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Abstract

This paper presents an analytically tractable continuous-time general equilibrium model
with investment irreversibility and fixed adjustment costs. In the model, there is a contin-
uum of firms that are subject to idiosyncratic shocks to capital. Although the presence of
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capital stock, depending on the degree of idiosyncratic uncertainty. An increase in this
uncertainty may raise equilibrium aggregate capital, but reduce welfare. An unexpected
permanent change in the corporate income tax rate affects the investment trigger and tar-
get values, and hence the size and rate of capital adjustment. Following this tax policy,
the percentage changes in equilibrium quantities are larger when fixed adjustment costs are
larger. These changes are significantly smaller in a general equilibrium model than in a
partial equilibrium model.
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1 Introduction

Recent empirical studies have documented that nonconvexities of microeconomic capital ad-

justment and irreversibility of investment are widespread phenomena. Examining a 17-year

sample of large, continuing US manufacturing plants, Doms and Dunne (1998) find that typi-

cally more than half of a plant’s cumulative investment occurs in a single episode. In addition,

they find that long periods of relatively small changes are interrupted by investment spikes.

Using the Longitudinal Research Database, Cooper and Haltiwanger (2006) find that about

8 percent of observations entail an investment rate near zero. These observations of inaction

are complemented by periods of rather intensive adjustment of the capital stock. Both studies

indicate the existence of nonconvexities of adjustment costs. Using data from the equipment

auction of an aerospace firm, Ramey and Shapiro (2001) find that machine tools sell at about

31 percent of their purchase value while structural equipment sell at only 5 percent, suggesting

a high degree of investment irreversibility.

Given these pieces of evidence, an important question is whether micro-level nonconvexi-

ties and irreversibility matter for aggregate macroeconomic behavior. Some researchers (e.g.,

Bachmann et al. (2006), Khan and Thomas (2003, 2007), and Thomas (2002)) study the

implications of lumpy investment for business cycles in general equilibrium, while Veracierto

(2002) examine the implications of irreversibility.1 In this paper, I instead focus on the role of

nonconvexities and irreversibility in long-run capital accumulation and their implications for

tax policy. Aggregation of micro-level behavior of heterogenous firms requires researchers to

analyze the cross-sectional distribution of firms over state variables. This analysis is difficult.

As result, researchers typically use complicated numerical methods.

By contrast, in this paper, I build an analytically tractable continuous-time general equi-

librium model. The model features a continuum of firms, a representative household, and a

government. Firms pay corporate income taxes. Tax revenues are rebated to the household in a

lump-sum manner. A fraction of firms do not face any investment frictions, while the remaining

firms are subject to fixed adjustment costs and investment irreversibility. I focus on a long-run
1Early partial equilibrium models of aggregate investment with micro-level lumpiness include Caballero and

Engel (1999), Caballero et al. (1995), and Cooper et al. (1999).
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stationary equilibrium for the economy. For this purpose, I abstract from aggregate uncertainty

and assume that uncertainty is idiosyncratic so that a law of large number can be applied. In

order to derive a closed-form solution for the stationary distribution of firms, I assume that

idiosyncratic (Brownian motion) shocks are specific to capital so that firms are heterogeneous

in capital only. As a result, a single state variable (capital) describes a firm’s decision problem.

This feature allows me to derive a sharp characterization of a firm’s investment problem. This

characterization in turn simplifies the derivation of a stationary equilibrium.

I first solve a firm’s optimal investment problem in partial equilibrium by fixing prices. I

characterize the optimal investment policy by a trigger value and a target value such that the

firm adjusts its capital stock to the target value whenever the capital stock falls to the trigger

value. Given the trigger and target values, I characterize the long-run stationary distribution of

capital, and hence the long-run average capital stock. I then solve analytically the approximate

trigger and target values by the Taylor expansion for a small adjustment cost. This analytical

approximate solution allows me to derive sharp comparative results regarding the role of fixed

costs and irreversibility and the effects of an unexpected permanent corporate tax change.

After analyzing a single firm’s decision problem, I turn to aggregate behavior in general

equilibrium. I show that although the presence of investment frictions (irreversibility or fixed

costs) lowers consumer welfare, it may raise or reduce the long-run average capital stock. In

particular, the long-run average capital stock in the presence of both fixed costs and irreversibil-

ity is smaller than that in the presence of irreversibility only. This result holds true both in

general and partial equilibrium. However, the long-run average capital stock without any in-

vestment frictions may be smaller or higher than that with investment frictions depending on

the level of the volatility of capital shocks. In addition, this relation may be opposite in a gen-

eral equilibrium analysis to that in a partial equilibrium analysis. I also show that an increase

in the volatility of capital shocks may raise equilibrium aggregate capital, but reduce welfare

in models with investment frictions.

I now consider the effects of an unexpected permanent corporate income tax change on

aggregate capital accumulation. I show that a change in the corporate income tax rate changes

the investment trigger and target values. As a result, it changes the size and rate of capital
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adjustment. That is, changes in corporate tax rate have effects from both extensive and in-

tensive margins. I also show that the impact of a corporate tax change is larger when fixed

adjustment costs are larger. Specifically, the percentage changes in economic variables such

as capital and output are larger when fixed costs are larger. Finally, I show that the partial

equilibrium impact of tax changes is much larger than the general equilibrium impact, revealing

that the general equilibrium price feedback is important for a long-run tax policy analysis.

My paper is related to Abel and Eberly (1998, 1999). Abel and Eberly (1998) analyze a

single-firm model with investment irreversibility and fixed adjustment costs. They show that

the quasi-fixity of capital eliminates the dichotomy between factor mix and scale, and can give

rise to labor hoarding. They do not consider long-run capital accumulation and tax policy. Abel

and Eberly (1999) study the effects of irreversibility on long-run capital accumulation. They

do not consider fixed adjustment costs and tax policy. Importantly, unlike my heterogeneous-

firm general-equilibrium framework, the preceding two studies analyze a single-firm partial-

equilibrium framework.

Although the effects of corporate tax policy on capital accumulation with convex adjustment

costs have been extensively studied in the literature (e.g., Abel (1982) and Auerbach (1989)),

to the best of my knowledge, my paper provides the first analysis of the effects of corporate

tax policy in the presence of nonconvex adjustment costs.

The remainder of the paper proceeds as follows. Section 2 presents the model. Section

3 presents the partial equilibrium analysis, while Section 4 turns to the general equilibrium

analysis. Section 5 concludes. Technical details and proofs are relegated in appendices.

2 The Model

I introduce corporate income tax into a single-firm investment model with fixed adjustment

costs and irreversibility (e.g., Abel and Eberly (1998)), and embed this model in a general

equilibrium framework. The model economy consists of a continuum of production units, a

representative household, and a government. I refer to a production unit as a firm. Time is

continuous and the horizon is infinite. Assume that there is no aggregate uncertainty and that

firms face idiosyncratic shocks to capital. By a law of large numbers, all aggregate quantities and
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prices are deterministic over time, although at the firm level each firm still faces idiosyncratic

uncertainty. I will focus on steady-state stationary equilibrium in which all aggregate variables

are constant over time.2

2.1 Firms

There are two types of firms in the economy, with one type of firms incurring irreversibility and

fixed adjustment costs and the other type not facing any investment frictions. All firms pay

corporate income tax at the flat rate θ. All firms are ex ante identical in terms of production

function and are subject to idiosyncratic shocks specific to capital only. They differ ex post in

that they may experience different histories of shocks. Formally, if a firm does not make any

investment, its capital stock evolves according to the following process:

dkt = −δktdt + ktσdWt, (1)

where σ > 0, δ is the depreciation rate, and W is a standard Brownian motion specific to the

firm. Different firms experience independent Brownian motion shocks. These shocks are at the

firm level and there is no aggregate shock. Note that my modeling of uncertainty is different

from most papers in the literature where uncertainty is typically modeled as productivity

shocks or demand shocks (e.g., Abel and Eberly (1998)).3 As will be seen below, this modeling

simplifies analysis significantly because it makes the firm’s decision problem a one-dimensional

one.

