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Abstract

Under the real options approach to investment under uncertainty, agents formulate optimal

policies under the assumption that firms’ growth prospects do not vary over time. This paper

proposes and solves a model of investment decisions in which the growth rate and volatility of

the decision variable shift between different states at random times. A value-maximizing

investment policy is derived such that in each regime the firm’s investment policy is optimal

and recognizes the possibility of a regime shift. Under this policy, investment is intermittent

and increases with marginal q:Moreover, investment typically is very small but, in some states,
the capital stock jumps. Implications for marginal q and the user cost of capital are also

examined.
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1. Introduction

The notion that regime shifts are important in explaining the cyclical features of
real macroeconomic variables as proposed by Hamilton [15] is now widely accepted.
Motivated by anecdotal evidence, a pervasive manifestation of this view is that
regime shifts, by changing firms growth prospects, affect capital accumulation and
investment decisions. On economic grounds, there are indeed reasons to believe that
regime shifts contain the possibility of significant impact on firms policy choices. For
example, business cycle expansion and contraction ‘‘regimes’’ potentially have
sizable effects on the profitability or riskiness of investment and, hence, on firms’
willingness to invest in physical or human capital. Yet, despite these potential effects,
we still know very little about the relation between regime shifts and investment
decisions.
The idea that shifts in a firm’s environment can have first-order effects on its

investment policy can be related to the burgeoning literature on investment decisions
under uncertainty (see the survey by Dixit and Pindyck [9]). In this literature,
investment opportunities are analyzed as options written on real assets and the
optimal investment policy is derived by maximizing the value of the option to invest.
Because option values depend on the riskiness of the underlying asset, volatility is an
important determinant of the optimal investment policy. Despite this observation,
models of investment decisions typically presume that this very parameter is fixed. It
is not difficult to imagine however that as volatility changes over the business cycle,
so does the value-maximizing investment policy.
This paper develops a framework to study the behavior of investment when the

dynamics of the decision variable are subject to discrete regime shifts at random
times. Following Hamilton, we define shifts in regime for a process as ‘‘episodes
across which the behavior of the series is markedly different’’. To emphasize the
impact of regime shifts on investment decisions and capital accumulation, we
construct a simple model of capacity choice that builds on earlier work by Pindyck
[26] and Abel and Eberly [3]. Specifically, we consider an infinitely lived firm that
produces output with its capital stock and variable factors of production. The price
of the firm’s output fluctuates randomly, yielding a stochastic continuous stream of
cash flows. At any time t; the firm can (irreversibly) increase capacity by purchasing
capital. Investment arises when the marginal valuation of capital equals the purchase
price of capital.
Models of investment decisions under uncertainty generally presume that the

firm’s operating profits are subject to a multiplicative shock that evolves according to
a geometric Brownian motion.1 Implicit in this modeling is the assumption that the
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1Statistical tests of the option theory of irreversible investment typically are specified under this

assumption (see for example [18]). In fact, Harchaoui and Lasserre note that ‘‘the empirical experiment in

which agents respond to changes in a [the drift rate] or s [volatility]’’ cannot be experimented within their
econometric model because the theoretical model does not yield any analytical solution for this underlying

process. In this paper, we provide such a solution. In his survey paper, Chirinko [8, pp. 1905–1906] also

points out the importance of the time-varying volatility for the econometric specification of investment

equations.
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firm’s growth prospects do not vary over time. This paper solves for the value-
maximizing investment policy when the growth rate and volatility of the marginal
revenue product of capital are subject to discrete regime shifts. The analysis
demonstrates that, in contrast with standard models of investment, the optimal
decision rule is not described by a simple threshold for the marginal revenue product
of capital. Instead, the optimal investment policy is characterized by a different
threshold for each regime. Moreover, because of the possibility of a regime shift, the
value-maximizing threshold in each regime reflects the possibility for the firm to
invest in the other regimes. That is, a value-maximizing policy is derived such that in
each regime the firm’s investment policy is optimal, conditional on the optimal
investment policy in the other regimes.
An important question is whether regime shifts actually affect growth and capital

accumulation. To answer this question, we examine the implications of the model for
the optimal rate of investment. These implications are generally consistent with
recent evidence on firms’ investment behavior (see [1] or [7]). In particular, the model
predicts that investment is intermittent and increasing with marginal q: Moreover,
the state space of the dynamic investment problem can be partitioned into various
domains including an inaction region where no investment occurs. Outside
of this region, the optimal rate of investment can be in one of two regimes:
infinitesimal or lumpy. Investment is infinitesimal at the investment threshold.
Investment is lumpy in the transient region and at the initial date if the state of the
system is in the action region. Also, while it is always optimal to invest in the action
region, the optimality of investment is regime dependent in the transient region. That
is, regime shifts generate some time-series variation in the present value of future
cash flows to current cash flows that may induce the firm to invest following a regime
shift.
The analysis in the present paper relates to two different strands of literature.

First, from an economic point of view, it relates to the investment literature that
combines real options features—irreversibility and a continuous stochastic process—
with neoclassical features—no indivisibilities. In these models, investment is
intermittent and, in the absence of fixed adjustment costs, involves marginal
adjustments in the stock of capital (see [26,2,6,13]). When fixed adjustment costs are
introduced, investment is intermittent and lumpy, and the optimal policy involves
impulse control techniques (see [4] or [7]). In the present paper, there are no fixed
adjustment costs. Yet, the optimal investment policy involves both marginal
adjustments and jumps in the stock of capital.
From a technical view point, the present paper relates to a series of recent papers

on option pricing with regime shifts (see [15,16,10]). One of our main contributions is
the extension of techniques in these papers to the case of stochastic control problems
where control policies change the underlying diffusion process. In particular, we use
the solution to the optimal stopping problem derived by Guo [15] to analyze the
recurrent investment decision of a firm with divisible capital. Because the firm’s
problem is homogeneous, the recurrent model displays a structure that is similar to
the stopping problem except that the firm obtains a new investment option whenever
it stops.

ARTICLE IN PRESS
X. Guo et al. / Journal of Economic Theory 122 (2005) 37–59 39



The paper that is most closely related to the present analysis is Driffill and Sola
[11]. These authors also analyze investment decisions when the dynamics of the state
variable can shift between several regimes. One essential difference between the two
papers is that we examine capacity choice and the valuation of interrelated options
whereas they focus on the valuation of a single investment opportunity (in the spirit
of McDonald and Siegel [24]). Another important point of departure is that we solve
our model analytically whereas they solve their model numerically. Finally, we derive
implications for capital accumulation, marginal q; and the user cost of capital, which
are not examined in their paper.
The remainder of the paper is organized as follows. Section 2 presents the basic

model of investment decisions with regime shifts. Section 3 derives the firm’s
objective function and optimality conditions. Section 4 determines the value-
maximizing investment policy. Section 5 presents simulation results. Section 6
investigates the implications of the optimal investment policy for capital accumula-
tion and growth. Section 7 analyses marginal q and the user cost of capital. Section 8
concludes.

