
Dynamic Contracts with Learning under Ambiguity

Shaolin Ji∗ Li Li† Jianjun Miao‡

This Version: March 2016

First Version: August 2015

Abstract

We study a continuous-time principal-agent problem with learning under ambiguity. The

agent takes hidden actions to affect project output. The project quality is unknown to both

the principal and the agent. The agent faces ambiguity about mean output, but the principal

does not. We show that incentives are delayed due to ambiguity. While belief manipulation due

to learning about unknown quality causes wages and pay-performance sensitivity to be front-

loaded, ambiguity smoothes wages and causes the drift and volatility of wages to decline more

slowly over time. When the level of ambiguity is sufficiently large, the principal fully insures

the agent by allowing the agent to shirk forever.
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1 Introduction

The principal-agent model aims to study how to design a contract between a principal and an

agent when there is information asymmetry. The agent may take hidden actions unknown to

the principal. There may also exist a model parameter that is unknown to both parties. This

parameter could represent the agent’s ability or project quality. Both the principal and the agent

have to learn about the unknown parameter. The standard approach adopts Bayesian learning. This

approach rules out the role of confidence in probability assessments. A Bayesian decision marker

does not distinguish between risky situations, where the odds are objectively known, and ambiguous

situations, where they may have little information and hence also little confidence regarding the true

odds. The Ellsberg (1961) paradox demonstrates that this distinction is behaviorally meaningful

because people treat ambiguous bets differently from risky ones.

The goal of this paper is to study a principal-agent problem with learning under ambiguity

in continuous time. Since there are two individuals in this problem, we have to consider who

faces ambiguity and what he is ambiguous about. In this paper we suppose that the agent is

ambiguity averse, but the principal is Bayesian. To capture ambiguity aversion, we adopt the

recursive multiple-priors utility model of Chen and Epstein (2002), adapted to incorporate learning

as in Miao (2009) and Leippold, Trojani, and Vanini (2008).1 The contracting problem is based on

Prat and Jovanovic (2014) in which the agent takes hidden actions to affect project output, which

is governed by a diffusion process. Neither the principal nor the agent observes the project quality

or productivity. Unlike Prat and Jovanovic (2014), we assume that the agent has ambiguous beliefs

about the drift of the project output.

The key insight of Prat and Jovanovic (2014) is that the agent has an incentive to manipulate

the principal’s beliefs about the project quality. Observing the project output only, the principal

may mistakenly attribute low output to low productivity instead of the agent’s low effort. By

inducing the principal to underestimate his productivity, the agent anticipates that he will benefit

from overestimated inferences about his effort in the future and hence higher utility. Due to this

belief manipulation effect, the optimal contract delays incentives. Specifically, the principal fully

insures the agent by offering a constant wage and allowing the agent to shirk until a certain time.

Starting from that time on, the principal recommends the agent to exert full effort and immediately

raises his wage. The wage is stochastic and declines over time on average. To discourage the agent

from manipulating his belief, the principal raises the agent’s exposure to uncertainty by raising the

volatility of the wage growth and making this volatility front-loaded.

1These models are based on the static model of Gilboa and Schmeidler (1989) and the dynamic extension of
Epstein and Schneider (2007) in discrete time.
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Our key insight is that there is an incentive and ambiguity sharing tradeoff when the agent is

ambiguity averse. Ambiguity further delays incentive provision. The principal allows the agent to

shirk for a longer period of time when the agent is more ambiguity averse. This is because ambiguity

is costly to both the agent and the principal. To motivate the ambiguity-averse agent to work, the

principal has to offer a higher wage, compared to the case without ambiguity. The principal would

rather accept low output by avoiding paying a high wage to induce incentives. After this shirking

period, the principal immediately raises the wage and the average wage gradually declines over time.

Compared to the case without ambiguity, the wage jump is larger, the decline of the expected wage

is slower, and the volatility of wage growth is lower. This is because the risk-neutral Bayesian

principal wants to share ambiguity with the ambiguity-averse agent by allowing the agent to have

less exposure to uncertainty. When the level of ambiguity is sufficiently large, the principal fully

insures the agent by allowing the agent to shirk forever.

We show that risk aversion and ambiguity aversion have different impact on the optimal contract.

In particular, given a certain level of ambiguity, the duration of shirking and the jump of expected

wages may not monotonically increase with risk aversion. By contrast, they always increase with

ambiguity aversion for any degree of risk aversion. This reflects the fact that risk aversion affects

the curvature of the utility function, but ambiguity aversion affects only the probability assessments

in the multiple-priors utility model.

Ambiguity aversion manifest itself as pessimistic behavior by distorting beliefs endogenously.

The optimal contract under ambiguity is observationally equivalent to that when the agent has

expected utility with some distorted belief. We show that ignoring the endogeneity of the worst-

case beliefs by specifying a pessimistic belief exogenously can generate a different optimal contract.

While our model is too stylized to be confronted with data, it may help us understand the low

pay-performance sensitivity and slow wage adjustment documented in some empirical studies (e.g.,

Jensen and Murphy (1990)). Jensen and Murphy (1990) find that the pay-performance sensitivity,

defined as the dollar change in the CEO’s compensation associated with a dollar change in share-

holder wealth, is a very small positive number. Our model suggests that this may be consistent with

an optimal contract when the CEO is averse to ambiguity. CEOs often face substantial amount of

uncertainty not attributed to just risk in making daily business decisions and they are averse to

such uncertainty. In this case making pay less sensitive to performance allows them to have less

exposure to ambiguity.

Our paper is related to the recent literature on contracts in continuous time surveyed by Biais et

al (2013), Sannikov (2013), and Cvitanic and Zhang (2013). DeMarzo and Sannikov (2006), Biais

et al (2007), Sanikov (2008), Cvitanic, Wan, and Zhang (2009), and Williams (2009, 2011) have
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made important methodological contributions to solving continuous-time contracting problems.

Our paper is more closely related to Prat and Jovanovic (2014), DeMarzo and Sannikov (2014),

and He et al (2014) who introduce learning into the contracting problems. All of them emphasize

the importance of the belief manipulation effect in different model setups. DeMarzo and Sannikov

(2014) impose limited liability constraint on the risk-neutral agent and study the optimal payout

and termination policies. He et al (2014) assume that the cost of effort is convex and show that

the optimal effort is front-loaded and decreases stochastically over time. Like Prat and Jovanovic

(2014), we obtain a different result because we assume that disutility is linear in effort.

Our main contribution is to introduce ambiguity into this literature. Our modeling of ambiguity

follows Chen and Epstein (2002). Miao and Rivera (2015) adopt a different approach of Anderson et

al (2003), Hansen et al (2006), and Hansen and Sargent (2008). This approach gives a smooth utility

function, unlike the Chen-Epstein approach. Miao and Rivera (2015) assume that the principal

faces ambiguity but the agent does not. They focus on capital structure implementation and asset

pricing implications. They also emphasize the incentive and ambiguity sharing tradeoff, but with

different implications. In their model the ambiguity-averse principal wants to transfer uncertainty

to the ambiguity-neutral agent by raising the pay-performance sensitivity. By contrast, in this paper

the risk-neutral Bayesian principal wants to transfer uncertainty from the ambiguity-averse agent

by lowering the pay-performance sensitivity. Moreover, Miao and Rivera (2015) do not consider

learning under unknown quality, which is the main focus of this paper.

In addition to the contributions above, we make a technical contribution by solving the con-

tracting problem with recursive multiple-priors utility. We show that deriving the agent’s incentive

compatibility condition is equivalent to solving a control problem for forward-backward stochastic

differential equations (FBSDEs). We adopt the calculus of variation approach presented in Cvi-

tanic and Zhang (2013) to solve this problem. This approach typically requires that the drift and

volatility terms in some stochastic differential equations be smooth so that differentiation can be

used to perform small perturbations. But this condition is violated for the recursive multiple-priors

utility model of Chen and Epstein (2002). We tackle this difficulty by suitably define derivatives at

kink points as in the non-smooth analysis. We then derive the necessary and sufficient conditions

for incentive compatibility. Our method will be useful for solving other contracting problems with

recursive multiple-priors utility.

The remainder of the paper proceeds as follows. Section 2 presents the model. Section 3

presents the necessary and sufficient conditions for incentive compatibility. Section 4 provides

explicit solutions under exponential utility. Section 5 analyzes properties of the optimal contracts.

Section 6 concludes. All proofs are collected in the appendix.
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2 The Model

Our model is based on Prat and Jovanovic (2014). Our novel assumption is that the agent has

ambiguous beliefs about the output distribution and is averse to this ambiguity, but the principal

does not face ambiguity. In this section we first introduce the information structure and then

describe preferences. After this description we formulate the contracting problem.