Each firm combines labor and capital to produce output according to a decreasing-returns-

to-scale production function given by F (k, l) , where k and l denote capital and labor factors,

respectively. Assume that F (·) takes the following Cobb-Douglas form:

F (k, l) = kαk lαl , αk, αl ∈ (0, 1) and αk + αl < 1. (2)

I can then derive the operating profit function π (k; w) by solving the following static labor
2Hopenhayn and Rogerson (1993) show that this stationary equilibrium framework is useful for the study

of long-run tax policy. Unlike their model, I do not consider entry and exit in this paper. Other studies also
consider a similar framework (see, e.g., Gomes (2001) and Miao (2005)).

3My modelling of uncertainty is similar to that in Caballero (1993). Unlike my paper, Caballero (1993) also
considers aggregate shocks.
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choice problem:

π (k;w) = max
l≥0

{F (k, l)− wl} , (3)

where w denotes the steady-state constant wage rate. This problem gives the labor demand:

ld (k; w) =
(αl

w

) 1
1−αl kα, (4)

the output supply:

y (k; w) = F
(
k, ld (k; w) ;w

)
=

(αl

w

) αl
1−αl kα, (5)

and the operating profit function:

π (k; w) = H (w) kα (6)

where

H (w) =
(αl

w

) αl
1−αl (1− αl) , (7)

and

α =
αk

1− αl
. (8)

Firms may make investments to adjust their capital stock. A fraction 1 − λ of firms do

not incur any investment frictions. These firms’ decision problems are standard and described

in Appendix A. In Appendix A, I show that the optimal frictionless capital stock is such that

the marginal revenue product of capital is equal to the tax-adjusted user cost of capital, as

summarized in the following:

Lemma 1 When a firm does not face any investment frictions, it adjusts capital stock to the

level k∗ satisfying

π′ (k∗; w) =
r

1− θ
+ δ. (9)

For the remaining firms, investment is irreversible and subject to fixed adjustment costs.

We follow Khan and Thomas (2003, 2007) and measure fixed adjustment costs as real wage

costs.4 In particular, whenever a firm makes investments, it must hire labor ξ > 0 and pay
4There are several ways to model fixed adjustment costs. Fixed costs may be proportional to the demand

shock (Abel and Eberly (1998)), profits (Caballero and Engel (1999) and Cooper and Haltiwanger (2006)), or
the capital stock (Cooper and Haltiwanger (2006)). Caballero and Engel (1999) introduce randomness to the
fixed cost and study a generalized (S,s) approach.
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fixed costs ξw. Unlike Khan and Thomas (2003, 2007), I assume ξ is a constant parameter. As

is well known in the investment literature (e.g., Abel and Eberly (1998)), when facing fixed

costs, the firm makes discrete investments ∆kτi at distinct points in time τi, i = 1, 2, .... At the

investment time, the capital stock jumps such that:

kτi = kτi− + ∆kτi . (10)

Because investment is irreversible, ∆kτi > 0.

Firms maximize the present value of profits. We can formulate a firm’s decision problem in

the presence of fixed adjustment costs as follows:

V (k) = maxE

[∫ ∞

0
e−rt ((1− θ)π (kt; w) + θδkt) dt−

∞∑

i=1

e−rτi (∆kτi + ξw)

]
, (11)

where V is the value function, and r > 0 is the steady-state constant interest rate. Note that

depreciation has tax allowance. In this problem, the capital sock is the only state variable. I

will show in the next section that whenever a firm makes capital adjustment, the adjustment

amount is constant, i.e., ∆kτi = ∆k for all τi. In addition, the rate of adjustment is also equal

to a constant value Γ. By a law of large numbers, we can interpret this rate as the number of

adjusting firms in the steady state.

2.2 Aggregation

Because there is a continuum of firms that are subject to idiosyncratic shocks, there is a cross

sectional distribution of firms over the state k. We focus on the steady state in which the cross

sectional distribution does not change over time. In this case, we refer to it as a stationary

distribution. As we show in Lemma 1, firms will adjust capital to the level k∗ if they do not

face investment frictions. Thus, we only need to characterize the stationary distribution of

firms that are subject to irreversibility and fixed adjustment costs, denoted by µ∗ (·; w) . Given

this distribution, we can compute the following aggregate quantities:

• aggregate capital stock

K (µ∗; w) = λ

∫
kµ∗ (dk; w) + (1− λ) k∗, (12)
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• aggregate output supply

Y (µ∗; w) = λ

∫
y (k; w) µ∗ (dk; w) + (1− λ) y (k∗; w) , (13)

• aggregate labor demand

Ld (µ∗; w) = λ

[∫
ld (k; w) µ∗ (dk; w) + Γξ

]
+ (1− λ) ld (k∗; w) , (14)

• aggregate investment

I (µ∗;w) = λΓ∆k + (1− λ) δk∗. (15)

2.3 Household

There is a representative agent in the economy. The agent trades shares of the firms and a

riskfree bond in zero supply. He consumes and supplies labor to the firms. Because there is no

aggregate uncertainty, his preferences are represented by the deterministic utility function:
∫ ∞

0
e−βtU (Ct, Lt) dt, (16)

where β denotes the subjective discount rate, Ct denotes the consumption rate, and Lt denotes

the labor rate. Assume that U is strictly increasing, strictly concave, continuously differentiable,

and satisfies the usual Inada condition.

As is well known, in order for consumption to be constant over time in a steady state,

the interest rate r must be equal to the discount rate β. In addition, in the steady state, the

agent’s problem reduces to the following static problem (e.g., Gomes (2001) and Hopenhayn

and Rogerson (1993)):

max
C,L

U (C, L) (17)

subject to the static budget constraint:

C = wL + D + T, (18)

where D denotes aggregate dividends and T denotes government transfers. Aggregate dividends

are equal to total after-tax profits minus total investment spending and fixed adjustment costs:

D = λ

∫
[(1− θ) π (k; w) + θδk] dµ∗ (k)− λΓ (∆k + wξ) (19)

+ (1− λ) (1− θ) (π (k∗; w)− δk∗) .
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The consumption-labor choice implies the first-order condition: −U2 (C,L) = wU1 (C, L) . For

simplicity, I use the following utility specification commonly used in macroeconomics (e.g.,

Gomes (2001) and Hopenhayn and Rogerson (1993)):

U (C, L) = log C + h (1− L) . (20)

In this case, the first-order condition becomes

hC = w. (21)

2.4 Government

Because the focus of the paper is on the distortionary effect of corporate income tax on invest-

ment, we assume that the tax revenue collected by the government is rebated to the household

in a lump-sum manner. Thus, we abstract from the wealth effect and the other distortionary

effect associated with using distortionary taxation to finance government spending on goods

and services.5 Because the government collects corporate income taxes, and transfers these tax

revenues to the household, the government budget constraint is given by

T = λθ

∫
(π (k;w)− δk)µ∗ (dk; w) + (1− λ) θ (π (k∗; w)− δk∗) .

2.5 Stationary Equilibrium

A stationary competitive equilibrium consists of a constant wage rate w, and a constant interest

rate r = β, capital adjustment level ∆k, the rate of adjustment Γ, a stationary distribution µ∗

of firms that are subject to investment irreversibility and fixed costs, and aggregate quantities,

C, I (µ∗; w) , Y (µ∗; w) , Ld (µ∗;w), and L such that (i) each firm solves problem (11); (ii) the

agent chooses C and L to maximize utility (17) subject to budget constraint (18); (iii) µ∗ is a

stationary distribution and aggregate quantities satisfy equations (13)-(15); and (iv) markets

clear:

Ld (µ∗; w) = L, (22)

C + I (µ∗; w) = Y (µ∗;w) . (23)
5Incorporating government spending would complicate our analysis since a tax cut must eventually be financed

with some combination of other tax increases or spending cuts. The analysis of how the dividend and capital
gains tax cut is financed is beyond the scope of the present paper and is left for future research.
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3 Partial Equilibrium Analysis

In order to analyze the general equilibrium effects of corporate income tax, I first analyze a

single firm’s decision problem in partial equilibrium. I thus fix the wage rate w and suppress

it without risk of confusion throughout this section.