2. The model

This paper provides an analysis of investment decisions under uncertainty when
the dynamics of the state variable shift between different states at random times.
Throughout the paper, agents are risk neutral and discount cash flows at a constant
rate r: Time is continuous and uncertainty is modeled by a complete probability
space ðO;F ;PÞ: For any process ðytÞtX0 defined on ðO;F ;PÞ; F y ¼ ðF y

t ÞtX0 denotes

the P-augmentation of the filtration ðsðys; sptÞÞtX0 generated by y:

Technology: Consider an infinitely-lived firm that produces output with its capital
stock and variable factors of production. Assume for simplicity that the good
produced by the firm is not storable so that output equals demand. In addition,
suppose that the firm’s capital stock depreciates at a constant exponential rate dX0
and that its operating profit is given by a linearly homogenous function p :Rþþ �
Rþþ-Rþþ satisfying:

pðxt; ktÞ ¼
1

1� a
xa

t k1�a
t ; aAð0; 1Þ; ð1Þ

where ðktÞtX0 is a nonnegative process representing the firm’s capital stock, and

ðxtÞtX0 is a demand shock with law of motion specified below. As shown by Abel and

Eberly [3] and Morellec [25], Eq. (1) is consistent with a price taking firm whose
technology exhibits decreasing returns to scale or with a monopolist facing a
constant returns to scale technology and a constant elasticity demand curve.
At any time t; the firm can increase capacity by purchasing capital at the price p:

The capital input is homogenous and perfectly divisible and the firm is a price-taker
in the market for capital goods. The optimality of the decision to invest depends on
the incremental profits associated with an increase in the capital stock and the price
of capital. It also depends on other dimensions of the firm’s environment such as
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ongoing uncertainty in profits or the firm’s ability to reverse its decisions. Following
Pindyck [26], Abel and Eberly [3], and Grenadier [14], we consider that investment is
irreversible.2 In contrast to these studies, we do not assume that ðxtÞtX0 is governed

by a Markov process with constant drift and volatility but instead characterize
capital accumulation and investment decisions when the dynamics of the demand
shock shift between different states at random times. As shown below, this
specification introduces some interesting, yet tractable, variations in the firm’s
growth prospects.

Dynamics of the demand shock: Throughout the paper, the dynamics of the
demand shock ðxtÞtX0 are governed by a Markov regime switching model. Within

the current setting, such a model may reflect the impact of the business cycle on the
cash flows generated by the firm’s assets. Depending on the state of the economy, the
dynamics of the demand shift parameter for the good produced by the firm shift
from one state to another, in turn changing the dynamics—growth rate and
volatility—of the firm cash flows.
Specifically, we presume that the dynamics of ðxtÞtX0 can shift between two states

and are governed by the process:3

dxt ¼ meðtÞxtdt þ seðtÞxtdWt; xt40; ð2Þ

where ðWtÞtX0 is standard Brownian motion defined on ðO;F ;PÞ and ðetÞtX0 is a

Markov process independent of ðWtÞtX0: The pair ðmeðtÞ; seðtÞÞ takes different values
when the process ðetÞ is in different states. For each state i; there is a known drift
parameter mi and a known volatility parameter si40:Moreover, while ðxtÞtX0 is not

a Markov process, ðztÞtX0 	 ðxt; etÞtX0 is jointly Markovian if at any time t the state

of et is known.
Regime shifts: Assume that ðetÞtX0 is observable and that the transition probability

of ðetÞtX0 follows a Poisson law, such that ðetÞtX0 is a two-state Markov chain

alternating between states 1 and 2: Let li40 denote the rate of leaving state i and ti

the time to leave state i: Within our model, the exponential law holds

Pðti4tÞ ¼ e�li t; i ¼ 1; 2 ð3Þ

and the process eðtÞ has the transition matrix between time t and t þ Dt:

1� l1Dt l1Dt

l2Dt 1� l2Dt

� �
:
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2A natural way to introduce irreversibility within the present model is to consider that capital has no

resale value. Because the marginal revenue product of capital is bounded from below by zero, it is never

optimal for the firm to sell assets. The model can be extended to consider costly reversibility,

abandonment, and the interaction between financing and investment policies. To focus more clearly on the

regime shift aspect, we keep these complications out of this paper.
3This process has been introduced by Guo [15,16] in a model that addresses the pricing of perpetual

lookback options. Our paper extends her analysis to the valuation of multiple interrelated options.

Obtaining the exact solution (which is of the viscosity type) to the Hamilton–Jacobi–Bellman equation in

our case is analytically more challenging. The nature of the optimal policy is of singular control type,

which is similar in spirit to the threshold type stopping rules in [15].
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The above set of assumptions captures the idea that both the drift and volatility
parameters of the demand shift may change over time at random dates. That is, unlike
traditional models of investment, the present model allows for stochastic regime shifts
in the parameters of the underlying state variable. In particular, during an infinitesimal
time interval Dt; there is a probability l1Dt that these parameters shift from ðm1; s1Þ to
ðm2; s2Þ and a probability l2Dt that they shift from ðm2; s2Þ to ðm1;s1Þ:4

Statement of the problem: The firm’s objective is to determine the investment
policy that maximizes the present value of future profits net of investment costs.
Given the properties of the profit function (1), this investment policy takes the form
of a trigger policy that can be described, for every kA½k;þNÞ and in each regime i;
by a first passage time of ðxtÞtX0 to a constant threshold xðkÞ: While the trigger
policy is common to previous models of investment decisions under uncertainty, two
major differences arise within the present model. First, because the dynamics of the
demand shock depend on the current regime, so does the value-maximizing
investment policy. In other words, there exists a different trigger threshold x�

i ðkÞ for
each regime i: Second, because of the possibility of a regime shift, the optimal trigger
threshold in each regime reflects the possibility for the firm to invest in the other
regime. That is, the firm has to determine an investment policy in each regime, while
taking into the optimal investment policy in the other regime.

3. Capacity choice with regime shifts

This section derives optimality conditions for investment when the firm’s profit
function satisfies Eq. (1) and changes in the demand shock are governed by (2). We
start by specifying the firm’s objective function.

Firm’s objective function: The firm’s objective is to determine the investment policy
that maximizes the expected present value of profits net of investment costs.
Following Bertola and Caballero [6], we denote by ðGtÞtX0 the right continuous,

nonnegative process that represents cumulative gross investment at time t: Assume

that ðGtÞtX0 is progressively measurable with respect to ðF ðx;eÞ
t ÞtX0: Within the

present model, the net change of capital stock at time t satisfies dkt ¼ dGt � dktdt

and firm value can be written in each regime i as

Vðxt; kt; iÞ 	 max
fdGtþuX0g

E

Z þN

0

e�ru½pðxtþu; ktþuÞdu � pdGtþujF ðx;eÞ
t

� �
: ð4Þ

In this equation, Eð:jF ðx;eÞ
t Þ is the expectation operator associated with the measure P

conditional on the information available at time t: Moreover, since Gt is not
differentiable, the last term in Eq. (4) has to be interpreted as a Stieltjes integral.
Because the demand shift ðxtÞtX0 is governed by the Markov regime switching

process (2), the relevant state space is fðx; eÞ : xARþþ; e ¼ 1; 2g: This implies that the
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4The assumption of 2-state regime shifts is made here for tractability. Hamilton [17], Bansal and Zhou

[5] and Guo [15] also model the regime shift process as a finite state Markov process.
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optimization problem (4) is more difficult to solve than traditional models of
investment (see [26]) since there can be a discontinuous jump over the investment
boundary when the process ðetÞtX0 shifts from one state to another. This also implies

that the model can generate richer investment strategies than one-regime models. In
particular, we show below that the firm may increase capacity either following an
increase of the demand shock in a given regime or following a regime shift.