2.1 Information Structure and Filtering

Time is continuous over the finite interval [0, T ] . The principal and the agent commit to a long-term

contract until time T. In the contract the agent exerts effort to run a project. The project generates

cumulative output,

Yt =

∫ t

0
(as + η)ds+

∫ t

0
σdBa

s , (1)

where at ∈ [0, 1] is the agent’s effort level, η represents the project’s time-invariant random prof-

itability or productivity, σ > 0 is the constant output volatility, and {Ba
t } is a standard Brownian

motion on a probability space (Ω,F , P a) . Assume that at = a
(
t, Y t

0

)
for some functional a and

is adapted to the filtration generated by Y, FYt , σ(Ys; 0 ≤ s ≤ t). By convention Y t
0 denotes

the history {Ys : 0 ≤ s ≤ t} . Note that (Y,Ba, P a) is a weak solution to the stochastic differential

equation in (1).

Neither the principal nor the agent observes η. But they share the common prior at time zero

that η is normally distributed with mean m0 and variance h−1
0 . We call h0 the prior precision of

η. The posterior belief about η depends on Yt and on cumulative effort At ,
∫ t

0 asds. By standard

filtering theory, conditional on (Yt, At, t) , η is normally distributed with mean

η̂(Yt −At, t) , EP
a
[η | Yt, At] =

h0m0 + σ−2 (Yt −At)
ht

(2)

and with precision

ht , h0 + σ−2t. (3)

Here EP
a

denotes the expectation operator with respect to P a. In the long run as t → ∞, ht
increases to infinity and hence η̂(Yt −At, t) converges to η almost surely.

The principal does not observe the agent’s all possible effort choices, but only observes the

equilibrium effort policy a∗t = a∗
(
t, Y t

0

)
under the optimal contract. By contrast, effort is the agent

private information and he may deviate from the equilibrium effort policy by choosing another

effort policy at = a
(
t, Y t

0

)
. Following Cvitanic, Wan, and Zhang (2009) and Cvitanic and Zhang

(2013), we identify any effort functional a (·) as an
{
FYt
}

-predictable process. Then the effort
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policy under the agent’s control is in the set A = {a : [0, T ]× Ω→ [0, 1]} of stochastic processes

that are
{
FYt
}

-predictable.

Define the innovation process as

dB̂a
t ,

1

σ
[dYt − (η̂(Yt −At, t) + at)dt] =

1

σ
[η − η̂(Yt −At, t)] dt+ dBa

t . (4)

Then {B̂a
t } is a standard Brownian motion on the filtered probability space

(
Ω,F ,

{
FYt
}
, P a

)
and

{η̂t} is a (P a,FYt )-martingale with decreasing variance:

dη̂(Yt −At, t) =
σ−1

ht
dB̂a

t . (5)

A contract is a mapping (a,w) : [0, T ] × Ω → [0, 1] × R that is
{
FYt
}

-predictable as well as

a terminal payment WT : Ω → R that is FYT -measurable. The set of all contracts (a,w,WT ) is

denoted by C.

2.2 Preferences

Suppose that the principal is risk neutral and does not face ambiguity. He has discounted expected

utility over profits derived from a contract c = (a,w,WT ). His utility function is given by

Up (a,w,WT ) = EP
a

[∫ T

0
e−ρtdYt −

∫ T

0
e−ρtwtdt− e−ρTWT

]
,

where ρ > 0 is the subjective discount rate. Since the principal’s information set is given by
{
FYt
}

and his prior belief is P a. His posterior beliefs about η are given by the normal distribution with

mean in (2) and variance in (3). The principal’s continuation value at date t is given by

Upt (a,w,WT ) = EP
a

t

[∫ T

t
e−ρ(s−t)dYs −

∫ T

t
e−ρ(s−t)wsds− e−ρ(T−t)WT

]
,

where use EP
a

t to denote the conditional expectation operator for measure P a given FYt .

Next consider the agent’s preferences. To model the agent’s learning under ambiguity, we adopt

the model of Miao (2009), which extends the recursive multiple-priors utility model of Chen and

Epstein (2002) to incorporate partial information. We suppose that the agent is not sure about

the distribution of the innovation Brownian motion {B̂a
t } for any effort process a ∈ A. He has a

set of priors PΘa induced by the set of density generators Θa. Each prior in the set is mutually

absolutely continuous with respect P a.2 A density generator associated with an effort process a ∈ A
2Here ambiguity is about the drift of the diffusion process. Epstein and Ji (2013) propose models of ambiguity

about the volatility.
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is an
{
FYt
}

-predictable process {bt} . We will focus on the κ-ignorance specification of the set of

density generators which satisfy |bt| ≤ κ for each b ∈ Θa. By the Girsanov theorem, the process{
zbt
}

defined by

zbt = exp

(∫ t

0
bsdB̂

a
s −

1

2

∫ t

0
b2sds

)
is a (P a,FYt )−martingale and the process {B̂a,b

t } defined by

B̂a,b
t = B̂a

t −
∫ t

0
bsds

is a standard Brownian motion under the measure Qa,b, where dQa,b/dP a|FYt = zbt . Under measure

Qa,b, output follows the process

dYt = (at + η̂(Yt −At, t))dt+ σ(dB̂a,b
t + btdt),

and the posterior belief about η is

dη̂(Yt −At, t) =
σ−1

ht
dB̂a

t =
σ−1

ht
(dB̂a,b

t + btdt).

For a contract c = (a,w,WT ) , we define the agent’s continuation value as

vct = ess inf
Qa,b∈PΘa

EQ
a,b

t

[∫ T

t
e−ρ(s−t)u(ws, as)ds+ e−ρ(T−t)U(WT )

]
,

where u and U satisfy uw > 0, uww < 0, ua < 0, uaa < 0, U ′ > 0 and U ′′ < 0.

By Chen and Epstein (2002), the pair (vc, γc) is the unique {FYt }-adapted solution to the

following backward stochastic differential equation (BSDE):

dvt =

[
ρvt − u(wt, at)− σ min

|bt|≤κ
btγt

]
dt+ σγtdB̂

a
t , (6)

with vT = U(WT ). Let (bc∗t ) denote a worse-case density generator that attains the minimum in

(6). Then

bc∗t =


−κ, if γct > 0

κ, if γct < 0

any value in [−κ, κ] if γct = 0

.

We denote by Bc the set of all worst-case density generators for the contract c. We can then rewrite

(6) as

dvt = [ρvt − u(wt, at) + σκ |γt|] dt+ σγtdB̂
a
t , vT = U (WT ) , (7)
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or

dvt = [ρvt − u(wt, at)] dt+ σγtdB̂
a,bc∗

t , vT = U (WT ) , (8)

where {B̂a,bc∗

t } is the standard Brownian motion under the agent’s worst-case belief Qa,b
c∗

induced

by some density generator bc∗ ∈ Bc. One convenient choice is to set bc∗t = 0 if γct = 0. We can then

write bc∗t = −κsgn (γct) . Note that the drift term in (7) is not differentiable with respect to γt. This

causes difficulty when applying calculus of variations.

The parameter κ can be interpreted as the degree of ambiguity aversion or the level of ambiguity.

When κ = 0, (7) reduces to the standard expected utility model with the belief P a. Since the agent

has belief Qa,b
c∗

under ambiguity, which is different from the principal’s belief P a, ambiguity induces

endogenous belief heterogeneity.

In the infinite-horizon limit as T →∞, we impose the transversality condition limT→∞ e
−ρTE [vT ] =

0 to obtain the agent’s utility process {vt : t ≥ 0} .

2.3 Contracting Problem

Suppose that the principal and the agent fully commit to the long-term contract. An optimal

contract must be incentive compatible. A contract (a,w,WT ) ∈ C is incentive compatible if it

solves the agent’s problem:

v
(a,w,WT )
0 ≥ v(ã,w,WT )

0 (9)

for any ã ∈ A satisfying

dYt = (ãt + η̂(Yt − Ãt, t))dt+ σdB̂ã
t , (10)

where Ãt =
∫ t

0 ãsds and (10) is the filtered equation for Y associated with the agent’s effort ã.

Denote the set of all incentive compatible contracts by CIC .

We now formulate the contracting problem as

sup
{a,w,WT }∈CIC

EP
a

[∫ T

0
e−ρt(dYt − wtdt)− e−ρTWT

]
(11)

subject to

v
(a,w,WT )
0 = v, (12)

dYt = (at + η̂(Yt −At, t))dt+ σdB̂a
t , (13)

where v is the principal’s promised value to the agent, (12) is the initial promise-keeping constraint

or the individual rationality constraint, and (13) is the filtered equation for Y associated with the

recommended effort a.
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We can simplify the principal’s objective function. Since his continuation value Upt (a,w,WT )

is equal to

EP
a

t

[∫ T

t
e−ρ(s−t)[η̂(Ys −As, s) + as − ws]ds− e−ρ(T−t)WT

]
(14)

=
1− e−ρ(T−t)

ρ
η̂(Yt −At, t) + EP

a

t

[∫ T

t
e−ρ(s−t)(as − ws)ds− e−ρ(T−t)WT

]
,

maximizing Upt (a,w,WT ) is equivalent to maximizing the last expectation term. Thus we will use

the last term as the principal’s objective function.

3 Incentive Compatibility Conditions

In this section we present the necessary and sufficient conditions for incentive compatibility. In

particular, we focus on the agent’s problem in (9). We first present a result that an incentive

compatible contract starting at time zero is also incentive compatible starting at any time t > 0.