3.1 Optimal Investment Policy

To solve the firm’s problem (11), we note that the value function V satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation when the firm does not make capital adjustment:

rV (k) = (1− θ) π (k; w) + θδk − δkV ′ (k) +
σ2k2

2
V ′′ (k) . (24)

This equation has an intuitive interpretation. The expression on the left-hand side is the

require return. This return is equal to the sum of three components given in the right-hand

side of equation (24). The first component is after-tax profits (including depreciation allowance)

(1− θ) π (k; w) + θδk. The second component is the loss due to capital depreciation, δkV ′ (k).

The third component is the expected capital gain σ2k2V ′′ (k) /2.

The general solution to equation (24) is given by

V (k) = G1k
βN + G2k

βP + Π(k) , (25)

where G1 and G2 are coefficients to be determined, Π (k) is the present value of after-tax profits

given by:

Π (k) =
(1− θ) H (w) kα

r + αδ + α (1− α) σ2/2
+

δθk

r + δ
, (26)

and βN and βP are the negative and positive roots of the equation:

v (β) ≡ r + δβ +
σ2

2
β (1− β) = 0. (27)

I next derive boundary conditions. Because investment is irreversible and subject to fixed

adjustment costs, there are two values kb and kc satisfying the following properties: When its

capital stock falls below to the trigger value kb, the firm immediately makes investment to bring

its capital stock to the target level kc. When its capital stock is higher than kb, the firm does
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not adjust capital, and simply lets capital depreciate. At the trigger kb and the target kc, the

value function satisfies the following value-matching condition:

V (kb) = V (kc)− (ξw + (kc − kb)) . (28)

This equation says that the increase in firm value after the purchase of capital must be equal to

the sum of the fixed costs and the purchase spending. In addition, the following smooth-pasting

conditions must also be satisfied:

V ′ (kb) = 1, (29)

V ′ (kc) = 1. (30)

These equations say that the marginal valuation of capital must be equal to the purchase price

of capital immediately before and immediately after investing.

The final boundary condition is a no-bubble condition. Capital can be arbitrarily large, but

firm value cannot explode relative to its present value of profits. This implies that G2 = 0. We

now have three equations (28)-(30) for three unknowns G1, kb, and kc. Because these equations

do not permit a closed-form solution, I first derive an analytical approximate solution in the

next subsection, and then consider a numerical solution in Section 3.2.

3.2 Approximate Solution for the Investment Trigger and Target

To derive an approximate solution, I use the general solution (25) to rewrite the three boundary

conditions as follows:

G1βNkβN−1
b + Π′ (kb) = 1,

G1βNkβN−1
c + Π′ (kc) = 1,

G1k
βN

b + Π(kb) = G1k
βN
c + Π (kc)− (ξw + (kc − kb)) .

Eliminating G1, I obtain a system of two equations:

J1 (kb, kc) = 0, (31)

J2 (kb, kc) = 0, (32)
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where I define:

J1 (kb, kc) ≡
(
1−Π′ (kb)

)
kβN−1

c − (
1−Π′ (kc)

)
kβN−1

b , (33)

J2 (kb, kc) ≡ 1−Π′ (kc)
βN

kc + Π (kc)− 1−Π′ (kb)
βN

kb −Π (kb)− (ξw + (kc − kb)) . (34)

In Appendix C, I follow Abel and Eberly (1998) and derive the Taylor series expansions of

J1 (kb, kc) and J2 (kb, kc) . I then set these expansions equal to zero to solve for the approximate

solutions for kb and kc. As in Abel and Eberly (1998), I choose the irreversible investment trigger

as the point around which to expand, and choose the third order of the expansion.

When the fixed adjustment cost ξ = 0, investment is purely irreversible. The following

lemma characterizes the optimal irreversible investment policy (see Appendix B for a proof):

Lemma 2 The optimal irreversible investment policy is characterized by an investment trigger

ki given by:

ki =
[

(1− βN )
(α− βN ) (r + δ)

v (α)
αH (w)

(
r

1− θ
+ δ

)] 1
α−1

, (35)

such that the firm buys capital to prevent its capital stock from falling below the trigger ki.

When its capital stock is higher than ki, the firm does not adjust its capital stock. The trigger

value ki is lower than the optimal frictionless capital stock k∗. The trigger value ki decreases

with θ.

To interpret equation (35), I rewrite it as

π′ (ki; w) =
(1− βN ) v (α)

(α− βN ) (r + δ)

(
r

1− θ
+ δ

)
. (36)

This equation says that the marginal revenue product of capital at ki is equal to the tax-adjusted

user cost of capital. The tax-adjusted user cost of capital consists of the tax-adjusted interest

rate and the depreciation rate. Compared with case of frictionless investment characterized

in Lemma 1, the tax-adjusted user cost of capital in the presence of irreversibility contains a

multiplicative factor (1− βN ) v (α) / [(α− βN ) (r + δ)] . In Appendix B, I show that this factor

is greater than 1, which reflects the option value of waiting. Equation (36) also reveals that an

increase in the corporate income tax rate raises the tax-adjusted user cost of capital, and thus

reduces the trigger value ki.
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I now set k̃b = kb − ki and k̃c = kc − ki. The following proposition characterizes the

approximate solution.

Proposition 1 When ξ is sufficiently small,

k̃c ≈
[

3
2

(
1− δθ

r + δ

)−1 ξwk2
i

(1− α) (1− βN )

] 1
3

> 0. (37)

and

k̃b ≈ −k̃c < 0. (38)

The value k̃b is the wedge between the trigger value kb in the presence of fixed costs and the

trigger value ki in the absence of fixed costs. Proposition 1 shows that the relationship between

this wedge and fixed costs is cubic, a result similar to Abel and Eberly (1998). It is easy to

show that the derivative of the wedge k̃b with respect to the fixed cost parameter ξ is minus

infinity when evaluated at ξ = 0. This means that even a very small value of fixed cost will

lower the trigger value substantially below ki. A similar result holds for the wedge k̃c between

the target kc and the trigger ki.

3.3 The Size and Rate of Capital Adjustment

In the presence of irreversibility and fixed adjustment costs, optimal investment is lumpy and

is characterized by a trigger value kb and a target value kc. I now use the approximate solution

to the trigger and target values derived in the previous subsection to analyze properties of the

size and rate of capital adjustment.

I start with the size of capital adjustment kc − kb. The following proposition shows the

comparative statics result.

Proposition 2 Suppose ξ is sufficiently small. Then the size of capital adjustment kc−kb ≈ 2k̃c

increases with fixed cost ξ. It decreases with the corporate income tax rate θ if and only if

2r > δ (1− θ) (1− α) . (39)

When the fixed adjustment cost is higher, the firm must make a larger capital adjustment in

order to raise capital stock and hence profits to a higher level so that the increase in profits can
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cover the larger fixed costs. The effect of the corporate income tax rate θ on the size of capital

adjustment is ambiguous. The intuition is that an increase in θ lowers the after-tax profits, but

also lowers the tax allowance on depreciation. If the depreciation rate is small enough the first

effect dominates so that the firm prefers to reduce the size of capital adjustment in response

to an increase in θ.

I next turn to the rate of capital adjustment. I first derive the duration between successive

capital adjustments. In Section 3.1, I show that the capital stock is equal to kc immediately

after investing, and the next time investment occurs when the capital stock first falls to the

trigger value kb. Thus, the duration between successive adjustments is the first passage time

of the capital stock process (kt) from the target kc to the trigger kb. I denote this first passage

time by T (kc, kb) . By a standard argument (e.g., Abel and Eberly (1998)), I can compute this

expected first passage time:

E [T (kc, kb)] =
ln

(
kc
kb

)

δ + σ2

2

. (40)

Using Proposition 1, I derive the following result:

Lemma 3 For small fixed cost ξ,

ln
(

kc

kb

)
=

2k̃c

ki
+

2
3

(
k̃c

ki

)3

. (41)

In addition, it increases with θ, σ2, and ξ.

An immediate corollary of this lemma is that the duration between successive adjustments

increases with the corporate income tax rate θ and the fixed adjustment cost parameter ξ. The

intuition is that an increase in corporate income tax rate θ or the fixed cost parameter ξ raises

the geometric distance between the trigger and the target values. Thus, the firm delays the

occurrence of the next time that it must pay the fixed cost.

The effect of volatility σ on the duration time is ambiguous because there are two opposing

forces: First, for fixed trigger and target values kb and kc, an increase in volatility σ reduces the

expected first passage time from kb to kc. Second, an increase in volatility σ changes the trigger

and target values and raises the distance between these two values as measured by ln (kc/kb) .