Solution technique: Let x�
i ðkÞ be the value of the demand shock that triggers

investment in regime i: Depending on parameter values, the two thresholds may be
ordered differently. For expositional purpose, we analyze the case where
x�
2ðkÞ4x�

1ðkÞ for kA½k;þNÞ: However, we present a complete characterization of
the solution in Theorem 1.
Using standard techniques, it is possible to show that the Hamilton–Jacobi–

Bellman equation associated with the optimization problem (4) is

rVðxt; kt; etÞ ¼ pðxt; ktÞ � dkVkðxt; kt; etÞ þ met
xVxðxt; kt; etÞ

þ 1

2
s2et

x2Vxxðxt; kt; etÞ þ let
½Vðxt; kt; 3� etÞ � Vðxt; kt; etÞ; ð5Þ

where the Kuhn–Tucker conditions for the maximization are Vkðxt; kt; etÞpp;
dGtX0 and ½Vkðxt; kt; etÞ � pdGt ¼ 0; 8tX0: The left-hand side of (5) reflects the
required rate of return for investing in the firm. The right-hand side is the expected
change in firm value in the region for the state variable where the firm does not
invest. This equation is similar to that obtained in one-regime investment models
where the state variable is governed by a diffusion process.5 However, it contains an
additional term let

½Vðxt; kt; 3� etÞ � Vðxt; kt; etÞ; that reflects the impact of the
possibility of a regime shift on the value function. This term corresponds to the
probability weighted change in firm value due to a regime shift.
Eq. (5) holds identically in k: Thus, the partial derivative of the left-hand side with

respect to k equals the partial derivative of the right-hand side with respect to k:
Performing this partial differentiation yields:

rVkðxt; kt; etÞ ¼ pkðxt; ktÞ � d½Vkðxt; kt; etÞ þ kVkkðxt; kt; etÞ

þ met
xVxkðxt; kt; etÞ þ

s2et

2
x2Vxxkðxt; kt; etÞ

þ let
½Vkðxt; kt; 3� etÞ � Vkðxt; kt; etÞ: ð6Þ

ARTICLE IN PRESS

5 In the diffusion case, the demand shift parameter is governed by the geometric Brownian motion

dxt ¼ mxtdt þ sxtdWt: By an application of Itô’s lemma, the expected change in firm value per unit of time

is then given by

1

dt
E½dVðx; kÞ ¼ �dkVkðx; kÞ þ mxVxðx; kÞ þ

1

2
s2x2V2

xxðx; kÞ;

where subscripts denote partial derivatives. The equilibrium expected return on firm value is r: Combining
this condition with the above equation gives the differential equation:

rVðx; kÞ ¼ pðx; kÞ � dkVkðx; kÞ þ mxVxðx; kÞ þ
1

2
s2xx2Vxxðx; kÞ;

which is solved subject to appropriate boundary conditions.
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To solve Eq. (6), we will use the fact that the value function V is homogenous of
degree one in x and k: This property of the value function implies that the marginal
valuation of capital Vk is homogenous of degree zero in xt and kt and, hence, can be
written simply as a function of yt; the ratio of xt to kt: Define y�

i ¼ x�
i ðkÞ=k: Then

x�
2ðkÞ4x�

1ðkÞ implies y�
24y�

1: Define the marginal valuation of capital in regime i by:

qiðyÞ ¼ Vkðx; k; iÞ: ð7Þ

Differentiating this equation and using the definition of y yields expressions for the
partial derivatives of the value-function. Substituting the definition of qðyÞ and its
partial derivatives in Eq. (6) yields the following system of second-order ordinary
differential equations for the marginal valuation of capital qiðyÞ:

* On the region ypy�
1;

ðrþ dÞq1ðyÞ ¼ ya þ ðm1 þ dÞyq0
1ðyÞ þ

1

2
s21y

2q00
1ðyÞ þ l1½q2ðyÞ � q1ðyÞ; ð8Þ

ðrþ dÞq2ðyÞ ¼ ya þ ðm2 þ dÞyq0
2ðyÞ þ

1

2
s22y

2q00
2ðyÞ þ l2½q1ðyÞ � q2ðyÞ: ð9Þ

* On the region y�
1pypy�

2;

ðrþ dÞq2ðyÞ ¼ ya þ ðm2 þ dÞyq0
2ðyÞ þ

1

2
s22y

2q00
2ðyÞ þ l2½p � q2ðyÞ: ð10Þ

The sets ð0; y�
1 and ½y�

2;NÞ are the inaction region and the action region,

respectively. We follow Guo [14] and call the set ½y�
1; y�

2 the transient region. Fig. 1

illustrates these regions.
By definition of the barrier policy (see [19]), the firm makes a discrete adjustment

in its capital stock, from k to
%
k; at the time of a shift from regime 2 to regime 1 on the

region y�
1pypy�

2 with:
6

%
k ¼ supfkA½k;þNÞ : Vkðx; k; 1ÞXpg: ð11Þ
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6Heuristically, one can derive the optimality of this policy following the arguments of Dixit and Pindyck

[9] for impulse control of Brownian motion. Consider a small time interval dt: Since decisions are made

continuously, we will be interested in the limit as dt-0: Suppose that the firm does not adjust capacity

over the time interval dt and then increases capacity to
%
k at the end of this interval. The resulting value is

pðxt; kt; etÞdt þ e�rdtExt ;et ½Vðxtþdt;
%
k; etþdtÞ � pð

%
k � ktÞ:

Because the profit function pð:Þ is concave in k; so is the value function Vð:Þ: This concavity property
ensures that the solution to the firm’s optimization problem can be found using the familiar Kuhn–Tucker

conditions. The derivative of the above expression with respect to
%
k is

e�rdtE½Vkðxtþdt;
%
k; etþdtÞ � p:

As dt-0; this expression tends to Vkðxt;
%
k; etÞ � p: Note that irreversibility requires

%
kXk: Suppose that at

the time of a regime shift we have Vkðxt; k; etÞ4p: Since the value function is concave in k; this in turn

implies that the optimal policy is to set
%
k at the level defined by the first-order condition Vkðxt;

%
k; etÞ ¼ p by

instantaneously installing the amount of capital
%
k � k:
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That is, when y ¼ x=kA½y�
1; y�

2; it is optimal for the firm to have a lumpy adjustment

in capacity following a regime shift by moving the point ðx; kÞ horizontally to the
curve x�

1ðkÞ: Using the equality

Vðx; k; 1Þ þ pð
%
k � kÞ ¼ Vðx;