This result is analogous to that in discrete time established by Green (1987). In the appendix we

use the theory of FBSDEs to prove it.

Lemma 1 If the contract (a,w,WT ) is incentive-compatible, then given any history of the effort

{as : s ∈ [0, t]}, from time t onward {as : s ≥ t} is optimal for (w,WT ), i.e.

v
(a,w,wT )
t = ess sup

ã∈At
v

(ã,w,WT )
t ,

where At is a subset of A and all effort processes in At has the fixed history {as : s ∈ [0, t]}.

3.1 Necessary Conditions

The agent’s problem in (9) cannot be analyzed using the standard dynamic programming method

because the objective function depends on the process {wt} , which is non-Markovian since it

depends on the whole output history. We will use the stochastic maximum principle under the

weak formulation of the agent’s problem. The idea is to apply the method of the stochastic calculus

of variations.

Theorem 1 Under some technical assumptions in the appendix, if the contract c = (a, w, WT ) is

incentive compatible, then (a, γc) satisfies{
γct + σ−2

ht
pt + ua(wt, at) ≥ 0, if at > 0,

γct + σ−2

ht
p
t
+ ua(wt, at) ≤ 0, if at < 1,

(15)
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where (vc, γc) is the solution to BSDE (6) associated with the contract c, pt = max
pt∈Pct

pt, pt = min
pt∈Pct

pt,

Pct ,
{
pt : pt , htE

Qa,b
c∗

t

[
−
∫ T

t
e−ρ(s−t)γcs

1

hs
ds

]
, bc∗ ∈ Bc

}
, (16)

and Qa,b
c∗

is some worst-case measure for vc with density bc∗ ∈ Bc, i.e.

vct = EQ
a,bc∗

t

[∫ T

t
e−ρ(s−t)u(ws, as)ds+ e−ρ(T−t)U(WT )

]
.

As we point out in the introduction, the proof of this theorem is nontrivial because we cannot

directly use the standard method of calculus of variations as in Cvitanic, Wan, and Zhang (2009),

Prat and Jovanovic (2014), Williams (2009, 2011), Cvitanic and Zhang (2013), and He et al (2014).

The standard method requires smoothness, but this condition is violated for recursive multiple-

priors utility. Our solution is to suitably define derivative at the kink point so that we can get

convergence when performing small perturbations.

Without ambiguity, this theorem reduces to Proposition 1 in Prat and Jovanovic (2014). In

particular, the set Pct reduces to a singleton with element

pt = htE
Pa

t

[
−
∫ T

t
e−ρ(s−t)γcs

1

hs
ds

]
.

The process (pt) is attributed to learning about unknown quality. With ambiguity, we have to

use the worst-case measure to compute the preceding expectation and there may exist multiple

worst-case measures that attain the same minimum utility for the agent, as shown in Section 2.2.

The set in (16) reflects this multiplicity.

As a special case, when η is known, Pct = {0} for all t. Condition (15) becomes

[γct + ua(wt, at)] (ãt − at) ≤ 0 for all ãt ∈ [0, 1] .

This means that at maximizes γctat + u (wt, at) . This is the necessary and sufficient condition in

Sannikov (2008). It also holds under ambiguity without learning. This result is due to our special

specification of the set of density generators. We can prove it using the comparison theorem in the

BSDE theory. By this theorem, we can also prove a more general result for a general specification

of the set of density generators Θa discussed in Chen and Epstein (2002). Formally, the necessary

and sufficient condition for the contract (a,w,WT ) to be incentive compatible under ambiguity

with full information is that at maximizes

γctat + u(wt, at) + σ min
bt∈Θat

btγ
c
t .
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When the last term is independent of a as in the case of κ-ignorance, the condition is that at

maximizes γctat + u(wt, at).

Theorem 1 is too complex to be useful in applications. The following two lemmas simplify it

significantly.

Lemma 2 If the contract c = (a,w,WT ) with as > 0 for s ∈ [t, T ] is incentive compatible, then

γcs > 0, the worst-case density generator satisfies bc∗s = −κ for s ∈ [t, T ] , and Pcs is a singleton with

the element ps = hsE
Qa,b

c∗

s

[
−
∫ T
s e−ρ(τ−t)γcτ

1
hτ
dτ
]

for s ∈ [t, T ].

By this lemma, the necessary condition (15) implies that

γcs ≥ −
σ−2

hs
ps − ua(ws,as), if as > 0, (17)

with equality when as ∈ (0, 1), where ps is the unique element in Pcs . The lemma below allows us

to give an intuitive interpretation for pt.

Lemma 3 If γcs = −σ−2

hs
ps − ua(ws,as) for some ps ∈ Pcs for all s ∈ [t, T ], then γcs > 0 and

ps = EQ
a,bc∗

s

[∫ T

s
e−ρ(τ−s)ua(wτ , aτ )dτ

]
< 0, (18)

where Qa,b
c∗

is the worst-case belief defined by the density generator (bc∗t ) with bc∗s = −κ for all

s ∈ [t, T ] .

This lemma says that whenever the incentive constraint binds in [t, T ], ps for s ∈ [t, T ] is equal

to the discounted marginal utility of effort, which is negative. We can then interpret condition

(17) for as > 0 as follows: The expression γcs on the left-hand side represents the marginal cost of

deviating from the effort process a. If the agent exerts less effort, output will be lower and the agent

will be punished by losing utility γct . But he will also enjoy a benefit of less disutility of working

hard. This benefit is represented by −ua(ws, as) on the right-hand side of (17). The remaining term

−
(
σ−2/hs

)
ps > 0 represents an additional benefit due to learning discussed in Prat and Jovanovic

(2014) and He et al (2014), and is called the information rent. The inequality in (17) shows that

the agent has no incentive to deviate.

The intuition behind the information rent is nicely explained by Prat and Jovanovic (2014).

With unknown quality, past shirking behavior has a persistent effect on the incentive constraint. If

the agent shirks in the past, he will overestimate the productivity of the project because he observes

output but cannot separate project quality from the Brownian shock. The principal also observes

output, but does not observe the agent’s shirking behavior. He can only observe the recommended
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effort. Thus he will underestimate the productivity. This generates a persistent wedge between the

principal’s and the agent’s posterior. This motivates the manipulation an agent might undertake.

By shirking, the agent can benefit by lowering the discounted marginal utility of effort until the end

of the contract. Unlike Prat and Jovanovic (2014), this discounted marginal utility is computed

using the agent’s worst-case belief Qa,b
c∗

under ambiguity. The worst-case belief is induced by the

density generator bc∗s = −κ for s ∈ [t, T ] . In particular, the agent pessimistically believes that the

drift of output is shifted downward by κ.

By Lemma 3 we can use (6) and (18) to derive the BSDEs for v and p associated with the

contract c as

dvs = [ρvs − u(ws, as)]ds+ σγsdB̂
a,−κ
s (19)

= [ρvs − u(ws, as) + κσγs]ds+ σγsdB̂
a
s ,

with vaT = U(WT ) for s ∈ [t, T ] and

dps = [ρps − ua(ws, as)]ds+ σpsσdB̂
a,−κ
s (20)

= [ρps − ua(ws, as) + κσσps]ds+ σσpsdB̂
a
s ,

with pT = 0 for s ∈ [t, T ] .

When at = 0, the condition in (15) becomes

γct ≤ −
σ−2

ht
p
t
− ua(wt, 0). (21)

The expression γct on the left-hand side represents the marginal benefit of an increase in effort. The

two expressions on the right-hand side represent the total marginal cost of an increase in effort,

consisting of disutility of working and the loss in the information rent. The condition above shows

that the agent has no incentive to deviate.

3.2 Sufficient Conditions

To guarantee the necessary conditions to be sufficient, we need global concavity. Only then can

we be sure that the agent finds it indeed optimal to provide recommended effort when assigned

the wage function satisfying the local incentive constraint (15). Following Yong and Zhou (1999),

Williams (2009), Cvitanic and Zhang (2013), and Prat and Jovanovic (2014), we impose conditions

to ensure global concavity of the agent’s Hamiltonian.

Theorem 2 A contract c = (a,w,WT ) is incentive compatible if there exists pt ∈ Pct and the
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corresponding density generator bc∗ ∈ Bc such that[
γct +

σ−2

ht
pt + ua(wt, at)

]
(ãt − at) ≤ 0 for all ãt ∈ [0, 1] and

−2uaa(wt, at) ≥ eρtξtσ2ht ≥ 0, (22)

for t ∈ [0, T ], where ξ is the predictable process defined uniquely by

EQ
a,bc∗

t

[
−
∫ T

0
e−ρsγcs

σ−2

hs
ds

]
− EQa,b

c∗
[
−
∫ T

0
e−ρsγcs

σ−2

hs
ds

]
=

∫ t

0
ξsσdB̂

a,bc∗

t , (23)

where (B̂a,bc∗

t ) is the standard Brownian motion under worst-case measure Qa,b
c∗

defined by bc∗ ∈
Bc.

Since wt, at, γt and ξt are all endogenous, we need to check whether the sufficient conditions

are satisfied ex post for the contract derived from the necessary conditions. Without transparent

solutions, these conditions are hard to verify. In the next section we will consider exponential utility

to derive closed-form solutions.