This effect increases the duration time.
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Once the duration between successive adjustments is known, I can compute the rate of capi-

tal adjustment per unit of time as Γ = 1/E [T (kc, kb)] . The following result follows immediately

from the previous analysis.

Proposition 3 The rate of capital adjustment is given by

Γ =
δ + σ2

2

ln
(

kc
kb

) . (42)

For small fixed cost ξ, Γ decreases with θ and ξ.

In response to an increase in θ or ξ, the firm delays the occurrence of the next time that it

must pay the fixed cost. Thus, the firm reduces the frequency of making successive adjustments.

3.4 Stationary Distribution and Long-Run Average Capital Stock

It is interesting to study the role of irreversibility and fixed adjustment costs in long-run capital

accumulation. Several studies (e.g., Abel and Eberly (1999) and Bentolila and Bertola (1990))

have examined the effect of irreversibility on long-run capital stock in various ways. The key

issue is how to measure long-run capital stock. In the literature on irreversible investment

under uncertainty, uncertainty is typically modeled as demand shocks driven by a geometric

Brownian motion process. In this case, one needs to know the joint stationary distribution of

shocks and capital stock (or the marginal revenue product of capital) in order to compute the

long-run capital stock, even though the firm’s problem can be reduced to one dimensional by

exploiting the homogeneity property. Because the shock is nonstationary, the joint stationary

distribution does not exist. This creates conceptual difficulty in computing the long-run capital

stock. To deal with this issue, Bentolila and Bertola (1990) compute the long-run capital stock

using the stationary distribution of the marginal revenue product of capital for a given value

of shocks. Abel and Eberly (1999) compute the long-run capital stock as the expected value of

capital with respect to the (nonstationary) distribution of shocks.

In my model, there is a single state variable, which allows me to derive the stationary

distribution of the capital stock (kt) and its expected long-run value. To do so, I make the

transformation by defining:

zt = ln kt, zb = ln kb, zc = ln kc.
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Then (zt) follows the following arithmetic Brownian motion process:

dzt =
(−δ − σ2/2

)
dt + σdWt. (43)

Define:

µ = −δ − σ2/2, (44)

γ = 2µ/σ2 = −2δ/σ2 − 1 < −1. (45)

In Appendix D, I derive the stationary density of (zt).

Proposition 4 The stationary density of the process (zt) is given by

f (z) =
{

A1e
γz + B1 for z ∈ (zb, zc)

A2e
γz for z ∈ (zc,∞)

, (46)

where

A1 =
e−γzb

zb − zc
,

A2 =
e−γzb − e−γzc

zb − zc
,

B1 =
1

zc − zb
.

Using the this stationary density, I can compute the long-run average capital stock Kf in

the presence of irreversibility and fixed costs.

Proposition 5 The long-run average capital stock Kf is given by

Kf =
(kc − kb)
ln (kc/kb)

(
1 +

σ2

2δ

)
. (47)

Equations (47) and (42) imply that

δKf = (kc − kb) Γ. (48)

This equation gives two ways to represent long-run average investment. Since the long-run

average capital stock Kf is constant, the long-run average investment must be equal to depre-

ciation, δKf . On the other hand, in the presence of fixed costs, investment is lumpy. Thus, the
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long-run average investment is equal to the size of capital adjustment (kc − kb) multiplied by

the rate of capital adjustment Γ.

It is interesting to compare with the case with frictionless investment and the case with

purely irreversible investment. Let K∗ and Ki denote the corresponding long-run average

capital stock, respectively. Lemma 1 shows that all firms adjust capital stock to the level k∗

when there is no investment friction. Thus, we have K∗ = k∗.

Proposition 6 The long-run average capital stock with investment irreversibility is given by

Ki =
(

1 +
σ2

2δ

)
ki. (49)

When ξ is sufficiently small,

Kf ≈ 1

1 +
(
k̃c/ki

)2
/3

(
1 +

σ2

2δ

)
ki < Ki. (50)

In addition, Kf decreases with ξ.

This proposition shows that when the fixed adjustment cost is sufficiently small, its presence

makes the firm accumulates less capital Kf < Ki, compared with the case of irreversibility only.

The intuition is that the presence of adjustment costs makes the firm more reluctant to adjust

capital. We note that there is no unambiguous relation between Ki and the frictionless capital

stock K∗. Although Lemma 2 implies that ki < K∗. The multiplier factor in equation (49) may

cause Ki > K∗. The intuition is similar to that described in Abel and Eberly (1999). There are

two opposing effects. First, irreversibility increases the user cost of capital as shown in equation

(36). This user cost of capital effect causes the firm to accumulate less capital. Working in

the opposite direction, there is a hangover effect. Because of irreversibility, the firm cannot sell

capital when accumulating too much capital due to positive capital shocks. It may end up with

more capital than it would choose without irreversibility. Similarly, there is no unambiguous

relation between K∗ and Kf .

I now consider the effect of corporate income taxes on long-run capital accumulation.

Proposition 7 When ξ is sufficiently small,

∂ ln Kf

∂θ
<

∂ ln Ki

∂θ
=

∂ lnK∗

∂θ
< 0. (51)
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In addition,
∣∣∣∂ ln Kf

∂θ

∣∣∣ increases with ξ.

As expected, Proposition 7 shows that an increase in the corporate income tax rate reduces

the long-run average capital stock. It also shows that the presence of irreversibility alone does

not affect the magnitude of the impact of a corporate income tax change on the long-run

average capital stock. That is, in response to a small change in the corporate income tax

rate, the percentage change in the long-run average capital stock is the same for both the case

of frictionless investment and the case of irreversible investment. Importantly, Proposition 7

establishes that the presence of fixed adjustment costs causes the long-run capital stock to be

more sensitive to changes in the corporate income tax rate. In addition, the magnitude of the

impact following a change in the corporate income tax rate increases with fixed adjustment

costs. The intuition is that a change in the corporate income tax rate changes both the trigger

and target values. Thus, it changes both the size and the rate of capital adjustment. Because

the size of the fixed adjustment cost affects the trigger and target values, it affects the impact

of tax changes. In particular, an increase in the fixed adjustment costs widens the gap between

the trigger and target values, thereby amplifying the impact of tax changes.

4 General Equilibrium Analysis

So far, I have focused on a partial equilibrium analysis by fixing the wage rate. In a general

equilibrium, the wage rate is endogenously determined. Thus, a change in corporate income

tax rate has a price feedback effect in the sense that it also changes the equilibrium wage

rate, which in turn affects a firm’s investment decision. Thus, a general equilibrium analysis

may provide a very different quantitative result than a partial equilibrium analysis. It may

even deliver an opposite qualitative result. In addition, because a general equilibrium model

incorporates household behavior, it also has implications for welfare.

In this section, I turn to a general equilibrium analysis by endogenizing the wage rate. To

do so, I use the resource constraint (23) to derive C = Y (µ∗; w)− I (µ∗;w) . I then substitute

this expression into equation (21). I finally obtain one equation for one unknown, w. This

nonlinear equation does not admit a closed-form solution. I thus resort to numerical solutions.
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4.1 Baseline Parameter Values

I select baseline parameter values in order to solve the model numerically. Note that the model

is stylized and cannot be calibrated to confront with data. The purpose of the numerical

solutions is to illustrate the working of the model mechanism, but not to match data.

First, I set the corporate income tax rate θ = 0.34. I then consider parameters for prefer-

ences. I set the subjective discount rate β = 0.04 so that it is equal to the 4 percent interest

rate. I choose the parameter h so that the steady-state fraction of time spent on working is

equal to about 1/3.

I next consider parameters for technology. I set αl = 0.64 so that the labor share is equal

to 64 percent. I then choose the curvature parameter α in the profit function given in equation

(6). Cooper and Haltiwanger (2006) and Hennessy and Whited (2005, 2007) estimate this

parameter to be between 0.5 to 0.7. Here I set α = 0.6. Using equation (8), I can then deduce

that αk = 0.216. I set the depreciate rate δ = 0.1, as standard in macroeconomics literature.