%
k; 1Þ; ko

%
k; ð12Þ

which reflects the fact that the value function is just the known value function at the
terminal point of the jump minus the cost of investment, it is immediate to see that
Vkðx; k; 1Þ ¼ p; or q1ðyÞ ¼ p on the region ½y�

1; y�
2: Sections 5 and 6 will provide a

more detailed analysis of the nature of the optimal investment policy.
The optimization problem (4) can be solved using the set of ODEs (8)–(10) and

appropriate boundary conditions. One boundary condition is given by requiring
that, as the demand shift decreases, the marginal valuation of capital remains finite.
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x

k

Inaction 
Region 

x

x*
i (k)

x*
i (k)

Action 
Region 

Transient 
Region 

x

k

Vk(x,k,i) = p

Vk(x,k,i) < pBarrier 
control

Impulse control

*
3−i (k)

x *
3−i (k)

(a)

(b)

Fig. 1. Regime shifts and investment policy. (a) Represents the value-maximizing investment policy as a

function of k: This investment policy requires the firm to invest in regime i if xt exceeds x�
i : There exists a

region for the state variable x for which a shift from regime 3� i to regime i triggers investment. This

region is called the transient region. (b) Represents the optimal investment policy in regime i: This

investment policy is a mixture of impulse control in the transient region and barrier—or diffusion—

control at x�
i ðkÞ:
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This condition can be written as

lim
yk0

qiðyÞoN; i ¼ 1; 2: ð13Þ

Now, suppose that the firm exercises its expansion option when the state variable y

reaches a trigger value y�
i 	 x�

i =k: At that time, k increases by the infinitesimal

increment dk and the firm pays pdk: Thus, the following condition is satisfied:
Vðx�

i ; k; iÞ ¼ Vðx�
i ; k þ dk; iÞ � pdk; i ¼ 1; 2: Dividing by the increment dk; these

conditions can be written in derivative form as

qiðy�
i Þ ¼ p; i ¼ 1; 2: ð14Þ

As shown by (14), the marginal valuation of capital equals the purchase price of
capital when the firm is undertaking investment. To ensure that investment occurs
along the optimal path, we also require a continuity of the slopes at the endogenous
investment thresholds: Vxðx�

i ; k; iÞ ¼ Vxðx�
i ; k þ dk; iÞ; i ¼ 1; 2: These high-contact

conditions can be written in derivative form as (see [12]):

q0
iðy�

i Þ ¼ 0; i ¼ 1; 2: ð15Þ

Finally, because the marginal revenue product of capital pkð:Þ is a (piecewise)
continuous, borel-bounded function, the marginal value-functions qið:Þ are piecewise
C2 (see [22, Theorem 4.9, p. 271]). Therefore, the marginal valuation of capital is C0

and C1 and satisfies the following conditions:

lim
yky�

1

q2ðyÞ ¼ lim
ymy�

1

q2ðyÞ; ð16Þ

lim
yky�

1

q0
2ðyÞ ¼ lim

ymy�
1

q0
2ðyÞ; ð17Þ

which ensure the smoothness of the marginal value function q2ð:Þ at the boundary
between the inaction region and the transient region.

4. Value-maximizing investment policy

Using the set of ODEs (8)–(10) and the boundary conditions (14)–(17), it is
possible to characterize the value-maximizing investment policy. Before presenting
the solution to the firm’s optimization problem, we introduce the following
notations. Let g1 and g2 be the two positive real roots of the quartic equation

H1ðgÞH2ðgÞ ¼ l1l2 ð18Þ

and let b1 and b2 be the two real roots of the quadratic equation

H2ðbÞ ¼ 0 ð19Þ

and bbb1 and bbb2 be the two real roots of the quadratic equation
H1ðbÞ ¼ 0;
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where

HiðgÞ 	 rþ dþ li � gðmi þ dÞ � 1
2
s2i gðg� 1Þ: ð20Þ

Define li; blli; and Fi; i ¼ 1; 2; by

li 	
1

l1
rþ dþ l1 � giðm1 þ dÞ � 1

2
giðgi � 1Þs21

� �
; ð21Þ

blli 	 1

l2
rþ dþ l2 � giðm2 þ dÞ � 1

2
giðgi � 1Þs22

� �
; ð22Þ

Fi 	
rþ dþ l1 þ l2 � aðm3�i þ dÞ � 1

2
s23�iaða� 1Þ

H1ðaÞH2ðaÞ � l1l2
: ð23Þ

The following results.

Theorem 1. Assume that HiðaÞ40; Fi40: If there exists a solution RAð0; 1Þ to the

nonlinear equation

b2Rb1�b1Rb2

b2�b1
rþd

rþdþl2
þ l2

rþdþl2
þ l2g1�l1g2

g2�g1
ða�b1ÞRb2�ða�b2ÞRb1

ðb2�b1ÞH2ðaÞ þ ½F2 þ l1ða�g2Þ�l2ða�g1Þ
g2�g1

F1 � 1
H2ðaÞR

a

¼
b1b2ðRb1�Rb2 Þ

b2�b1
rþd

rþdþl2
þ g1g2ðl2�l1Þ

g2�g1
b2ða�b1ÞRb2�b1ða�b2ÞRb1

ðb2�b1ÞH2ðaÞ þ aF2 þ g1l1ða�g2Þ�g2l2ða�g1Þ
g2�g1

F1 � a
H2ðaÞ

h i
Ra

; ð24Þ

then the investment policy that maximizes firm value is characterized by the investment

thresholds y�
1 and y�

2 satisfying

y�
1 ¼ Ry�

2 ð25Þ

and

ðy�
2Þ

a ¼ p

b2Rb1�b1Rb2

b2�b1
rþd

rþdþl2
þ l2

rþdþl2
þ l2g1�l1g2

g2�g1
ða�b1ÞRb2�ða�b2ÞRb1

ðb2�b1ÞH2ðaÞ þ F2 þ l1ða�g2Þ�l2ða�g1Þ
g2�g1

F1 � 1
H2ðaÞ

h i
Ra

: ð26Þ

Otherwise, there exists a solution RAð0; 1Þ to the nonlinear equation:

bbb2R
bbb1�bbb1R

bbb2bbb2�bbb1 rþd
rþdþl1

þ l1
rþdþl1

þbll2g1�bll1g2
g2�g1

ða�bbb1ÞRbbb2�ða�bbb2ÞRbbb1
ðbbb2�bbb1ÞH1ðaÞ

þ F1 þ
bll1ða�g2Þ�bll2ða�g1Þ

g2�g1
F2 � 1

H1ðaÞ

� �
Ra

¼

bbb1bbb2ðRbbb1�R
bbb2 Þbbb2�bbb1 rþd

rþdþl1
þ g1g2ðbll2�bll1Þ

g2�g1

bbb2ða�bbb1ÞRbbb2�bbb1ða�bbb2ÞRbbb1
ðbbb2�bbb1ÞH1ðaÞ

þ aF1 þ g1bll1ða�g2Þ�g2bll2ða�g1Þ
g2�g1

F2 � a
H1ðaÞ

� �
Ra

; ð27Þ
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and the optimal investment policy is characterized by the thresholds y�
1 and y�

2 defined

by
y�
2 ¼ Ry�

1 ð28Þ
and

ðy�
1Þ

a ¼ p

bbb2R
bbb1�bbb1R

bbb2bbb2�bbb1 rþd
rþdþl1

þ l1
rþdþl1

þbll2g1�bll1g2
g2�g1

ða�bbb1ÞRbbb2�ða�bbb2ÞRbbb1
ðbbb2�bbb1ÞH1ðaÞ

þ F1 þ
bll1ða�g2Þ�bll2ða�g1Þ

g2�g1
F2 � 1

H1ðaÞ

� �
Ra

:

Proof. See Appendix A. &

Remark. Eq. (18) must have two positive real roots. To see this, define

hðgÞ ¼ H1ðgÞH2ðgÞ � l1l2: ð29Þ
Then, h is continuous and satisfies hð0Þ40; hð�NÞ40; hðNÞ40; and hðbiÞ ¼
�l1l2o0; i ¼ 1; 2: Since b1b2 ¼ �2ðrþ dþ l2Þ=s22o0; it follows that the equation
hðgÞ ¼ 0 has two positive roots by the intermediate value theorem.

5. Discussion and simulations

Theorem 1 characterizes the investment policy that maximizes firm value when the
dynamics of the demand shift are governed by (2). This investment policy takes the
form of a trigger policy and there exists one trigger threshold for each regime. Since
the two regimes are related to one another (through the persistence parameters li),
the trigger function in each regime has to reflect the possibility for the firm to adjust
capacity in the other regime. In other words, the firm has to determine an exercise
strategy for its options to adjust capacity in each regime, while taking into account
the optimal investment strategy in the other regime.
Theorem 1 demonstrates that when determining the timing of investment, the firm

balances the marginal increase in expected cash flows with purchase price of assets.
This trade-off shows up for example in Eq. (26) which can be written as
(remembering by (1) that pk ¼ ya):

F2pkðx�
2; ktÞ ¼ pY ð30Þ

in which x�
2 	 y�

2=k; F2 is defined in Eq. (23), and Y is a positive constant. The left-

hand side of Eq. (30) accounts for the change in the expected present value of the
firm cash flows associated with a marginal increase of capacity in regime 2 when
x ¼ x�

2: That is, using the Feynman Kac theorem, it is possible to show that the

following equality holds:

Fipkðxt; ktÞ ¼ Ext;i

Z þN

0

e�ðrþdÞupkðxtþu; ktþuÞdu

� �
; ð31Þ
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where Ex;ið:Þ is the expectation operator associated with the measure P conditional
on xt ¼ x and et ¼ i: The right-hand side of (30) is the cost associated with an
increase in capacity. As usual for investment decisions under uncertainty, this cost
has two components: The purchase price of capital p and the value of waiting to
invest represented by Y: Thus, for a given productivity of assets, the investment
threshold should decrease with those very parameters that increase Y: At the same
time, the decision to invest should be hastened by smaller costs of exercising the
option. This second effect is directly illustrated by Theorem 1 that shows that the
thresholds y�

i ; i ¼ 1; 2; are linearly increasing in the purchase price of capital p:
An analogy with option pricing theory tells us that input parameters such as the

drift, volatility, and the persistence in each regime should enter the decision to invest.
Consider first the impact of the persistence in regimes on the optimal investment
strategy. Because the persistence in regimes reflects the opportunity cost of investing
in one regime vs. the other, the ratio of the two investment thresholds is affected by
its changes. Specifically, a lower persistence of regime i (i.e. a higher li) reduces the
opportunity cost of investing in regime i; and hence narrows the gap between the
investment thresholds in the two regimes.
Consider next the impact of the drift and volatility parameters. Traditional

investment models show that the option of waiting to invest has more value when
uncertainty is greater (see [24] or [26]). This implies that in each regime i the
investment threshold y�

i increases with si: This also implies that the ratio y�
2=y�

1 (resp.

y�
1=y�

2) increases with the volatility of regime 2 (resp. regime 1) and decreases with the

volatility of regime 1 (resp. regime 2). Additionally, the ratio y�
2=y�

1 decreases with the

drift of the gain process in regime 1 and increases with the drift of the gain process in
regime 2. (This effect essentially arises because of the impact of the drift parameter
on Fi:) Finally, two additional results are worth being mentioned. First, the impact
of the drift and volatility parameters on the value-maximizing investment thresholds
is not as important as in traditional real options model because of the possibility of a
regime shift. Second, whenever lia0; changes in the dynamics of the demand shock
in regime i affect not only the investment threshold in that regime ðy�

i Þ but also the
investment threshold in the other regime ðy�

3�iÞ:
Table 1 provides a number of simulation results relating the ratio R ¼ y�

1=y�
2 of the

two trigger thresholds to input parameter values. The base case environment is as
follows: The risk-free interest rate r ¼ 6%; the depreciation rate d ¼ 0; the drift and
volatility parameters in the first regime m1 ¼ 0:04 and s1 ¼ 0:2; the drift and
volatility parameters in the second regime m2 ¼ 0:01 and s2 ¼ 0:3; the persistence of
the gain process l1 ¼ 0:15 and l2 ¼ 0:1; and the productivity of assets in place
1� a ¼ 0:47:7 Results in Table 1 are consistent with the above discussion. They also
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7The profit function described by Eq. (1) can be approximated as follows. Let the firm production be

Cobb–Douglas and homogeneous of degree one with respect to capital and labor, with capital share 1� f:
Let the demand faced by the firm be isoelastic, with price elasticity 1=ðy� 1Þ: It follows from this

specification that the share of profits going to capital depends on f and y through the following relation:
1� a ¼ ð1� yÞf=ð1� yfÞ: Labor’s share of national income in U.S. postwar data has been relatively
constant over time at f ¼ 0:64 despite the increase in real wages (see [23]). If y ¼ 0:5; we have 1� aD0:47:
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reveal that depending on parameter values, the two investment thresholds may
switch orders.
Some of the effects discussed above are also depicted in Fig. 2 which plots the ratio

R�1 ¼ y�
2=y�

1 as a function of the volatility and persistence of the gain process in the

base case environment (where input parameters are such that y�
24y�

1).

Consistent with the above arguments, Fig. 2 reveals that for a given
degree of persistence in regimes, a higher volatility of the demand shift parameter
in regime 2 increases the gap between the investment thresholds in the two regimes.
For a given volatility of the demand shift parameter, a decrease in the degree of
persistence in regimes (i.e. an increase in li) narrows the gap between the two
thresholds.