4 Solutions under Exponential Utility

As in Prat and Jovanovic (2014), we restrict our attention to exponential utility functions of the

form

u(w, a) = − exp(−α(w − λa)) with λ ∈ (0, 1), (24)

where α > 0 is the constant absolute risk aversion parameter. This utility has no wealth effect on

leisure because uw/ua = −λ−1. As will be shown below, assuming 0 < λ < 1 ensures that a = 1

is the first-best action because the marginal utility of an additional unit of wage is larger than the

marginal cost of effort.

For terminal utility, we set

U(W ) = −exp(−αρW )

ρ
. (25)

This specification implies that an infinitely-lived agent retires at the termination date T under the

contract and then consumes the perpetual annuity derived from W while providing zero effort. We

will focus on the infinite-horizon limit as T → ∞. Thus the particular specification of U will be

immaterial.

Following Prat and Jovanovic (2014), we first focus on contracts in which recommended effort

remains positive at all future dates before analyzing general contracts in which zero effort is possible.

Such contracts with positive effort are called incentive contracts. We will solve for the optimal

13



contract using the strong formulation by dynamic programming.

4.1 Known Quality under Ambiguity

When the quality η is known, there is no need to learn about η and there is no belief manipulation

effect. This implies that the value of private information under ambiguity p is equal to 0 and the

necessary condition (17) for an incentive contract (a,w) with at > 0 for all t ≥ 0 to be incentive

compatible becomes γt ≥ −ua(wt, at) with equality if at ∈ (0, 1) . This condition is also sufficient

by the comparison theorem in the BSDE theory.

We first derive the first-best contract in which the agent’s action is observable and hence the

incentive constraint is absent.

Theorem 3 Suppose that quality η is known. In the first-best infinite-horizon limit case where

effort is observable and contractible, the recommended effort aFB (t) = 1 for all t, the principal

offers a constant wage to the agent

wFB (t) = − ln (−ρv0)

α
+ λ (26)

and the agent’s continuation value is vt = v0 for all t. The principal’s value function JFB (v) is

given by

ρJFB(v) = 1− λ+
ln(−ρv)

α
. (27)

Under the first-best contract, the risk-neutral principal fully insures the risk- and ambiguity-

averse agent by offering the agent a constant wage at all time. And the agent provides a full effort

level at all time. The first-best contract under ambiguity is observationally equivalent to that

without ambiguity. See Section 5.5 for a further discussion on this issue.

With hidden action, the principal’s value function satisfies the following HJB equation in the

infinite-horizon limit as T →∞ :

ρJN (v) = sup
a>0,w,γ

a− w + J ′N (v) (ρv − u(w, a) + κσγ) +
1

2
J ′′N (v)σ2γ2 (28)

subject to the incentive constraint γ ≥ −ua(w, a). Since the incentive constraint implies that γ > 0,

the impact of ambiguity is to raise the drift of the agent’s continuation value by κσγ > 0. Since JN

is concave and decreasing in v, we can show that the incentive constraint always binds.

Lemma 4 Assume that quality is known and any recommended effort level satisfies at > 0 for all t.

Then the optimal contract with agency in the infinite-horizon limit recommends the first-best effort

14



level a∗t = 1. The principal’s value function JN (v) satisfies

ρJN (v) = F +
ln(−ρv)

α
, (29)

where

F = 1− λ+
ln(K/ρ)

α
+

1

2ρ
α(λσK)2, (30)

and K is the positive root of the quadratic equation

(αλσ)2K2 + (1 + κασλ)K − ρ = 0. (31)

The principal delivers the agent initial value v0 and the agent’s continuation value satisfies

dvt = vt(αλσK)2dt− vtασλKdB1
t . (32)

The optimal wage is given by

w∗t = − ln (−Kvt)
α

+ λ. (33)

The optimal incentive contract offers the agent a wage w∗t such that the agent’s instantaneous

utility u (w∗t , a
∗
t ) is proportional to his continuation value vt. The factor of proportionality K is

determined by equation (31). This equation comes from the first-order condition for the wage

1 = −J ′N (v)uw(w, a) + J ′′N (v)σ2γ
∂γ

∂w
+ J ′N (v)κσ

∂γ

∂w
.

The interpretation of this equation is as follows. A unit increase in the wage reduces the principal

value by one unit. The marginal benefit consists of three components. First, an increase in the

wage raises the agent’s current utility and reduces his future continuation value, which raises the

principal’s value. This component is represented by −J ′N (v)uw(w, a). Second, an increase in the

wage raises the marginal utility of effort ua (w, a) since uaw > 0, and hence reduces the agent’s

utility or pay sensitivity to performance (γ) by the incentive constraint. Given that the value

function is concave, this benefits the principal by J ′′N (v)σ2γ ∂γ∂w . Third, ambiguity raises the drift of

the agent’s continuation value by κσγ. An increase in the wage reduces the ambiguity adjustment

κσγ. The reduced growth of the promised value to the agent benefits the principal by J ′N (v)κσ ∂γ∂w .

This component is specific to our model with ambiguity.

An important property of the agent’s continuation value is that its drift vt(αλσK)2 is negative,

but its volatility −vtασλK is positive, since vt < 0 for all t. The intuition is as follows. Raising

the wage or promised value today reduces the volatility of the promised value since ∂γt/w =

−uaw (w∗t , a
∗
t ) < 0, thereby reducing promised value in the future. This benefits the principal
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since his value decreases with the promised value to the agent and thus the agent’s promise value

converges to minus infinity in the long run. The agent’s immiserization can be formally proved by

noting that J ′N (vt) is a martingale since

dJ ′N (vt) =
λσK

ρvt
dB1

t .

By the martingale convergence theorem, limt→∞ J
′
N (vt) = 0 and hence limt→∞ vt = −∞.

It is straightforward to show that K decreases with the degree of ambiguity κ. Thus the prin-

cipal’s value function JN (v) also decreases with κ, but the optimal wage w∗t increase with κ since

vt < 0. When the agent is averse to the ambiguity about the mean output, his utility decreases

with the degree of ambiguity so that it is more costly to satisfy the promise-keeping constraint and

the agent’s initial participation constraint. The principal has to offer more wages to motivate the

ambiguity-averse agent to commit to the contract. That is, the third component of the marginal

benefit to the principal J ′N (v)κσ∂γ/∂w increases with κ.

Equation (32) shows that, given the same continuation value vt, an agent who faces more

ambiguity has a smaller volatility of utility, i.e., −vtασλK decreases with κ. This means that

the wage is less sensitive to performance by (33). That is, the risk-neutral and ambiguity-neutral

principal must provide more insurance to a more ambiguity-averse agent. This reflects the tradeoff

between incentive and ambiguity sharing.

Is it possible to allow the agent to shirk for some time in an optimal contract with agency? The

following lemma characterizes the optimal incentive compatible contract when the agent shirks at

all time.

Lemma 5 Suppose that quality η is known. When the agent shirks at all time at = 0 for all t ≥ 0,

the optimal incentive compatible contract in the infinite-horizon limit is to offer the constant wage

wt = − ln (−ρv0) /α and promised value vt = v0 to the agent for all t ≥ 0. The principal’s value

function is given by ρJNS (v) = ln (−ρv) /α.

For at = 0 to be incentive compatible, the constraint γt ≤ −ua(wt, at) must be satisfied. Since

the agent is risk averse and ambiguity averse, it is optimal to set γt = 0 so that the risk-neutral

and ambiguity-neutral principal provides full insurance to the agent. This contract is incentive

compatible.

Combining Lemmas 4 and 5, we have the following result:

Theorem 4 Suppose that quality η is known. When F ≥ 0, the optimal contract with agency is

described in Lemma 4. When F ≤ 0, the optimal contract with agency is described in Lemma 5.
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To prove this theorem, we simply compare the principal’s value functions JN (v) and JNS (v).

The cost to the principal of allowing the agent to shirk is that output is lower, but the associated

benefit is that the principal can offer a lower wage on average. The term F reflects the net benefit

to the principal of not allowing the agent to shirk.

By Theorems 3 and 4, we deduce that the expression

1− λ− F = − ln(K/ρ)

α
− 1

2ρ
α(λσK)2

measures the per-period efficiency loss due to hidden action under ambiguity. Since K decreases

with the degree of ambiguity κ, the efficiency loss increases with κ.

4.2 Unknown Quality under Ambiguity

We now study the case of unknown quality under ambiguity. We first describe the first-best contract.

Next we analyze incentive contracts in which the agent never shirks. We then study the general

optimal contract in which the agent can shirk for some time.

4.2.1 First-best Contract

It is straightforward to prove that Theorem 3 also applies to the first-best contract with unknown

quality under ambiguity. This result is intuitive. When the agent is averse to risk and ambiguity,

the risk-neutral Bayesian principal should fully insure the agent no matter whether there is un-

known quality. The difference between the contracts under known and unknown quality lies in the

principal’s profits. Under symmetric information with known quality, the principal’s discounted

profits at any date t are given by

1

ρ

[
η + 1− λ+

ln(−ρv)

α

]
,

while they are equal to
1

ρ

[
η̂ (Yt − t, t) + 1− λ+

ln(−ρvt)
α

]
,

under unknown quality.