As in Khan and Thomas (2003), I choose ξ = 0.003 so that fixed adjustment costs account for

1 percent of working time.

I need to assign value for the remaining two parameters: λ and σ. Since there is no direct

estimate for these values in the literature, I simply set σ = 0.2, as a baseline value. I also set

λ = 0.5 so that half of the firms in the economy are subject to investment frictions.

In summary, the parameter values are listed in Table 1.

[Insert Table 1 Here.]

4.2 Welfare and Long-Run Average Capital

In Section 3.4, I have analyzed the role of irreversibility and fixed adjustment costs in long-run

capital accumulation in a partial equilibrium model by fixing the wage rate. I now consider

the case of general equilibrium. Table 2 presents values of long-run average capital obtained,

respectively, in the models with irreversible investment and fixed costs, with irreversible in-

vestment but without fixed costs, and with frictionless investment for two different volatility

values σ = 0.2 and σ = 0.4. The numbers in brackets are the partial equilibrium values when
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the wage rate is fixed at the level obtained in the model with the baseline parameter values

given in Table 1.

[Insert Table 2 Here.]

Table 2 reveals several interesting results. First, the frictionless long-run average capital

stock does not depend on the uncertainty parameter σ. This result follows immediately from

Lemma 1 given my modeling of iid uncertainty. Second, introducing fixed adjustment costs

in the model with irreversible investment reduces the long-run average capital stock in partial

equilibrium as shown in Proposition 5. This result also holds true in general equilibrium.

Third, as we discuss in Section 3.4, there is no unambiguous relation between the long-run

average capital stock with frictionless investment and that with investment irreversibility in a

partial equilibrium model. Table 2 shows numerically that this relation depends on the level

of volatility. In particular, compared with the frictionless investment model, when σ = 0.2,

introducing investment irreversibility raises the long-run average capital stock, but reduces it if

fixed costs are present additionally. This result holds true in both general and partial equilibria.

By contrast, when σ = 0.4, introducing irreversibility reduces the long-run average capital

stock in partial equilibrium, and introducing fixed costs reduces it further. This result, however,

does not hold true in general equilibrium. In general equilibrium, irreversibility raises the long-

run average capital stock. In addition, the long-run average capital stock in the frictionless

model is even smaller than that in the model with both irreversibility and fixed costs. This

result demonstrates that the price feedback is important. Specifically, in partial equilibrium,

the high level of the frictionless capital stock raises labor demand and hence causes the wage

rate to rise. The high wage rate reduces marginal revenue product of capital, thereby reducing

a firm’s incentive to accumulate capital. This effect may dominate so that the frictionless

long-run average capital stock is actually lower than that with investment frictions. Finally, an

increase in uncertainty lowers long-run average capital stock with investment frictions in partial

equilibrium. This result seems intuitive because an increase in uncertainty raises the option

value to wait. By contrast, because of the price feedback effect, an increase in uncertainty

raises the long-run average capital stock in general equilibrium.
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An important question is how idiosyncratic uncertainty and investment frictions influence

welfare. For the frictionless model, idiosyncratic uncertainty does not affect welfare because it

does not affect factor allocations and household utility. With investment frictions, capital is

inefficiently allocated among firms, leading to welfare losses. I use the parameter values given

in Table 1 to illustrate this point numerically. Compared to the frictionless investment model,

irreversibility alone reduces the household utility from 0.5394 to 0.5387. Irreversibility and

fixed costs together reduce the household utility further to 0.5371.

Although an increase in uncertainty raises equilibrium aggregate capital in models with

investment frictions as illustrated in Table 2, it reduces welfare. In particular, for the model

with fixed costs and irreversibility, when σ is raised from 0.2 to 0.4 and other parameter values

are given in Table 1, the household consumption decreases from 0.3781 to 0.3761 and working

hours increases from 0.3290 to 0.3299. For the model with irreversibility and without fixed

costs ξ = 0, when σ is raised from 0.2 to 0.4 and other parameter values are given in Table

1, the household consumption decreases from 0.3785 to 0.3766 and working hours increases

from 0.3288 to 0.3295. These numerical examples illustrate that capital is more inefficiently

allocated as idiosyncratic uncertainty increases.

4.3 Long-Run Effects of Corporate Tax Policy

I now analyze the effects of an unexpected permanent corporate tax change on the economy. I

consider two experiments by permanently lowering and increasing the corporate tax rate by 10

percentage points, respectively. Table 3 presents the results for the model with irreversibility

and fixed costs. In particular, Columns 2-4 present the general equilibrium results, while

Columns 5-6 present the partial equilibrium results by fixing the wage rate at the value obtained

in the model with baseline parameter values given in Table 1.

[Insert Table 3 Here.]

Table 3 reveals several interesting results. First, a decrease in corporate income tax rate

raises the equilibrium wage rate, output, capital stock, employment, welfare and average labor

productivity. Second, a decrease in the corporate income tax rate changes the investment
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trigger and target values. As a result, it raises the capital adjustment size and the adjustment

rate. That is, changes in corporate tax have effects from both extensive and intensive margins.

Figure 1 illustrates the extensive margin effect by plotting the stationary density of firms. When

the corporate income tax rate is reduced, the stationary density shifts to the right. Third, the

partial equilibrium impact of tax changes is much larger than the general equilibrium impact.

The intuition follows from the price feedback effect as described earlier.

[Insert Figure 1 Here.]

I next consider the effects of fixed costs by doubling the value of the fixed costs parameter

ξ. Table 4 presents the results. This table reveals that an increase in fixed costs reduces

equilibrium output, capital, consumption and labor productivity. In particular, an increase in

fixed costs raises the capital adjustment size, but reduces the capital adjustment rate. The

extensive margin effect dominates so that it reduces aggregate capital.

[Insert Table 4 Here.]

Table 4 also reveals that the impact of tax changes increases with the fixed costs. But

the quantitative effects are small. For example, following a 10 percentage point decrease in

the corporate tax rate, the increase in output is 2.11 percent when ξ = 0.006, raising only by

0.01 percentage point of output increase in the model with ξ = 0.003. In addition, the welfare

increase is extremely small, which is almost the same as in the model with ξ = 0.003.

I finally compare with the models with frictionless investment and with irreversible invest-

ment, respectively. Tables 5 and 6 present the results. These tables show that irreversibility

does not change the impact of tax changes on the economy in the sense that it does not af-

fect the percentage change in equilibrium quantities. However, irreversibility is costly to the

household because it reduces equilibrium consumption and labor productivity. Comparing with

Table 3, I find that the impact of tax changes is larger with irreversibility and fixed costs, for

both the partial and general equilibrium models (the partial equilibrium result is consistent

with Proposition 7). In addition, the presence of fixed costs further reduces welfare.

[Insert Tables 5-6 Here.]
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5 Conclusion

This paper presents an analytically tractable continuous-time general equilibrium model with

investment irreversibility and fixed adjustment costs. In the model, there is a continuum

of firms that are subject to idiosyncratic shocks to capital. I derive analytical approximate

solutions that permit me to characterize the long-run stationary equilibrium explicitly up to

a simple algebraic equation. I find the following main results: First, although the presence

of investment frictions lowers consumer welfare, it may raise or reduce the long-run average

capital stock, depending on the degree of idiosyncratic uncertainty. In addition, an increase in

idiosyncratic uncertainty may raise equilibrium aggregate capital, but reduce welfare in models

with investment frictions. Second, an unexpected permanent change in the corporate income

tax rate affects the investment trigger and target values, and hence the size and rate of capital

adjustment. Thus, tax policy has both intensive and extensive margin effects. Following this

tax policy, the percentage changes in equilibrium quantities are larger when fixed adjustment

costs are larger. Finally, these changes are significantly smaller in a general equilibrium model

than in a partial equilibrium model.

