity attitude only, holding ambiguity fixed.

Instead of providing a complete proof of the preceding claim, which is not difficult but lengthy, we sketch the key steps of
the proof here. First, by an analysis similar to that in Stokey et al. (1989, Chapter 10.10), we can show that Vt is increasing inft .
Thus, the agent’s exit decision is characterized by a trigger policy. That is, at any time t, there is a cutoff value f�t such that if
ft of�t the worker quits the job. The cutoff value is determined by the equation g¼ Jtðf

�

t Þ. We now conduct comparative
statics analysis. Suppose agent A is more ambiguity averse than agent B in the sense that his vA is a monotone concave
transformation of vB. We observe from Eq. (54) that Jt is the certainty equivalent of v. The standard risk analysis and the
dynamic programming argument similar to the proof of Propositions 3–4 imply JA

t r JB
t . Therefore, we conclude that the

trigger values satisfy the inequality fA�
t ZfB�

t , implying that the more ambiguity averse agent quits job earlier.
We next turn to the long-run behavior. It is easy to show that unlike the previous model, ambiguity does not persist in the

long run and VtðftÞ converges to a limit in the Bayesian model, if v�1 is Lipschitz. Klibanoff et al. (2009) establish a more
16 In a work in progress, Jewitt and Mukerji (2006) study this issue.
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general result. The crucial condition is that the parameter space is bounded. They show that ambiguity may persist in the long
run if the parameter space is unbounded.

5. Conclusion

Many economic decisions can be described as an option exercise problem. In this problem, uncertainty plays an important
role. In standard expected utility models, there is no meaningful distinction between risk and uncertainty in the sense
attributed to Knight (1921). To afford this distinction, we apply the multiple-priors utility model. We formulate the option
exercise decision as a general optimal stopping problem. While the standard analysis shows that risk increases option value,
we show that ambiguity lowers the option value. Moreover, the impact of ambiguity on the option exercise timing depends
crucially on whether the agent has ambiguity about termination payoffs after option exercise. If uncertainty is fully resolved
after option exercise, then an increase in ambiguity speeds up option exercise and a more ambiguity averse agent exercises
the option earlier. However, if the agent is ambiguous about the termination payoff, then the agent may delay option exercise
if this ambiguity dominates ambiguity about continuation.

We apply our general model to real investment and exit problems. For the investment problem, we show that if the project
value is modeled as a lump-sum value and uncertainty over this value is fully resolved after investment, then ambiguity
accelerates investment. However, if the project value is modeled as a discounted sum of future uncertain profit flows and the
agent is ambiguous about these profits, then ambiguity may delay investment. For the exit problem, we presume that there
are two sources of uncertainty—outside value and profit opportunities if the firm stays in business. The firm’s owner/
manager may be ambiguous about both sources. We show that ambiguity may delay or accelerate exit, depending on which
source of ambiguity dominates. We also show that for both problems, the myopic NPV rule often recommended by the
business textbooks and investment advisors may be optimal for an agent having an extremely high degree of ambiguity
aversion.

Finally, using a job matching example, we analyze the impact of learning under ambiguity using the Epstein and Schneider
(2007) model. We also apply the recent smooth ambiguity model of Klibanoff et al. (2005, 2009) to this example. Further
analysis and applications along this line would be an interesting research topic.
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Appendix A. Proofs
Proof of Proposition 1. The proof is similar to that of Proposition 2. So we omit it. &

Proof of Proposition 2. Let C(X) denote the space of all bounded and continuous functions endowed with the sup norm. C(X)
is a Banach space. Define an operator T as follows:

TvðxÞ ¼max OðxÞ,pðxÞþb
Z

vðxuÞPðdxu; xÞ

� �
, v 2 CðXÞ:

Then it can be verified that T maps C(X) into itself. Moreover, T satisfies the Blackwell sufficient condition and hence is a
contraction mapping. By the Contraction Mapping Theorem, T has a unique fixed point V 2 CðXÞwhich solves the problem (9)
(see Stokey et al., 1989, Theorems 3.1 and 3.2).

Next, let CuðXÞ � CðXÞ be the set of bounded continuous and increasing functions. One can show that T maps any increasing

function CuðXÞ into an increasing function in CuðXÞ. Since CuðXÞ is a closed subset of C(X), by Corollary 1 in Stokey et al. (1989,

p. 52), the fixed point of T, V, is also increasing. The remaining part of the proposition is trivial and follows from similar

intuition illustrated in Fig. 1. &

Remark. The Contraction Mapping Theorem also implies that limn-1Tnv¼ V for any function v 2 CðXÞ.

Proof of Proposition 3. Let v 2 CðXÞ satisfy vrF. Since PðxÞ 2 PðxÞ,Z
vðxuÞPðdxu; xÞ ¼ min

Qð�;xÞ2PðxÞ

Z
vðxuÞQ ðdxu; xÞr

Z
vðxuÞPðdxu; xÞr

Z
FðxuÞPðdxu; xÞ:

Thus,

TvðxÞ ¼max OðxÞ,pðxÞþb
Z

vðxuÞPðdxu; xÞ

� �
rmax OðxÞ,pðxÞþb

Z
FðxuÞPðdxu; xÞ

� �
¼ FðxÞ:

It follows from induction that the fixed point of T, V, must also satisfy V rF. The remaining part of the proposition follows
from this fact and Fig. 2. &
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Proof of Proposition 4. Define the operator TP1 : CðXÞ-CðXÞ by