4.2.2 Incentive Contracts

In an incentive contract the recommended effort remains positive at all dates. By Lemma 2, the

necessary condition for incentive compatibility is given by (17). Given that the agent is risk averse,

it is natural to conjecture that the principal will minimize sensitivity γt so that the incentive

17



constraint (17) binds. We can then apply Lemma 3 to deduce that γt > 0 and Pct contains a single

element pt, which satisfies (20). Moreover the agent’s worst-case density generator is b∗t = −κ. Now

we can formulate the problem of solving for an optimal incentive contract by dynamic programming

JTt , sup
w,a>0,γ,σp

EP
a

t

[∫ T

t
e−ρ(s−t)(as − ws)ds− e−ρ(T−t)WT

]
(34)

subject to

dvs = [ρvs − u(ws, as) + κσγs]ds+ σγsdB̂
a
s , vT = U(WT ),

dps = [ρps − ua(ws, as) + κσσps]ds+ σσpsdB̂
a
s , pT = 0, (35)

γs = −σ
−2

hs
ps − ua(ws, as), (36)

for s ∈ [t, T ] and vt = v. We can see that JTt depends on the state vector (t, v, p). When T →∞,

the time state t will not disappear because we consider the nonstationary learning case in which

the learning precision ht depends on time t. So time t about the agent age is a key role different

from an infinite-horizon model without unknown quality and from an infinite-horizon model with

stationary leaning.

Given (24), we have ua(w, a) = αλu(w, a). Using equations (19) and (20), we can show that

pt = αλ(vt − e−ρ(T−t)EQ
a,−κ

t [vT ]). (37)

Thus we can infer pt from vt given that {vt} is a one-dimensional diffusion process. In particular,

when the contract goes to infinity and when the transversality condition limT→∞ e
−ρTE [vT ] = 0

holds, we have pt = αλvt. This implies that tracking one of the state variables pt and vt is sufficient

so that we can eliminate the state pt.

Since the laws of motion for the variables v and p are Markovian, we can use a HJB equation

to analyze the principal’s optimal control problem. As discussed above, we can omit the state p

and control σp so that the value function depends on (t, v) only. The HJB equation is given by

ρJTt = sup
a>0,w,γt>0

a− w +
∂JTt
∂t

+
∂JTt
∂v

(ρv − u(w, a) + κσγt) +
1

2

∂2JTt
∂v2

σ2γ2
t (38)

subject to (37),

γt = −σ
−2

ht
pt − ua(w, a), (39)

and JT (T, v) = WT = −U−1 (v) .

Next we will show that the optimal incentive contract for the principal is to recommend the
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agent with full effort a∗t = 1.

Lemma 6 If the necessary conditions (35) and (36) hold for all s ≥ t, then it is optimal to set

effort equal to its first-best level, i.e., a∗s = 1 for s ≥ t.

Now we solve the control problem (38) and give a condition to guarantee that the optimal

solution satisfies the sufficient condition in (22) so that it is indeed an incentive-compatible optimal

contract.

Lemma 7 Assume that quality η is unknown and any recommended effort level satisfies at > 0 for

all t ≥ 0. Then the optimal incentive contract in the infinite-horizon limit as T →∞ recommends

the first-best effort level a∗t = 1. The principal’s value function is given by

ρJI(t, v) = f(t) +
ln(−ρv)

α
, (40)

where the function f(t) is given by

f(t) =

∫ ∞
t

e−ρ(s−t)

[
ρ

(
1− λ+

ln(ks/ρ)

α

)
− 1

2
(σλ)2α

((
σ−2

hs

)2

− k2
s

)
− κσ−1λ

hs

]
ds, (41)

and kt is the positive solution of the quadratic equation,

(αλσ)2k2
t +

(
1 + κασλ+

(αλ)2

ht

)
kt − ρ = 0. (42)

The principal delivers the agent initial value v0 and the agent’s continuation value satisfies

dvt = vt

[
ρ− kt − κασλ

(
kt +

σ−2

ht

)]
dt− vtασλ

(
kt +

σ−2

ht

)
dB̂1

t . (43)

The agent’s worst-case density generator is b∗t = −κ. The wage is given by

w∗t =
− ln(−ktvt)

α
+ λ. (44)

As in the case of known quality under ambiguity discussed in Lemma 4, the optimal incentive

contract with unknown quality offers the agent a wage w∗t such that his instantaneous utility is

proportional to his continuation value. The difference is that the factor of proportionality kt is time

varying. Equation (42) shows that there is a new component kt(αλ)2/ (ρht) of marginal benefits

from raising the wage. This component comes from learning. In particular, from the first-order

condition for the wage as T →∞, we can compute that

∂2JI
∂v2

σ2γt
∂γt
∂w

= −∂
2JI
∂v2

σ2

[
−σ
−2

ht
pt − ua(w, a)

]
uaw (w, a) ,
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where we have plugged in the incentive constraint (39). The term involving pt reflects the effect

of learning, which is positive since uaw > 0, pt < 0, and ∂2JI/∂v
2 < 0. The intuition is that

the principal can minimize the agent’s information rent by raising the wage when uaw > 0. This

effectively reduces the disutility of shirking and hence reduces the agent’s incentive to manipulate

information.

The following lemma characterizes properties of f (t) and k (t).

Lemma 8 The function f (t) is increasing over time and converges to F defined in (30). Moreover,

f (t), k (t) > 0, and k̇t/kt > 0 decrease with κ.

Applying Theorem 2 and the preceding lemma, we can verify incentive compatibility of the

contract characterized in the preceding lemma.

Lemma 9 The contract described in Lemma 7 is incentive compatible, i.e., meets condition (15)

and (22) when

ρσ2 >
1 + κασλ

ht
+ 2

(
αλ

ht

)2

. (45)

Because the precision ht is increasing in t, the condition (45) holds at all subsequent dates s ≥ t.
This condition is more likely to hold when λ is low, volatility of output σ is high, the coefficient

of absolute risk aversion α is low, the ambiguity parameter κ is small, and precision h0 is high.

In particular, when (45) holds in the case with ambiguity κ > 0, it also holds in the case without

ambiguity (κ = 0). It always holds in the limit as ht → ∞, where the quality is known. This

result confirms that the contract with known quality presented in Theorem 4 is indeed incentive

compatible and hence optimal.

4.2.3 Optimal Contract

We have derived the optimal incentive contract by assuming that a∗t > 0 for all t. But the principal

can choose to perfectly insure the agent by giving zero effort recommendation. We now consider

the case where full effort is not exerted for all t and the principal may choose to insure agent for a

certain length of time.

Lemma 10 Suppose that quality is unknown. When the agent shirks at all time at = 0 for all

t ≥ 0, the optimal incentive compatible contract is to offer the constant wage wt = − ln (−ρv0) /α

and promised value vt = v0 to the agent for all t ≥ 0. The principal’s value function is given by

ρJS (t, v) = ln (−ρv) /α.
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Combining Lemmas 7 and 10, we deduce that f (t) reflects the total benefit from not shirking.

If JI (t, v) ≤ JS (t, v) or f (t) ≤ 0 for all t, the optimal contract is to allow the agent to shirk at all

time. This condition is satisfied if F ≤ 0 because F is an upper bound of f (t) . What happens if

F > 0? One may conjecture that the principal should allow the agent to shirk when f (t) ≤ 0 and

recommend full effort when f (t) > 0. As Prat and Jovanovic (2014) point out, this conjecture is

incorrect because it ignores the option value to delay incentive provisions.

Since exponential utility does not have the wealth effect, the value of the full-insurance option

does not depend on the current belief about η but is instead deterministic. The marginal benefits

from delaying incentives are equal to f ′ (t) , while the costs due to discounting are given by ρf (t) .

Thus when

ψ (t) , ρf (t)− f ′ (t) < 0

the principal perfectly insures the agent. But when ψ (t) ≥ 0 he offers the incentive contract

described in the previous subsection. Since ψ (t) and h (t) are increasing over time, there exists a

function ϕ such that ψ (t) = ϕ (ht) . Then there is at most one precision level hτ = h̄ at a threshold

time τ above which incentives provision is optimal. Such a precision level may not exist depending

on parameter values.

Theorem 5 Assume that quality η is unknown. Let F be defined in (30). (a) If F > 0, then there

exists a unique h̄ > 0 such that ϕ(h̄) = 0. Suppose further that

ln$ < α(λ− 1) + ακλσ$, where $ ,
2

(1 + κσαλ) +
√

(1 + κσαλ) + 8α2λ2ρσ2
. (46)

Then for h0 < h̄, there exists a time τ > 0 such that h(τ) = h̄ and the optimal contract with agency

in the infinite-horizon limit recommends effort a∗ such that a∗t = 0 for t ∈ [0, τ) and a∗t = 1 for

t ≥ τ . The principal offers the agent initial value v0 and the wage

w∗t =

{
− ln(−ρv0)

α if t ∈ [0, τ)

− ln(−ktvt)
α + λ if t ≥ τ

.