For tractability, I consider the role of irreversibility and fixed adjustment costs only. It

would be interesting to consider other types of capital adjustment costs as studied in Abel

and Eberly (1994) or Cooper and Haltiwanger (2006). I shall also emphasize that my model

is highly stylized and cannot be used to match the data. As future research, it would be

interesting to enrich the model structure and assumptions. In this case, tractability is lost and

numerical methods are often needed.
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Appendices

A Frictionless Investment

I write the capital accumulation equation without frictions as:

dkt = −δktdt + σktdWt + dIt, (A.1)

where It denotes investment. The firm’s problem is to solve

maxE

[∫ ∞

0
e−rt {((1− θ) π (kt;w) + θδkt) dt− dIt}

]
, (A.2)

subject to (A.1). Substituting (A.1) into (A.2) yields:

maxE

[∫ ∞

0
e−rt {((1− θ)π (kt; w) + θδkt) dt− dkt − δktdt + σktdWt}

]

= maxE

[∫ ∞

0
e−rt {((1− θ)π (kt; w) + θδkt) dt− dkt − δktdt}

]

= maxE

[∫ ∞

0
e−rt {(1− θ) (π (kt; w)− δkt) dt− dkt}

]

= maxE

[∫ ∞

0
e−rt (1− θ) (π (kt; w)− δkt) dt− e−rtkt|∞0 + ktde−rt

]

= k0 + maxE

[∫ ∞

0
e−rt (1− θ) (π (kt; w)− δkt) dt− re−rtktdt

]
,

where I have used the transversality condition: limt→∞E
[
e−rtkt

]
= 0. The last equation

implies that I only need to solve the first-order condition:

(1− θ)
(
π′ (k∗; w)− δ

)
= r.

From this equation, I obtain (9).

B Irreversible Investment

When investment is irreversible, the value function V satisfies the Bellman equation (24) when

the firm does not make investments. In addition, investment policy is characterized by a trigger

value ki such that when k hits ki the firm makes investment to prevent k from falling below ki.
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The value function V satisfies the smooth-pasting and high-contact conditions:

V ′ (ki) = 1,

V ′′ (ki) = 0.

In addition, V satisfies the growth condition:

lim
k→∞

V (k) /Π(k) < ∞,

where Π (k) is given in (26). The general solution is given by:

V (k) = G1k
βN + Π (k) ,

where G1 is a constant to be determined. Then we have

G1βNkβN−1
i + Π′ (k) = 1,

G1βN (βN − 1) kβN−2
i + Π′′ (ki) = 0.

Eliminating G1 yields

(1− βN )
(
1−Π′ (ki)

)
= kiΠ′′ (ki) .

Solving yields (35). Thus, we have

π′ (ki;w) =
(1− βN )

(
1− δθ

r+δ

)

(α− βN ) (1− θ)
v (α)

=
1− βN

α− βN

v (α)
r + δ

(
r

1− θ
+ δ

)
.

I next derive the stationary distribution of capital. Making the transformation z = ln k, I

only need to derive the stationary distribution for (zt) . Let zi = ln ki. The stationary density

f on (zi,∞) satisfies the differential equation:

µf ′ (z) =
σ2

2
f ′′ (z) ,

where µ is given in equation (44). The general solution is given by

f (z) = A1e
γz + B1 for z ∈ (zi,∞) ,
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where A1, B1 are constants to be determined and γ is given in equation (45). The boundary

conditions are

limz→∞f (z) = 0,
∫ ∞

zi

f (z) dz = 1.

Using these boundary conditions, I can show that B1 = 0 and A1 = −γe−γzi .

C Approximate Solution for the Trigger and Target

I use an approximation method similar to that in Abel and Eberly (1998). I approximate

J1 (kb, kc) and J2 (kb, kc) around kb = kc = ki and ξ = 0. Define

k̃b = kb − ki and k̃c = kc − ki.

Ignoring ξ, I apply the Taylor expansion to derive

J j (kb, kc) = J j (ki, ki) + J j
1 (ki, ki) k̃b + J j

2 (ki, ki) k̃c

+
1
2
J j

11 (ki, ki) k̃2
b + J j

12 (ki, ki) k̃bk̃c +
1
2
J j

22 (ki, ki) k̃2
b

+
1
6
J j

111 (ki, ki) k̃3
b +

1
2
J j

112 (ki, ki) k̃2
b k̃c +

1
2
J j

122 (ki, ki) k̃bk̃
2
c +

1
6
J j

222 (ki, ki) k̃3
c

I first derive partial derivatives for J1 (kb, kc). Differentiating equation (33) yields:

J1
1 (kb, kc) = −kβN−1

c Π′′ (kb)− (βN − 1)
(
1−Π′ (kc)

)
kβN−2

b ,

and

J1
2 (kb, kc) =

(
1−Π′ (kb)

)
(βN − 1) kβN−2

c + kβN−1
b Π′′ (kc) .

From these equations, one can easily verify that

J1
1 (ki, ki) = 0, J1

2 (ki, ki) = 0.

Taking second-order differentiation of equation (33) yields:

J1
11 (kb, kb) = −kβN−1

c Π′′′ (kb)− (βN − 1) (βN − 2)
(
1−Π′ (kc)

)
kβN−3

b ,

and

J1
12 (kb, kc) = − (βN − 1) kβN−2

c Π′′ (kb) + (βN − 1) kβN−2
b Π′′ (kc) .
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Evaluating at (ki, ki) yields:

J1
11 (ki, ki) = −kβN−1

i Π′′′ (ki)− (βN − 1) (βN − 2)
(
1−Π′ (ki)

)
kβN−3

i

= kβN−1
i

(−Π′′′ (ki) + (βN − 2) k−1
i Π′′ (ki)

)

= α (α− 1)H (1− θ) (βN − α) kα+βN−4
i /v (α) ,

and

J1
12 (ki, ki) = 0.

Similarly, we can derive that

J1
22 (kb, kc) =

(
1−Π′ (kb)

)
(βN − 1) (βN − 2) kβN−3

c + kβN−1
b Π′′′ (kc) ,

J1
22 (ki, ki) = − (βN − 2) kβN−2

i Π′′ (ki) + kβN−1
i Π′′′ (ki)

= kβN−1
i

[
(1− θ) H

v (α)
α (α− 1) (α− 2) kα−3

i − (βN − 2)
(1− θ) H

v (α)
α (α− 1) kα−2

i

]

= α (α− 1) (α− βN )
(1− θ) H

v (α)
kβN+α−4

i .

Taking third-order differentiation of equation (33) yields:

J1
111 (kb, kc) = −kβN−1

c Π′′′′ (kb)− (βN − 1) (βN − 2) (βN − 3)
(
1−Π′ (kc)

)
kβN−4

b ,

J1
111 (ki, ki) = kβN−1

i

[−α (α− 1) (α− 2) (α− 3) (1− θ) H

v (α)
kα−4

i + (βN − 2) (βN − 3) k−4
i Π′′ (ki)

]

= kβN+α−5
i

(1− θ) Hα (α− 1)
v (α)

((βN − 2) (βN − 3)− (α− 2) (α− 3))

= kβN+α−5
i

(1− θ) Hα (α− 1)
v (α)

(βN − α) (α + βN − 5) ,

J1
112 (kb, kc) = − (βN − 1) kβN−2

c Π′′′ (kb) + (βN − 1) (βN − 2)Π′′ (kc) kβN−3
b ,

J1
112 (ki, ki) = (βN − 1) kβN−2

i

[−Π′′′ (ki) + (βN − 2)Π′′ (ki) k−1
i

]

= (βN − 1) kβN−2
i

(1− θ) H

v (α)
[−α (α− 1) (α− 2) kα−3

i + (βN − 2) kα−3
i α (α− 1)

]

= kα+βN−5
i (βN − 1)α (α− 1)

(1− θ) H

v (α)
(βN − α) ,
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J1
122 (kb, kc) = − (βN − 1) (βN − 2) kβN−3

c Π′′ (kb) + (βN − 1) kβN−2
b Π′′′ (kc) ,

J1
122 (ki, ki) = (βN − 1) kβN−2

i

(1− θ) H

v (α)
[
α (α− 1) (α− 2) kα−3

i − (βN − 2)α (α− 1) kα−3
i

]

= (βN − 1) kα+βN−5
i α (α− 1) (α− βN )

(1− θ)H

v (α)
,

J1
222 (kb, kc) =

(
1−Π′ (kb)− b

)
(βN − 1) (βN − 2) (βN − 3) kβN−4

c + kβN−1
b Π′′′′ (kc) ,

J1
222 (ki, ki) = −J1

111 (ki, ki) .