TP1 vðxÞ ¼max OðxÞ,pðxÞþb
Z

vðxuÞP1ðdxu; xÞ

� �
, v 2 CðXÞ:

Similarly, define an operator TP2 : CðXÞ-CðXÞ corresponding toP2. Take any functions v1,v2 2 CðXÞ such that v1Zv2, it can be
shown that TP1 v1ðxÞZTP2 v2ðxÞ. By induction, the fixed points VP1 and VP2 must satisfy VP1 ZVP2 . The remaining part of the
proposition follows from Fig. 3. &

Proof of Proposition 5. First, one can use the standard dynamic programming technique similar to that used in Propositions
2–4 to show that the value functions VQ1 and VQ2 are increasing and VQ1 ZVQ2 . To show xQ1 ZxQ2 , let GiðxÞ ¼

VðxÞ�minq2Qi

R
O dq for i=1,2. Then from (14), we can derive that

GiðxÞ ¼max 0,pðxÞ�ð1�bÞmin
q2Qi

Z
O dqþb

Z
GiðxuÞPðdxu; xÞ

� �
:

Again, by the standard dynamic programming technique, we can show that Gi is increasing and G2ðxÞZG1ðxÞ. The threshold
values xQ1 are determined by the equation

0¼ pðxÞ�ð1�bÞmin
q2Qi

Z
O dqþb

Z
GiðxuÞPðdxu; xÞ:

Since minq2Q1

R
O dqZminq2Q2

R
O dq and G2ðxÞZG1ðxÞ, we have xQ1 ZxQ2 . &

Proof of Proposition 6. Because V(x) is an increasing and continuous function, the optimal investment rule is described
as a trigger policy whereby the investor invests the first time the process ðxtÞtZ0 hits a threshold value xn. We now determine
xn and focus on problem (20). Problem (22) can be analyzed similarly. Now, for problem (20), V(x) satisfies

VðxÞ ¼
x�I if xZx�,

b
R b

a VðxuÞPðdxu; xÞ if xox�:

(
ðA:1Þ

At the threshold value xn, we have

x��I¼ b
Z b

a
VðxuÞPðdxu; xÞ: ðA:2Þ

According to the IID e�contamination specification (23), we have

x��I¼ bð1�eÞ
Z b

a
VðxÞ dmþbe min

m2Mð½a,b�Þ

Z b

a
VðxÞ dm:

Since the minimum of V(x) is b
R b

a VðxuÞPðdxu; xÞ, which is equal to xn
� I by (A.2), we can rewrite the preceding equation as

x��I¼ bð1�eÞ
Z b

a
VðxÞ dmþbeðx��IÞ ¼ bð1�eÞ

Z x�

a
VðxÞ dmþ

Z b

x�
VðxÞ dm

" #
þbeðx��IÞ

¼ bð1�eÞ
Z x�

a
ðx��IÞ dmþ

Z b

x�
ðx�IÞ dm

" #
þbeðx��IÞ:

Note that in the last equality, we have used (A.1) and (A.2). Rearranging yields the desired result (24). The comparative statics
result follows from the implicit function theorem applied to (24). &

Proof of Proposition 7. The proof is similar to that of Proposition 6. We consider part (i) first. The value function V(x)
satisfies

VðxÞ ¼
x�cf þb

R b
a VðxuÞPðdxu; xÞ if xZx�,

g if xox�:

(
ðA:3Þ

At the threshold value xn, we have

g¼ x��cf þb
Z b

a
VðxuÞPðdxu; xÞ: ðA:4Þ

Given the IID e�contamination specification (23), we can derive

g¼ x��cf þbð1�eÞ
Z b

a
VðxÞ dmþbe min

m2Mð½a,b�Þ

Z b

a
VðxÞ dm:
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Since the minimum of V(x) is g by (A.3), we can rewrite the preceding equation as

g¼ x��cf þbð1�eÞ
Z b

a
VðxÞ dmþbeg¼ x��cf þbð1�eÞ

Z x�

a
VðxÞ dmþ

Z b

x�
VðxÞ dm

" #
þbeg

¼ x��cf þbð1�eÞ
Z x�

a
gdmþ

Z b

x�
ðxþg�x�Þ dm

" #
þbeg:

Here the last equality follows from (A.3) and (A.4). Simplifying yields (32). The comparative static result follows from simple
algebra.

For part (ii), given the Z�contamination specification in (30), we have

min
q2Q

Z g

g
g dq¼ ð1�ZÞEn½g�þZg:

Eq. (33) follows from a similar argument for (32). The comparative statics result follows from simple algebra. &

Proof of Proposition 8. Part (i) follows from Eq. (45). Turn to part (ii). It follows from (44) that

lim
t-1

yðftÞ ¼ lim
t-1

yðftÞ ¼ y�ðfÞ:

Thus, the result follows from Eqs. (46) and (47). Finally, consider part (iii). In the limit, the Bellman equations (48) and (49)
become

VðfÞ ¼maxfg,JðfÞg,

where

JðfÞ ¼ min
p2½y�ðfÞ�l ,y�ðfÞþl �

pþbVðfÞ ¼ y�ðfÞ�lþbVðfÞ:

Thus,

VðfÞ ¼maxfg,y�ðfÞ�lþbVðfÞg:

One can verify that the function given in the proposition satisfies the preceding equation. &
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