The agent’s continuation value satisfies vt = v0 for t ∈ [0, τ) and (43) for t ≥ τ with vτ = v0. His

worst-case density generator is b∗t = 0 for t ∈ [0, τ) and b∗t = −κ for t ≥ τ . The principal’s value

function J∗ is given by

ρJ∗(t, v) =

{
e−ρ(τ−t)f(τ) + ln(−ρv)

α if t ∈ [0, τ)

f(t) + ln(−ρv)
α if t ≥ τ

.

For h0 ≥ h̄, ht ≥ h̄ holds for all time t ≥ 0 and the optimal contract is the incentive contract
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described in Lemma 7.

(b) If F ≤ 0, the optimal contract with agency is the contract described in Lemma 10.

This theorem gives a complete characterization of the optimal contract. When F > 0, in the op-

timal contract the principal first perfectly insures the agent by allowing him to shirk until a certain

time and then provides him incentives to exert full effort from that time on. The starting time τ of

providing incentives depends on the parameter values. For t < τ, e−ρ(τ−t)f(τ) > f(t) so that shirk-

ing is optimal. At time τ , limt↑τ e
−ρ(τ−t)f(τ) = f (t) and limt↑τ

∂e−ρ(τ−t)f(τ)
∂t = ρf (τ) = limt↓τ f

′ (t) .

These two conditions are analogous to the value-matching and smooth-pasting conditions in the

literature. The two segments of the principal’s value function are smoothly pasted together. But

the optimal wage has a jump at time τ . Before time τ , the agent shirks and receives a constant

wage. To motivate the agent to exert full effort starting at time τ , the principal must reward the

agent by raising the wage discretely. The jump size is given by

λ− ln(kτ )

α
+

ln(ρ)

α
> 0.

Condition (46) ensures that the sufficient condition in (22) is satisfied for the optimal contract

described in part (a). More specifically, let t0 be the smallest time such that (22) holds. Condition

(46) ensures t0 < τ so that the recommended high effort starting from τ on is incentive compatible.

5 Properties of the Optimal Contract

In this section we analyze the properties of the optimal contract with unknown quality under

ambiguity by conducting a comparative statics analysis with respect to the ambiguity aversion

parameter κ. This parameter can also be interpreted as the level of ambiguity. We also compare

with the case of risk aversion and with the case of exogenously given distorted beliefs.

5.1 Delayed Effort

How does ambiguity affect incentive provisions? We focus on the nontrivial case with F > 0. Then

Theorem 5 shows that there is a threshold level of precision h̄ = hτ at time τ such that full effort

is provided if and only if ht > h̄ or t > τ. The following result establishes the impact of κ on h̄.

Proposition 1 Suppose that the conditions in part (a) of Theorem 5 hold. Then h̄ and τ increase

with κ. Moreover, they approach infinity when κ is sufficiently large.

This proposition shows that the incentive is delayed more if the agent faces more ambiguity.

If the agent faces more ambiguity, the principal wants to provide more insurance to the agent by
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Figure 1: h̄ as a function of the degree of ambiguity κ. We set α = 1, ρ = 0.5, σ =
√

0.5, λ = 0.785,
and h0 = 0.2.

allowing him to provide zero effort for a longer period of time because allowing the agent to be

exposed to uncertainty by eliciting full effort is costly to the principal.

Figure 1 plots h̄ against κ. This figure shows that h̄ increases with κ and approaches infinite

when κ is sufficiently large. The main reason is that, when κ is sufficiently large, the net benefit

F to the principal of allowing the agent to work approaches minus infinity in the limit when the

project quality is known. Thus it is optimal to allow the agent to shirk forever. This is not the

case for changes in risk aversion as will be shown below.

5.2 Sticky Wages

Theorem 5 shows that the wage is constant when effort is zero in the time interval [0, τ). Starting

from time τ on, the agent exerts full effort and wages are stochastic. Applying Ito’s Lemma to (44)

and (43) yields

dw∗t =
1

α

−1

2
(ασλkt)

2︸ ︷︷ ︸
immiserization

−
.
kt
kt︸︷︷︸

insurance

+
1

2
(αλ)2

(
σ−1

ht

)2

+ καλ
σ−1

ht︸ ︷︷ ︸
information rent

 dt+ λ

(
kt +

σ−2

ht

)
︸ ︷︷ ︸

PPS

σdB̂1
t (47)

for t ≥ τ . Following Prat and Jovanovic (2014), we can decompose the drift of the wage process

into three components. First, wages decrease over time due to better insurance (−k̇t/kt < 0).

Second, wages are driven downward by the agent’s immiserization
(
−0.5(ασλkt)

2
)
. Third, when

ht ∈ (0,∞) , the agent has information rents by shirking. An increase in the future wage lowers
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Figure 2: The drift and volatility of wages against time. We set α = 1, ρ = 0.5, σ =
√

0.5, λ = 0.785,
h0 = 0.2, and v0 = −1.2.

the information rents and hence strengthens the agent’s incentives in the current period. This is

because p is equal to the expected discounted marginal cost of future efforts. When uwa > 0, raising

future wages can reduce the agent’s information rents. This is why the third component is positive

and partially offsets the insurance and immiserization components.

We can interpret the diffusion term in the wage dynamics as the pay-performance sensitivity

(PPS) as in Prat and Jovanovic (2014). It consists of two components. The first component reflects

the marginal utility of effort (λkt) and the second component reflects the impact of the information

rents
(
λσ−2/ht

)
. Both components come from the diffusion coefficient of the promised utility.

Proposition 2 Suppose that the conditions in part (a) of Theorem 5 hold. Then the drift of the

wage process increases with κ and is negative when t is sufficiently large. The PPS decreases with

κ and decreases to the positive limit σλK as t→∞.

By Lemma 8 and equation (47), we find that the degree of ambiguity κ affects the drift and

volatility of the wage process. It raises all three components of the drift, but lowers the volatility.

Figure 2 plots the drift and volatility of the wage process against time for three values of κ.

Before an endogenously determined time τ , wages are constant and hence the drift and volatility

are equal to zero. After time τ , the drift is negative and the volatility is positive. The drift increases

with κ, but the volatility decreases with κ. Moreover, the drift increases over time without ambiguity

(κ = 0), but decreases over time with ambiguity (κ > 0). For both cases the volatility decreases to

some limit.
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Figure 3: Expected wages against time (left panel) and the jump of expected wage against κ (right
panel). We set α = 1, ρ = 0.5, σ =

√
0.5, λ = 0.785, h0 = 0.2, and v0 = −1.2.

The left panel of Figure 3 plots the expected wage EP
1

[w∗t ] against time for three values of κ.

The expected wage is constant before time τ . It jumps up at time τ and then decreases over time.

The jump size, λ− ln (kτ/ρ) /α, increases with κ as shown on the right panel of Figure 3, but the

speed of declines in expected wages is slower when κ is larger. Thus the wage path is flatter.

5.3 Efficiency Loss

By comparing the principal’s values in the first-best contract studied in Section 4.2.1 and in the

contract with agency described in Theorem 5, we can compute the efficiency loss as 1 − λ − f(t)

for t ≥ τ and 1− λ− e−ρ(τ−t)f (τ) for t < τ.

Proposition 3 Suppose that the conditions in part (a) of Theorem 5 hold. Then the efficiency loss

increases with κ and decreases to the limit 1−λ−F > 0 as t→∞. The principal’s initial expected

profits increase in belief precision h0 and decreases with κ.

Note that 1−λ−F measures the efficiency loss with known quality. With unknown quality, the

efficiency loss decreases over time as the principal and the agent gradually learn about the unknown

quality. In the limit the principal knows the true quality because limt→∞ η̂(Yt−At, t) = EP
a∗

t [η] = η,

but the agent believes the quality converges to limt→∞E
Qa
∗,b∗

t [η] = η − σκ under his worst-case

belief Qa
∗,b∗ . Thus ambiguity does not disappears in the limit and the efficiency loss converges to

1− λ− F, which depends on κ. Since a larger degree of ambiguity is more costly to the principal,

the efficiency loss increases with κ.
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Figure 4: The impact of risk aversion. We set ρ = 0.5, σ =
√

0.5, λ = 0.785, h0 = 0.2, and
v0 = −1.2.

5.4 Comparison with Risk Aversion

One may argue that ambiguity aversion is similar to risk aversion because both imply the agent

dislikes uncertainty. There is an important difference between risk aversion and ambiguity aversion

for the recursive multiple-priors utility model. The risk aversion parameter α affects the curvature

of the utility function, but the ambiguity parameter κ does not affect it and only affects the

agent’s probability assessments. This allows for different attitudes toward risk (known odds) and

ambiguity (unknown odds). To further examine this issue, we now study the impact of risk aversion

numerically. The left panel of Figure 4 plots the threshold precision h̄ against the risk aversion

parameter α for three values of κ. We find that h̄ may not be monotonic with α. In particular, it

first increases and then decreases with α for κ = 0.2. An increase in α changes the curvature of the

utility function, and hence raises the wage during the shirking period when wt = − ln (ρv0) /α > 0.