I now derive partial derivatives for J2 (kb, kc) . We begin with simplifying J2 (kb, kc) using

equation (34):

J2 (kb, kc) =
(

1
βN

− 1
)

(kc − kb) + Π (kc)−Π(kb)

− 1
βN

(
Π′ (kc) kc −Π′ (kb) kb

)− ξw

=
(

1
βN

− 1
)

(kc − kb) +
(1− θ) H

v (α)
(kα

c − kα
b ) +

δθ

r + δ
(kc − kb)

− 1
βN

[
(1− θ) Hα

v (α)
(kα

c − kα
b ) +

δθ

r + δ
(kc − kb)

]
− ξw

=
(

1
βN

− 1
)(

1− δθ

r + δ

)
(kc − kb) +

(1− θ) H

v (α)

(
1− α

βN

)
(kα

c − kα
b )− ξw

=
(

1
βN

− 1
)(

1− δθ

r + δ

)[
kc − kb − 1

α
k1−α

i (kα
c − kα

b )
]
− ξw.

We then derive partial derivatives:

J2
1 (kb, kc) =

(
1

βN
− 1

)
r + δ (1− θ)

r + δ

(
k1−α

i kα−1
b − 1

)
,

J2
1 (ki, ki) = 0,

J2
2 (kb, kc) =

(
1

βN
− 1

)(
1− δθ

r + δ

) (
1− k1−α

i kα−1
c

)
,

J2
2 (ki, ki) = 0,
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J2
11 (kb, kc) =

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) k1−α

i kα−2
b ,

J2
11 (ki, ki) =

(
1

βN
− 1

) (
1− δθ

r + δ

)
(α− 1) k−1

i ,

J2
12 (kb, kc) = 0,

J2
22 (kb, kc) = −

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) k1−α

i kα−2
c ,

J2
22 (ki, ki) = −J2

11 (ki, ki) ,

J2
111 (kb, kc) =

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) (α− 2) k1−α

i kα−3
b ,

J2
111 (ki, ki) =

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) (α− 2) k−2

i ,

J2
112 (kb, kc) = 0, J2

122 (kb, kc) = 0,

J2
222 (kb, kc) = −

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) (α− 2) k1−α

i kα−3
c ,

J2
222 (ki, ki) = −

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) (α− 2) k−2

i .

We finally use equations (31)-(32) and the preceding Taylor expansions to derive

0 = J1 (kb, kc) =
1
2
α (α− 1)

(1− θ) H

v (α)
(βN − α) kβN+α−4

i

(
k̃2

b − k̃2
c

)

+
1
6
α (α− 1)

(1− θ) H

v (α)
(βN − α) kβN+α−5

i (α + βN − 5)
(
k̃3

b − k̃3
c

)

+
1
2
α (α− 1)

(1− θ) H

v (α)
(βN − α) kβN+α−5

i (βN − 1)
(
k̃2

b k̃c − k̃2
c k̃b

)

28



and

0 = J2 (kb, kc) = −ξw

+
1
2

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) k−1

i

(
k̃2

b − k̃2
c

)

+
1
6

(
1

βN
− 1

)(
1− δθ

r + δ

)
(α− 1) (α− 2) k−2

i

(
k̃3

b − k̃3
c

)

= −ξw +
(

1
βN

− 1
)(

1− δθ

r + δ

)
(α− 1)

×k−1
i

1
2

[(
k̃2

b − k̃2
c

)
+

1
3

(α− 2) k−1
i

(
k̃3

b − k̃3
c

)]

It follows from the preceding two equations that

k̃2
b − k̃2

c = −1
3
k−1

i (α + βN − 5)
(
k̃3

b − k̃3
c

)
− k−1

i (βN − 1)
(
k̃2

b k̃c − k̃2
c k̃b

)
(C.1)

ξw =
(

1
βN

− 1
)(

1− δθ

r + δ

)
(α− 1)

k−1
i

2

[(
k̃2

b − k̃2
c

)
+

1
3

(α− 2) k−1
i

(
k̃3

b − k̃3
c

)]
(C.2)

I next substitute the right side of equation (C.1) for k̃2
b − k̃2

c in equation (C.2) and rearrange

terms to derive

ξw =
(

1
βN

− 1
)(

1− δθ

r + δ

)
(α− 1)

k−2
i

6

(
k̃b − k̃c

)

×
[
(3− βN )

(
k̃b + k̃c

)2
− 2βN k̃bk̃c

]
. (C.3)

Equation (C.1) also implies that

ki

(
k̃b + k̃c

)
+

1
3

(α + βN − 5)
(
k̃b + k̃c

)2
+

1
3

(2βN − α + 2) k̃bk̃c = 0 (C.4)

I will verify later that k̃b is of the order of k̃c, k̃bk̃c is of the order of k̃2
c , and

(
k̃b + k̃c

)2
is of

the order of k̃4
c . Given this fact, I ignore all terms with order higher than k̃c in equation (C.4).

I then obtain that k̃b = −k̃c. Substituting k̃b = −k̃c into equation (C.3) and ignoring all terms

with order higher than k̃c, I obtain equation (37).

I next derive k̃c. Ignoring the term
(
k̃b + k̃c

)2
in equation (C.4), I obtain:

k̃b =
−3ki

3ki + (2βN − α + 2) k̃b

k̃c. (C.5)
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Given this solution, we know that k̃bk̃c is of the order k̃2
c . In addition,

k̃b + k̃c =
(2βN − α + 2)

3ki + (2βN − α + 2) k̃b

k̃2
c

is of the order of k̃2
b , and

(
k̃b + k̃c

)2
=

[
(2βN − α + 2)

3ki + (2βN − α + 2) k̃b

]2

k̃4
c

is of the order of k̃4
c . These results verify my previous claim.

D Proofs

Proof of Lemma 1: See Appendix A.

Proof of Lemma 2: The optimal investment policy and the trigger value ki are derived in

Appendix B. From equation (35), one can immediately see that ki decreases with θ. We now

show that ki < k∗. Using (35) and (9) and noticing that

v (α) =
(α− βN ) (α− βP )

βNβP
r, (D.1)

I only need to prove
(α− βP ) (1− βN )

βNβP
> 1 +

δ

r
.

Since βN < 0, the previous inequality is equivalent to

(α− βP ) (1− βN ) < βNβP + βNβP
δ

r
,

or

α (1− βN )− βP < βNβP
δ

r
. (D.2)

Using the fact that

βP + βN =
2δ

σ2
+ 1 and βNβP = −2r

σ2
,

I can rewrite (D.2) as

α

(
βP − 2δ

σ2

)
− βP < −2δ

σ2
.
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That is

βP >
2δ

σ2
.

This can be easily verified since v
(
2δ/σ2

)
> 0. Q.E.D.

Proof of Proposition 1: See Appendix C.

Proof of Proposition 2: Proposition 1 implies that the size of capital adjustment kb−kc ≈
2kc increases with fixed cost ξ. Let x = (1− θ) . By (37) and Lemma 2, we can show that the

sign of ∂k̃c/∂x is the same as the sign of 2r − δ (1− θ) (1− α) . Since ∂k̃c/∂θ = −∂k̃c/∂x, we

obtain the desired result. Q.E.D.

Proof of Lemma 3: By Proposition 1 and the Taylor expansion, we have

ln
(

kc

kb

)
= ln

(
ki + k̃c

ki + k̃b

)
= ln

(
ki + k̃c

ki − k̃c

)

= ln

(
1 +

k̃c

ki

)
− ln

(
1− k̃c

ki

)

=
2k̃c

ki
+

2
3

(
k̃c

ki

)3

.

It follows from Proposition 1 that k̃c increases with ξ. Thus, the preceding equation implies

that ln (kc/kb) increases with ξ. The preceding equation also implies that to show ln (kc/kb)

increases with θ and σ2, we only need to show k̃c/ki increases with θ and σ2. By Proposition

1, it suffices to show that (
1− δθ

r + δ

)− 1
3

k
− 1

3
i

increases with θ and that (1− βN ) ki decreases with σ2. The first result immediately follows

from Lemma 2. Using Lemma 2 again, I show that

∂ [(1− βN ) ki]
∂σ2

= −∂βN

∂σ2
ki + (1− βN )

∂ki

∂σ2

=
∂βN

∂σ2

[
(1− βN )

∂ki

∂βN
− ki

]

= ki
∂βN

∂σ2

[ −1
α− βN

− 1
]

< 0,

where the last inequality follows from the fact that βN < 0 and ∂βN/∂σ2 > 0. Q.E.D.
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Proof of Proposition 3: It follows from equation (40) and Lemma 3. Q.E.D.