6. Implications for capital accumulation

Theorem 1 characterizes the investment policy that maximizes firm value when the
dynamics of the demand shock shift between two states at random times. While this
investment policy takes the form of a trigger policy as in traditional one-regime

ARTICLE IN PRESS

Table 1

Simulation results

r 4% 5% 6% 7% 8% 9%

R 0.7612 0.7704 0.7784 0.7856 0.7920 0.7978

m1 0.02 0.03 0.04 0.05 0.06 0.07

R 0.8064 0.7917 0.7784 0.7664 0.7557 0.7462

m2 0.04 0.08 0.12 0.16 0.2 0.24

R 0.8236 0.8830 0.9373 0.9834 1.0177 1.0434

s1 0.1 0.2 0.3 0.4 0.5 0.6

R 0.6596 0.7784 0.9427 1.1675 1.4557 1.8153

s2 0.1 0.2 0.3 0.4 0.5 0.6

R 1.1545 0.9447 0.7784 0.6397 0.5249 0.4307

l1 0.05 0.1 0.15 0.2 0.25 0.3

R 0.7309 0.7581 0.7784 0.7944 0.8073 0.8181

l2 0.05 0.1 0.15 0.2 0.25 0.3

R 0.7658 0.7784 0.7890 0.7982 0.8062 0.8132

The Table provides comparative statics regarding the ratio of the investment thresholds R ¼ y�1=y�2: Input

parameter values are set as follows: The risk-free interest rate r ¼ 6% the depreciation rate d ¼ 0; the drift

and volatility parameters in regime 1: m1 ¼ 0:04 and s1 ¼ 0:2; the drift and volatility parameters in regime

2: m2 ¼ 0:01 and s2 ¼ 0:3; the persistence of the demand shock l1 ¼ 0:15 and l2 ¼ 0:1; and the

productivity of assets in place a ¼ 0:53: The effects of changing these parameters are also examined.
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models, two major differences arise within the present model. First, this optimal
investment policy is characterized by a different trigger threshold x�

i ðkÞ for each
regime i: This implies that, while there exists a region of the state space, the action

region, where it is optimal to invest independently of the current regime
ðA ¼ fðx; eÞARþþ � f1; 2g : Vkðx; k; eÞXpg), there exists another region, the tran-

sient region, where it is only optimal to invest if e is in state 1 ðR ¼ fðx; eÞARþþ �
f1; 2g : Vkðx; k; 1Þ ¼ p;Vkðx; k; 2ÞopgÞ: Second, because of the possibility of a
regime shift, the optimal trigger threshold in each regime reflects the possibility for
the firm to invest in the other regime. In particular, the transient region R is non
empty whenever lia0; i ¼ 1; 2:
An important question is whether regime shifts actually affect growth and

capital accumulation. To answer this question, it is necessary to examine the
implications of the value-maximizing investment policy for the rate of investment.
One important prediction of the present model is that discrete adjustments in the
firm’s capital stock can occur several times throughout the lifetime of the firm, even
though there are no fixed adjustment costs in the model. This is in contrast with
traditional models of capacity adjustment in which investment is infinitesimal in the
absence of fixed costs and such a discrete adjustment may occur only at the initial
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Fig. 2. Ratio of the investment thresholds. The figure plots the ratio R ¼ y�1=y�2 relating the investment

thresholds in the two regimes as a function of the volatility and persistence of the marginal revenue

product of capital. Input parameter values for the base case environment are set as follows: The risk-free

interest rate r ¼ 6%; the depreciation rate d ¼ 0; the drift and volatility parameters in regime 1: m1 ¼ 0:04

and s1 ¼ 0:2; the drift and volatility parameters in regime 2: m2 ¼ 0:01 and s2 ¼ 0:3; the persistence of the

demand shock l1 ¼ 0:15 and l2 ¼ 0:1; and the productivity of assets in place a ¼ 0:53: In this environment

we have y�24y�1 and R�141: (a) Investment threshold ratio R�1 as a function of s2; (b) investment
threshold ratio R�1 as a function of l2:
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instant if the state of the system is above the optimal investment curve x�
i ðkÞ:

8 For

instance, Dixit and Pindyck [9, p. 362] note: ‘‘At the initial instant the point [of the
system] may be above the [investment] curve either because nonoptimal policies were
followed in the past or because some unexpected shock just moved the curve’’.
The analysis in Sections 3 and 4 shows that when the demand shock follows the

Markov regime switching model (2), such ‘‘unexpected shocks’’ may arise at random
times in the future, inducing lumpy adjustments in capacity. In other words, the
optimal investment behavior of the firm can be potentially characterized by three
regimes. When the demand shock is below the investment curve x�

i ðkÞ in regime i; the
optimal rate of investment is zero. When the demand shock reaches this curve from
below, it is optimal to adjust marginally the capital stock. When the demand shock
reaches the lowest of the two investment curves from above, the adjustment of
capacity follows a regime shift and is discrete. This investment policy is consistent
with the evidence reported by Abel and Eberly [1]. Using panel data to estimate a
model of optimal investment, they find that there is a temporal concentration of
investment—investment is intermittent—and that the rate of investment typically is
very small but occasionally exhibits some spurts of growth.
Interestingly, there is an asymmetry between the highest investment curve and the

lowest one. In fact, because we presume that investment is irreversible, a shift in
capital only occurs if the situation brightens up (a shift from the regime with the
highest curve to the regime with the lowest curve). In addition, the size of the jump in
capacity following a regime shift is not constant but depends on the value of the
demand shock at the time of the regime shift as well as current firm size. This
property of the optimal investment policy provides an important step towards the
‘‘realistic and empirically important feature that units do not always wait for the
same stock disequilibrium to adjust, and that adjustments are not always the same
size across firms and for the same firm over time [...]’’ [7]. To see this, assume that
parameter values are such that HiðaÞ40; Fi40; and x�

24x�
1: In addition, suppose

that the state is currently in regime 2, eðtÞ ¼ 2; and belongs to the transient region,
xtA½x�

1ðkÞ; x�
2ðkÞ: Then, a shift in regimes induces a discrete adjustment in firm size

from k to
%
k; in which

%
k satisfies:

%
k ¼ fkA½k;NÞ : x�

1ðkÞ ¼ xtg: ð32Þ

Eq. (32) shows that the jump in capacity following a regime shift in the transient
region is given by

%
k � k; where

%
k is the capital stock on the curve x�

1ðkÞ such that the
point ðxt; kÞ moves horizontally to this curve. This feature of the optimal investment
policy can be better understood by reformulating the optimal policy in terms of
marginal revenue product of capital (see Section 7). Optimality requires the firm to
adjust its capital stock as needed to maintain the marginal revenue product of capital
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8Models that include fixed costs of adjustments also have jumps in the capital stock. See for example [4]

or [7]. The former paper generalizes the results in Hayashi [20] to the stochastic case and characterizes the

optimal investment policy in the presence of adjustment costs. The latter develops an ðS; sÞ model of
investment in which adjustment costs are time-varying and capacity adjustments are lumpy and differ in

size.
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ya ¼ ðxt=kÞa equal to ðy�
1Þ

a given in Theorem 1. Using (32), we see that optimality

then implies an increase in capacity from k to
%
k defined by

xt

%
k
¼ x�

1ð
%
kÞ

%
k

¼ y�
1

or

%
k ¼ xt

R

ða�b1ÞRb2�ða�b2ÞRb1

ðb2�b1ÞH2ðaÞ þ F2 þ l1ða�g2Þ�l2ða�g1Þ
g2�g1

F1 � 1
H2ðaÞ

	 

Ra

p b2Rb1�b1Rb2

b2�b1
rþd

rþdþl2
þ l2

rþdþl2
þ l2g1�l1g2

g2�g1

	 

2
4

3
5
1
a

: ð33Þ

Thus, an additional implication of the model is that the size of the jump following a
regime shift is increasing with the contemporaneous value of the demand shock x:
Since marginal q also increases with x; this in turn implies that the size of the jump
increases with marginal q:

7. Marginal Q and the user cost of capital

The analysis so far has focused on the characterization of the dynamic behavior of
investment when changes in the demand shift parameter are governed by (2).
Another question of interest relates to the determinants of marginal q and the user
cost of capital in such an environment.