This is costly to the principal. Thus the principal may want to reduce the shirking duration when

α is sufficiently large. By contrast, the ambiguity parameter κ does not affect the constant wage

during the shirking phase and hence h̄ always increases with κ for any value of α. An increase in

κ is costly to the principal only if the wage is stochastic during the full-effort phase.

The right panel of Figure 4 plots the wage jump at h̄ against the risk aversion parameter α for

fixed κ = 0.1. This figure shows that the wage jump first increases with α and then decreases with

α. This is different from the impact of κ for fixed α presented in Figure 3.
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5.5 Exogenously Distorted Beliefs

Ambiguity aversion induces endogenous belief distortions in the sense that the agent chooses the

worst-case belief Qa,b
∗

associated with action a. One associated worst-case density generator is

b∗t = −κsgn(γt) . The sign of the sensitivity γt of the agent’s utility process determines the value

of b∗t endogenously. For the optimal contracts studied in Section 4, we find that γt = 0 until some

time τ so that b∗t = 0 for 0 ≤ t ≤ τ , and that γt > 0 from time τ on so that b∗t = −κ for t > τ .

The switching time τ is endogenously determined. Once we know this information, the optimal

contract under ambiguity is observationally equivalent to that when the agent has expected utility

with distorted belief defined by the density generator (b∗t ) .

We emphasize that ambiguity generates pessimism endogenously through the choice of (b∗t ) .

This behavior is different from that with exogenous pessimism. To see this point in a simple way,

we consider the first-best contract with known quality. Suppose that the agent pessimistically

believe that the mean of the output process is lowered by κσdt so that the utility process satisfies

dvt = [ρvt − u(wt, at)] dt+ κσγtdt+ σγtdB
a
t . (48)

Then

vt = EQ
[∫ ∞

t
e−ρ(s−t)u (ws, as) ds

]
,

where Q is the distorted belief defined by

dQ

dP a
|FYt = zt = exp

(
−κBa

t −
1

2
κ2t

)
.

The HJB equation is

ρJ (v) = sup
a,w,γ

a− w + J ′ (v) (ρv − u(w, a) + κσγ) +
1

2
J ′′ (v)σ2γ2. (49)

Solving this equation shows that the first-best contract when the agent has an exogenously distorted

belief recommends the agent to exert full effort aFB (t) = 1 for all t and offers the agent the wage

wFBt = − ln (−ρvt)
α

+ λ,

where

dvt = κ2vtdt+ κvtdB
a
t . (50)

The principal’s value function is given by

ρJFB (v) = 1− λ+
ln (−ρv)

α
+

κ2

2αρ
.
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Unlike the contract under ambiguity described in Theorem 3, the first-best contract does not

offer full insurance to the agent if he has an exogenously distorted pessimistic belief. In particular,

when there is a good shock to the output process, the agent should receive a lower wage in order

to insure against a future bad shock. The principal benefits from the partial insurance in that his

value is raised by κ2/
(
2αρ2

)
. The intuition is that the agent pessimistically believe that worse

output is more likely and hence he should receive higher wages in bad times and lower wages in

good times.

Why is the solution different under ambiguity? The distortion κσγ is replaced by κσ |γ| in (49)

for the case of ambiguity. If we assume γ > 0, the HJB equation under ambiguity is the same as

(49). But the first-order condition gives γ = κv/σ < 0. Similarly, if we assume γ < 0, the distortion

κσγ is replaced by −κσγ in (49) and the first-order condition gives a positive γ. Both will lead to

a contradiction. Thus the optimal γ must be zero under ambiguity. This implies that the optimal

contract must fully insure the ambiguity-averse agent.

6 Conclusion

We have introduced ambiguity into the model of Prat and Jovanovic (2014). Our key insight is that

there is a tradeoff between incentives and ambiguity sharing. This tradeoff is similar to, but distinct

from the usual incentives and risk tradeoff. The risk-neutral Bayesian principal wants to transfer

uncertainty from the ambiguity-averse agent by lowering pay-performance sensitivity. Ambiguity

delays incentive provision and causes the expected wages to be smoother over time. When the level

of ambiguity is sufficiently large, the principal fully insures the agent by allowing the agent to shirk

forever.

As Hansen and Sargent (2012) point out, in a multi-agent framework, it is important to consider

who faces ambiguity and what he is ambiguous about. Miao and Rivera (2015) study a problem in

which the principal is ambiguity averse, but the agent is not. One might consider the case where

both the principal and the agent are ambiguity averse. Of course different modeling assumptions

apply to different economic problems. There are several different approaches to modeling ambiguity

in the literature. Depending on the tractability and economic problems at hand, one may choose

an approach that is convenient for delivering interesting economic implications.
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Appendix

A Appendix: Proof

Proof of Theorem 1: Let

Yt =

∫ t

0
σdB̄s

be a Brownian motion under
(
Ω,F , P̄ ,

{
FYt
})
. Define

Λat,τ , exp

(∫ τ

t

η̂(Ys −As, s) + as
σ

dB̄s −
1

2

∫ τ

t

∣∣∣∣ η̂(Ys −As, s) + as
σ

∣∣∣∣2 ds
)
.

Since Yt = σB̄t, |Yt| ≤ σ
∥∥B̄∥∥

t
, where

∥∥B̄∥∥
t
, max

0≤s≤t

∣∣B̄s∣∣ . Since ht, at and At are bounded for

t ∈ [0, T ], we can find a constant C such that∣∣∣∣ η̂(Yt −At, t) + at
σ

∣∣∣∣ =

∣∣∣∣h0m0 + σ−2(Yt −At) + htat
σht

∣∣∣∣ ≤ C(1 +
∥∥B̄∥∥

t
)

for all t ∈ [0, T ]. Then it follows from Karatzas and Shreve (1991, Corollary 5.16, p. 200) that Λat,τ

is a martingale for τ ∈ [t, T ] with Et
[
Λat,τ

]
= 1 and hence the Girsanov theorem and (4) ensure

that

B̂a
t = B̄t −

∫ t

0

η̂(Ys −As, s) + as
σ

ds

is a Brownian motion under the new measure dP a/dP̄ = Λa0,T .

Consider the following forward and backward stochastic differential equations (FBSDE) for

(η̂at , v
a
t , Z

a
t ) under (P̄ , B̄t) :

dη̂at =
σ−1

ht
dB̂a

t = −σ
−2

ht
(η̂at + at)dt+

σ−1

ht
dB̄t, (A.1)

dvat =
[
ρvat − u(wt, at) + κ |Zat | − σ−1Zat (η̂t + at)

]
dt+ Zat dB̄t, (A.2)

with η̂a0 = m0 and vaT = U(WT ). Then η̂ (Yt −At, t) in (2) and vat in (7) are the solutions to (A.1)

and (A.2) with Zat = σγat . Thus the agent’s problem (9) is equivalent to the following control

problem:

max
a∈A

va0 (A.3)

subject to the FBSDE (A.1) and (A.2) for (η̂at , v
a
t ). Note that (wt,WT ) are not control variables so

that we fix them in the proof and ignore their effects on the solution.

Since η̂t is unbounded, the Lipschitz condition for the existence of a solution to BSDE (A.2) is
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violated. We thus consider the following transformation. Define

B̄0
t = B̄t −

∫ t

0

h0m0 + σ−2Ys
σhs

ds

and

Λ0
t,τ , exp

(∫ τ

t

h0m0 + σ−2Ys
σhs

dB̄s −
1

2

∫ τ

t

∣∣∣∣h0m0 + σ−2Ys
σhs

∣∣∣∣2 ds
)
.

As in the proof above, Λ0
t,τ is a martingale with Et

[
Λ0
t,τ

]
= 1. The Girsanov theorem implies that

B̄0
t is a Brownian motion under a new measure P̄ 0 defined by dP̄ 0/dP̄ = Λ0

0,T .

Under (P̄ 0, B̄0
t ), the FBSDEs (A.1) and (A.2) become

dAs = asds, (A.4)

dvat =

[
ρvat − u(wt, at) + κ |Zat | − σ−1Zat

(
−σ−2At
ht

+ at

)]
dt+ Zat dB̄

0
t , (A.5)

with A0 = 0 and vaT = U(WT ). The coefficient of Zat is bounded on t ∈ [0, T ] and the Lipschitz

condition is satisfied.

Let a be the optimal solution to (A.3) subject to (A.4) and (A.5). We can check that A is

convex. For any ã ∈ A, define ∆a = ã− a and aε , (1− ε)a + εã ∈ A. For convenience we define

functions

f1(t, At, vt, zt, at) , −ρvt + u(wt, at) +
zt
σ

(
−σ−2At
ht

+ at

)
, f2(zt) , −κ |zt| .

Clearly, f2 is not a differentiable function.