Proof of Proposition 4: The proof is similar to that of Proposition 1 in Caballero (1993).

Here I outline the proof. I refer the reader to Caballero (1993) for details. Except on points zb

and zc, the stationary density f (z) on (zb, zc) ∪ (zc,∞) satisfies the differential equation:

µf ′ (z) =
σ2

2
f ′′ (z) ,

where µ is given in equation (44). The general solution is

f (z) =
{

A1e
γz + B1 for z ∈ (zb, zc)

A2e
γz + B2 for z ∈ (zc,∞)

,

where A1, A2, B1, and B2 are coefficients to be determined and γ is given in equation (45). The

boundary conditions are

f (zb) = 0,

lim
z↓zc

f (z) = lim
z↑zc

f (z) ,

lim
z↓zc

f ′ (z)− lim
z↑zc

f ′ (z) = lim
z↑∞

f ′ (z)− lim
z↓zb

f ′ (z) ,

∫ ∞

zb

f (z) dz = 1.

Using these boundary conditions, we can show that B2 = 0,

A1e
γzb + B1 = 0,

A1e
γzc + B1 = A2e

γzc ,

A2γeγzc −A1γeγzc = −A1γeγzb ,

and ∫ zc

zb

(A1e
γz + B1) dz +

∫ ∞

zc

A2e
γzdz = 1.

Solving yields the desired result in Proposition 4. Q.E.D.

Proof of Proposition 5: Note that

Kf =
∫ ∞

zb

ezf (z) ,

where the stationary density f is given in Proposition 4. Using Proposition 4, we can derive

(47). Q.E.D.
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Proof of Proposition 6: Using the stationary density f derived in Appendix B, we can

derive the aggregate capital stock when investment is irreversible:

Ki =
∫ ∞

zi

ezf (z) dz =
γ

γ + 1
ezi =

(
1 +

σ2

2δ

)
ki.

When ξ is sufficiently small, we use Lemma 3, Propositions 3 and 5 to show that

Kf =
(kc − kb)
ln (kc/kb)

(
1 +

σ2

2δ

)
=

(
1 +

σ2

2δ

)
2k̃c

2k̃c
ki

+ 2
3

(
k̃c
ki

)3 .

Simplifying yields (50). By Proposition 1, k̃c increases with ξ. Thus, Kf decreases with ξ.

Q.E.D.

Proof of Proposition 7: Using Lemmas 1-2 and Proposition 6, I can show that ∂ lnKf/∂θ =

∂ ln K∗/∂θ < 0. Using Proposition 6, I show that when ξ is sufficiently small,

∂ lnKf

∂θ
=

∂ ln Ki

∂θ
−

∂ ln
(

1 +
(

k̃c
ki

)2
)

∂θ
.

In the proof of Lemma 3, I show that k̃c/ki increases with θ. Thus, we have ∂ ln Kf

∂θ < ∂ ln Ki
∂θ < 0.

Q.E.D.
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Table 1. Baseline parameter values.

αk αl δ σ ξ λ β h θ

0.216 0.64 0.1 0.2 0.003 0.5 0.04 2.25 0.34

Table 2. Comparison of the long-run aggregate capital stock.

Irreversibility and fixed costs Irreversibility Frictionless
σ = 0.2 0.5880 0.5896 (0.5924) 0.5884 (0.5921)
σ = 0.4 0.5950 (0.5813) 0.5968 (0.5863) 0.5884 (0.5921)

Notes: Other parameters are listed in Table 1. The numbers in the brackets are values in the
partial equilibrium framework by fixing the wage rate at the equilibrium value with baseline
parameter values given in Table 1.

Table 3. Results for the baseline model with irreversibility and fixed costs

GE PE
θ = 0.34 θ = 0.24 θ = 0.44 θ = 0.24 θ = 0.44

Wage w 0.8507 1.27 -1.62 0 0
Output Y 0.4369 2.10 -2.58 8.03 -9.42
Capital K 0.5880 7.45 -8.74 13.69 -15.17
Employment L 0.3290 0.83 -0.98 8.03 -9.42
Consumption C 0.3781 1.00 -1.30 4.35 -5.65
Average productivity Y/L 1.3279 1.27 -1.61 0.00 0.00
Duration time 4.5221 -4.92 6.07 -7.11 9.32
Adjustment size kc − kb 0.2640 2.24 -3.30 5.72 -7.39
Adjustment rate Γ 0.2211 5.17 -5.72 7.65 -8.53

Notes: The parameter values are given in Table 1. Except for the numbers in Column 2, other
numbers are in percentage. Columns 2-4 present results for the general equilibrium model.
Columns 5-6 present results for the partial equilibrium model by fixing the wage rate at the
equilibrium value (0.8507) in Column 2.
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Table 4. Results for the model with irreversibility and fixed costs (ξ = 0.006)

GE PE
θ = 0.34 θ = 0.24 θ = 0.44 θ = 0.24 θ = 0.44

Wage w 0.8502 1.28 -1.62 0 0
Output Y 0.4366 2.11 -2.58 8.08 -9.48
Capital K 0.5870 7.47 -8.76 13.76 -15.24
Employment L 0.3292 0.83 -0.98 8.08 -9.48
Consumption C 0.3779 1.00 -1.31 4.38 -5.69
Average productivity, Y/L 1.3263 1.27 -1.62 0.00 0.00
Duration time 5.7220 -4.96 6.13 -7.18 9.44
Investment size kc − kb 0.3320 2.26 -3.32 5.78 -7.45
Adjustment rate Γ 0.1748 5.22 -5.77 7.73 -8.62

Notes: Except for ξ = 0.006, other parameter values are given in Table 1. Except for the
numbers in Column 2, other numbers are in percentage. Columns 2-4 present results for the
general equilibrium model. Columns 5-6 present results for the partial equilibrium model by
fixing the wage rate at the equilibrium value (0.8502) in Column 2.

Table 5. Results for the model with frictionless investment

GE PE
θ = 0.34 θ = 0.24 θ = 0.44 θ = 0.34 θ = 0.24 θ = 0.44

Wage w 0.8519 1.26 -1.60 0.8507 0 0
Output Y 0.4375 2.09 -2.56 0.4403 7.94 -9.32
Capital K 0.5884 7.42 -8.71 0.5921 13.58 -15.04
Employment L 0.3286 0.82 -0.97 0.3312 7.94 -9.32
Consumption C 0.3786 0.99 -1.29 0.3811 4.28 -5.56
Average productivity, Y/L 1.3311 1.26 -1.60 1.3292 0 0

Notes: The parameter values are given in Table 1. Except for the numbers in Columns 2 and
5, other numbers are in percentage. Columns 2-4 present results for the general equilibrium
model. Columns 5-7 present results for the partial equilibrium model by fixing the wage rate
at the equilibrium value (0.8507) in the baseline model.
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Table 6. Results for the model with irreversible investment

GE PE
θ = 0.34 θ = 0.24 θ = 0.44 θ = 0.34 θ = 0.24 θ = 0.44

Wage w 0.8516 1.26 -1.60 0.8507 0 0
Output Y 0.4375 2.09 -2.56 0.4395 7.94 -9.32
Capital K 0.5896 7.43 -8.71 0.5924 13.58 -15.04
Employment L 0.3288 0.82 -0.97 0.3307 7.94 -9.32
Consumption C 0.3785 0.99 -1.29 0.3803 4.28 -5.56
Average productivity, Y/L 1.3306 1.26 -1.60 1.3292 0 0

Notes: The parameter values are given in Table 1. Except for the numbers in Columns 2 and
5, other numbers are in percentage. Columns 2-4 present results for the general equilibrium
model. Columns 5-7 present results for the partial equilibrium model by fixing the wage rate
at the equilibrium value (0.8507) in the model with baseline parameter values given in Table
1.
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Figure 1: Stationary densities of ln(k) for θ = 0.34 and θ = 0.24. Parameter values are
given in Table 1.
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