Marginal q: Section 4 characterizes the investment policy that maximizes
firm value. This investment policy relies on the boundary conditions (14)
and (15) that ensure the smoothness of the marginal value functions at the
selected trigger levels. In addition to providing a solution to the firm’s problem,
the system of ODEs (14) and (15) allows for a determination of the marginal
valuation of capital, i.e. scaled marginal q: In particular, we have the following
result.

Theorem 2. Assume that HiðaÞ40; Fi40; and y�
24y�

1 where the trigger levels y�
1 and

y�
2 are defined in Theorem 1. Then, the marginal valuation of capital in regime i is given

by

Vkðx; k; iÞ ¼ qiðyÞ; i ¼ 1; 2; ð34Þ
where

q1ðyÞ ¼
A1y

g1 þ A2y
g2 þ F1y

a; ypy�
1;

p; yXy�
1;

�
ð35Þ

and

q2ðyÞ ¼

l1A1y
g1 þ l2A2y

g2 þ F2y
a; ypy�

1;

C1y
b1 þ C2y

b2 þ ya

H2ðaÞ
þ l2p
rþ dþ l2

; y�
1pypy�

2;

p; yXy�
2:

8>><
>>: ð36Þ
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In Eqs. (35) and (36) the factors Hi; gi; bi and li are determined by Eqs. (18)–(20). In

addition, the factors A1; A2; C1 and C2 are defined by

A1 ¼
1

ðg2 � g1Þðy�
1Þ

g1 ½g2p þ ða� g2ÞF1ðy�
1Þ

a; ð37Þ

A2 ¼
1

ðg1 � g2Þðy�
1Þ

g2 ½g1p þ ða� g1ÞF1ðy�
1Þ

a ð38Þ

and

C1 ¼
1

ðb2 � b1Þðy�
2Þ

b1

ða� b2Þðy�
2Þ

a

H2ðaÞ
þ b2ðrþ dÞp

rþ dþ l2

� �
; ð39Þ

C2 ¼
1

ðb1 � b2Þðy�
2Þ

b2

ða� b1Þðy�
2Þ

a

H2ðaÞ
þ b1ðrþ dÞp

rþ dþ l2

� �
: ð40Þ

Discussion: Theorem 2 provides a characterization of the marginal valuation of
capital when the dynamics of the gain process are governed by the Markov regime
switching model (2) and the firm follows the investment policy derived in Theorem 1.
These expressions generalize those that characterize marginal q in the diffusion case
to incorporate possible regime shifts in the dynamics of operating profits. Indeed, it
is immediate to see that when l1 ¼ l2 ¼ 0; Eqs. (35) and (36) simplify to (see for
example the value of marginal q in the transient region):

qðyÞ ¼ A
y

y�

� �b

þ ya

rþ d� aðmþ dÞ � 1
2
s2aða� 1Þ

ð41Þ

in which

A ¼ a
a� b

po0

and y� is the value-maximizing investment threshold defined by

ðy�Þa ¼ b
b� a

rþ d� aðmþ dÞ � 1
2
s2aða� 1Þ

� �
p; ð42Þ

where b is the positive root of the quadratic equation

rþ d� ðmþ dÞb� 1
2
s2bðb� 1Þ ¼ 0: ð43Þ

Eq. (41) shows that in traditional models of capacity choice,9 the marginal valuation
of capital has two components: The contribution of this marginal unit to the profit
flow (second term on the right-hand side) and the marginal option value to adjust
capacity (first term on the right-hand side). Note that this second component is
negative since when the firm invests in a marginal unit of capital it gives up the
valuable option of waiting to invest in this unit.
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Theorem 2 reveals that the expression for marginal q is more complex when
changes in demand shift parameter are governed by Eq. (2). In the inaction region
for example, marginal q has three components. First, it incorporates the expected
present value of the profits generated by the marginal unit of capital. Second, it
reflects the change in marginal q due to a potential regime shift. Third, it captures the
change in marginal q arising if and when the decision variable reaches the investment
boundary y�

i :
In the transient region ½y�

1; y�
2; the marginal valuation of capital has four

components and can be written as

q2ðyÞ ¼ C1y
b1|fflffl{zfflffl}

ð1Þ

þC2y
b2|fflffl{zfflffl}

ð2Þ

þ ya=H2ðaÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð3Þ

þ l2p=ðrþ dþ l2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð4Þ

:

The first term on the right-hand side of this equation accounts for the change in
value arising if and when the demand shift parameter reaches the investment
boundary y�

2: The second term represents the change in value arising if and when the

demand shift parameter reaches the lower boundary of the transient region. The
third term is the expected present value of the profits generated by the marginal unit
of capital. The fourth term reflects the probability weighted change in value arising
from a regime shift.
Finally, it is interesting to note that when the state variable reaches the lower

boundary of the transient region, there is a single exogenous change in the marginal
valuation of capital. This change in value arises from the fact that a switch in the
process eðtÞ does not trigger the investment in the inaction region whereas it triggers
investment in the transient region. When the value of the state variable reaches the
action region, this exogenous change is accompanied by an endogenous change. In
that case, the firm exercises its option to adjust capacity marginally and the value-
maximizing policy is determined in Theorem 1.

User cost of capital: In standard neoclassical models, the capital stock is adjusted
continuously so as to maintain the marginal revenue product of capital equal to the
user cost of capital. With irreversibility and uncertainty, there exists a user cost of
capital c� for purchasing capital and the optimal policy is to purchase capital as
needed to prevent the marginal revenue product of capital from rising above c�:
Within the present model, the user cost of capital is defined by

ci 	 ðrþ dÞqiðyÞ �
1

dt
Ey;iðdqiðyÞÞ; i ¼ 1; 2: ð44Þ

As noted by Abel and Eberly [3], with uncertainty and irreversibility it is not the
purchase price of capital which is relevant for the user cost of capital but rather its
shadow price, qðyÞ: Moreover, as shown by Eq. (14), these two prices differ unless
the firm is actually purchasing capital10. Applying Itô’s lemma to qiðyÞ yields:

ci ¼ ðrþ dÞqiðyÞ � ðmi þ dÞyq0
iðyÞ �

1

2
s2i y2t q00

i ðyÞ � li½q3�iðyÞ � qiðyÞ: ð45Þ
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10 In the analysis of Jorgenson [21], investment is costlessly reversible and marginal q is always equal to

the purchase/sale price of capital.
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Plugging this expression for the user cost of capital in the system of ODEs yield

ci ¼ ya; i ¼ 1; 2: ð46Þ

Eq. (46) demonstrates that, for a given value of the demand shift parameter in the
inaction region, the user cost of capital does not depend on the current regime. By
contrast, the potential range of values for the user cost of capital is regime
dependent. In particular, the user cost of capital relevant for purchasing capital is

c�1 ¼ ðy�
1Þ

a in regime 1 whereas it is c�2 ¼ ðy�
2Þ

a4c�1 in regime 2. This feature of the
model in turn implies that the marginal revenue product of capital belongs to ð0; c�i 
in regime i: In other words, the set of values for the marginal revenue product of
capital in regime 1 is strictly included in the set of values for the marginal revenue
product of capital in regime 2. In addition, for yA½y�

1; y�
2 the ratio of the marginal

revenue product of capital in regime 2 to the marginal revenue product of capital in
regime 1 deviates from 1 and increases with y until the point y ¼ y�

2 where it reaches a

maximum of R�a with R 	 y�
1=y�

2: Because the ratio of the two investment thresholds
depend on the drift and volatility parameters of the two regimes and the persistence
in regimes, so does the ratio of the two marginal revenue product of capital in the
transient region. This result again emphasizes the regime-dependent nature of the
optimal policy.

8. Conclusion

This paper has analyzed investment decisions under uncertainty when the
dynamics of the decision variable—growth rate and diffusion coefficient—shift
between different states at random times. The main analytical result of the paper is
that the value-maximizing investment policy is such that in each regime the firm’s
investment policy is optimal, conditional on the optimal investment policy in the
other regimes. This optimal investment policy is characterized by a different
investment curve for each regime. Moreover, because of the possibility of a regime
shift, the investment curve in each regime reflects the possibility for the firm to invest
in the other regime.
To determine the implications of the model for investment decisions and capital

accumulation, we showed that the state space of the dynamic investment problem
can be partitioned into various domains including an inaction region where no
investment occurs. Outside of this region, the optimal rate of investment can be in
one of two regimes: infinitesimal or lumpy. Investment is infinitesimal following an
increase of the firm cash flows in a given regime. Investment is lumpy following a
shift from the regime with the highest investment curve to the regime with the lowest
one. That is, the model predicts that with irreversibility and regime shifts investment
is intermittent and increases with marginal q: Moreover, the optimal rate of
investment typically is very small but occasionally exhibits some spurts of capacity
expansion. These predictions are generally consistent with the available empirical
evidence on firms’ investment behavior (see [7] or [1]). The paper also provided an
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analysis of the determinants of marginal q and the user cost of capital in such an
environment.
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Appendix A. Proof of Theorem 1

We present the case where y�
24y�

1: The other case follows from a symmetric

argument. The general solutions to Eqs. (8) and (9) are

qiðyÞ ¼
X4
j¼1

Ai;jy
gj þ Fiy

a; i ¼ 1; 2: ðA:1Þ

We set gj40 for j ¼ 1; 2 and gjo0 for j ¼ 3; 4 by convention. The no-bubbles

condition (13) implies that Ai;j ¼ 0 for j ¼ 3; 4 which in turn implies that Eq. (A.1)

reduces to

qiðyÞ ¼ Ai;1y
g1 þ Ai;2y

g2 þ Fiy
a; i ¼ 1; 2:

Substituting this solution into (8) and (9) and matching coefficients yield the
expressions for Fi and gj in (23) and (18), and A2;j ¼ ljA1;j with

lj ¼
1

l1
rþ dþ l1 � gjðm1 þ dÞ � 1

2
gjðgj � 1Þs21

� �
:

Solving Eq. (10) yields: For yAðy�
1ðkÞ; y�

2ðkÞÞ;

q2ðyÞ ¼ C1y
b1 þ C2y

b2 þ ya

H2ðaÞ
þ l2p
rþ dþ l2

;

where b1 and b2 are the two roots of the quadratic equation H2ðbÞ ¼ 0:
The above set of equations shows that we have 6 unknowns: A1;1; A1;2; C1; C2; y�

1;
and y�

2: We thus need 6 equations to identify these variables. They are given by the
boundary conditions (14)–(17). Plugging the above functions qiðyÞ in the boundary
conditions (14) and (15) yields

A1;1ðy�
1Þ

g1 þ A1;2ðy�
1Þ

g2 þ F1ðy�
1Þ

a ¼ p; ðA:2Þ

g1A1;1ðy�
1Þ

g1�1 þ g2A1;2ðy�
1Þ

g2�1 þ aF1ðy�
1Þ

a�1 ¼ 0; ðA:3Þ
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C1ðy�
2Þ

b1 þ C2ðy�
2Þ

b2 þ ðy�
2Þ

a

H2ðaÞ
þ l2p
rþ dþ l2

¼ p ðA:4Þ

b1C1ðy�
2Þ

b1�1 þ b2C2ðy�
2Þ

b2�1 þ aðy�
2Þ

a�1

H2ðaÞ
¼ 0: ðA:5Þ

The solution to this set of equations is

A1;1 ¼
1

ðg2 � g1Þðy�
1Þ

g1 ½g2p þ ða� g2ÞF1ðy�
1Þ

a; ðA:6Þ

A1;2 ¼
1

ðg1 � g2Þðy�
1Þ

g2 ½g1p þ ða� g1ÞF1ðy�
1Þ

a; ðA:7Þ

C1 ¼
1

ðb2 � b1Þðy�
2Þ

b1

ða� b2Þðy�
2Þ

a

H2ðaÞ
þ b2ðrþ dÞp

rþ dþ l2

� �
; ðA:8Þ

C2 ¼
1

ðb1 � b2Þðy�
2Þ

b2

ða� b1Þðy�
2Þ

a

H2ðaÞ
þ b1ðrþ dÞp

rþ dþ l2

� �
: ðA:9Þ

Substituting these expressions in conditions (16) and (17) yields with Ry�
2 ¼ y�

1:

ðy�
2Þ

a ¼ p

b2Rb1�b1Rb2

b2�b1
rþd

rþdþl2
þ l2

rþdþl2
þ l2g1�l1g2

g2�g1

F2Ra þ ða�b1ÞRb2�ða�b2ÞRb1

ðb2�b1ÞH2ðaÞ þ l1ða�g2Þ�l2ða�g1Þ
g2�g1

F1Ra � Ra

H2ðaÞ

ðA:10Þ

and

ðy�
2Þ

a ¼ p

b1b2ðRb1�Rb2 Þ
b2�b1

rþd
rþdþl2

þ g1g2ðl2�l1Þ
g2�g1

aF2Ra þ b2ða�b1ÞRb2�b1ða�b2ÞRb1

ðb2�b1ÞH2ðaÞ þ g1l1ða�g2Þ�g2l2ða�g1Þ
g2�g1

F1Ra � aRa

H2ðaÞ

: ðA:11Þ

Combining (A.10) with (A.11) yields Eq. (24).
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