Let (∇A,∇v,∇Z) solve the following linear FBSDE:
∇At =

∫ t
0 ∆asds,

∇vt =
∫ T
t [(∂Af1(s)∇As + ∂vf1(s)∇vs + ∂zf1(s)∇Zs + ∂af1(s)∆as) + ∂zf2(Zas ,∇Zs)∇Zs]ds
−
∫ T
t ∇ZsdB̄

0
s ,

(A.6)

where we can compute derivatives as

∂Af1(s) , ∂Af1(s,Aas , v
a
s , Z

a
s , as) =

−σ−2Zas
hsσ

,

∂vf1(s) , ∂vf1(s,Aas , v
a
s , Z

a
s , as) = −ρ,

∂zf1(s) , ∂zf1(s,Aas , v
a
s , Z

a
s , as) =

1

σ

(
−σ−2As
hs

+ as

)
,

∂af1(s) , ∂af1(s,Aas , v
a
s , Z

a
s , as) = ua(ws,as) +

Zas
σ
.
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We define

∂zf2(Zas , z) ,


−κ if Zas > 0

κ if Zas < 0

−κ · sgn(z) if Zas = 0

, (A.7)

where

sgn(x) ,


1 if x > 0

−1 if x < 0

0 if x = 0

.

Then

∂zf2(Zas ,∇Zs)∇Zs =


−κ∇Zs if Zas > 0

κ∇Zs if Zas < 0

−κ |∇Zs| if Zas = 0

.

Note that the function f2(zt) , −κ |zt| has a link at zero. At this point we construct “derivative”

in a special way as in (A.7). We will show later that this way allows us to get convergence when

performing perturbations.

From the construction of FBSDEs (A.4), (A.5), and (A.6), we can see that the drift terms

are uniformly Lipschitz continuous in (v, Z) and (∇v,∇Z). We need the following integrability

assumption to ensure that these two systems are well-posed.

Assumption 1 Suppose that any admissible contract (a,w,WT ) ∈ C satisfies EP̄
0
[U(WT )2] < ∞

and

EP̄
0

[(∫ T

0
(|u(wt, at)|+ |ua(wt, at)|) dt

)2
]
<∞.

By this assumption, we have EP̄
0

[(∫ T
0 |u(wt, at)| dt

)2
]
< ∞. Since BSDE (A.5) satisfies the

uniform Lipschitz continuity condition in (v, Z), we deduce that this BSDE is well-posed. Using

the preceding expressions of derivatives,

EP̄
0

(∫ T

0
|Zas |

2 ds

)
<∞,

and Assumption 1, we can show that

EP̄
0

[(∫ T

0
(|∂Af1(t)∇At|+ |∂af1(t)∆at|) dt

)2
]
<∞. (A.8)

Since BSDE (A.6) satisfies the uniform Lipschitz continuity condition in (∇v,∇Z), condition (A.8)

ensures that (A.6) is well posed.
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Define (Aa
ε
, va

ε
, Za

ε
) as the solution to FBSDEs (A.4) and (A.5) with respect to effort aε. Define

∆Aε , Aa
ε −Aa, ∆vε , va

ε − va, ∆Zε , Za
ε − Za,

∇Aε ,
4Aε

ε
, ∇vε , 4v

ε

ε
, ∇Zε , 4Z

ε

ε
.

We can check that ∇A = ∇Aε. Since 4Aεt = ε∇At and ∇At are bounded, we have

lim
ε→0

EP̄
0

[
sup

0≤t≤T
|4Aεt|

2

]
= 0.

We need u(wt, a
ε
t) and ∂au(wt, a

ε
t) to be square integrable uniformly in ε ∈ [0, 1].

Assumption 2 Suppose that

lim
R→∞

sup
ε∈[0,1]

EP̄
0

[(∫ T

0
[|u(wt, a

ε
t)|1{|u(wt,aεt)|>R} + |∂au(wt, a

ε
t)|1{|∂au(wt,aεt)|>R}]dt

)2
]

= 0,

where 1 is an indicator function.

By this assumption, we can check that

lim
R→∞

sup
ε∈[0,1]

EP̄
0{(
∫ T

0
[|f1(t, Aεt, 0, 0, a

ε
t)| 1{|f1(t,Aεt ,0,0,a

ε
t)|>R}

+ |∂af1(t, Aεt, 0, 0, a
ε
t)|1{|∂af1(t,Aεt ,0,0,a

ε
t)|>R}]dt)

2} = 0.

We then obtain the following important lemma:

Lemma 11 Suppose that Assumption 2 holds. Then

lim
ε→0

EP̄
0

{
sup

0≤t≤T
|4vεt |

2 +

∫ T

0
|4Zεt |

2 dt

}
= 0, (A.9)

lim
ε→0

EP̄
0

{
sup

0≤t≤T

(
|∇vεt −∇vt|

2
)

+

∫ T

0
|∇Zεt −∇Zt|

2 dt

}
= 0. (A.10)

Proof. Since f1 is continuous in a, we have aεt → at and f1(t, Aεt, 0, 0, a
ε
t)→ f1(t, At, 0, 0, at) as

ε→ 0. Then the square uniform integrability assumption 2 implies that

lim
ε→0

EP̄
0

[(∫ T

0
|f1(t, Aεt, 0, 0, a

ε
t)− f1(t, At, 0, 0, at)| dt

)2
]

= 0.

Also we have f1(t, Aεt, y, z, a
ε
t) → f1(t, At, y, z, at) as ε → 0 for all (y, z). Then applying Theorem

9.4.3 in Cvitanic and Zhang (2013) to (A.5), we obtain (A.9).
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We can check that

∇vεt =
va

ε

t − vat
ε

=

∫ T

t
[∂Af

ε
1(s)∇Aεs + ∂vf

ε
1(s)∇vεs + ∂zf

ε
1(s)∇Zεs + ∂af

ε
1(s)∆a+ ∂zf

ε
2(s,∇Zεs)∇Zεs]ds

−
∫ T

t
∇ZεsdB̄0

s

where we have used the following notation

∂Af
ε
1(s) ,

∫ 1

0
∂Af1(s,Aas + θ∆Aεs, v

a
s + θ∆vεs, Z

a
s + θ∆Zεs, as + θε∆at)dθ

and similar notations apply to ∂vf
ε
1(s), ∂zf

ε
1(s), and ∂af

ε
1(s). For ∂zf

ε
2(s,∇Zεs), we define

∂zf
ε
2(s, z) =

{ ∫ 1
0 ∂zf2(Zas + θ∆Zεs)dθ if Zas 6= 0

−κ · sgn(z) if Zas = 0
.

Then we have

∂zf
ε
2(s,∇Zεs)∇Zεs =

{ ∫ 1
0 ∂zf2(Zas + θ∆Zεs)dθ ∇Zεs if Zas 6= 0

−κ |∇Zεs| = −κ
|Zaεs |
ε if Zas = 0

.

Note that for Zas 6= 0, the Lebesgue integral
∫ 1

0 ∂zf2(Zas + θ∆Zεs)dθ does not change value when

there is a θ ∈ [0, 1] such that Zas + θ4 Zεs = 0. By (A.9), we have

lim
ε→0

∂Af1(s,Aas + θ∆Aεs, v
a
s + θ∆vεs, Z

a
s + θ∆Zεs, as + θε∆as)

= ∂Af1(s,Aas , v
a
s , Z

a
s , as), a.s.

Since θ, ε ∈ [0, 1], and by (A.9), we can apply the dominated convergence theorem to show that

lim
ε→0

∂Af
ε
1(s) = ∂Af1(s), a.s.

We can derive similar limits for ∂vf
ε
1(s) and ∂zf

ε
1(s). We can also show that

lim
ε→0

∂zf
ε
2(s, z) = ∂zf2(Zas , z), when Zas 6= 0,

∂zf
ε
2(s, z)z = ∂zf2(Zas , z)z = −κ |z| for any z, ε > 0 when Zas = 0.
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Thus we obtain

lim
ε→0

∂Af
ε
1(s)∇Aεs + ∂vf

ε
1(s)v + ∂zf

ε
1(s)z + ∂af

ε
1(s)∆as + ∂zf

ε
2(s, z)z (A.11)

= ∂Af1(s)∇As + ∂vf1(s)v + ∂zf1(s)z + ∂af1(s)∆as + ∂zf2(Zas , z)z

for all constants v and z, almost surely under dt⊗dP̄ . By the uniform square integrability assump-

tion 2, lim
ε→0

∂af
ε
1(t) = ∂af1(t) and (A.9), we have

lim
ε→0

EP̄
0

[(∫ T

0
|∂af ε1(t)− ∂af1(t)| · |4at| dt

)2
]

= 0. (A.12)

Also

|∂Af ε1(s)∇Aεs − ∂Af1(s)∇As| =
σ−2

σht
·
∣∣∣∣12∆Zεs

∣∣∣∣ · |∇As| .
Since ∇As is bounded, we use (A.9) to derive

lim
ε→0

EP̄
0

[∫ T

0

(
|∂Af ε1(s)∇Aεs − ∂Af1(s)∇As|2

)
dt

]
= 0. (A.13)

Finally combining (A.11), (A.12) and (A.13) and applying Theorem 9.4.3 in Cvitanic and Zhang

(2013), we obtain

lim
ε→0

EP̄
0

[
sup

0≤t≤T
(|∇vεt −∇vt|

2) +

∫ T

0
|∇Zεt −∇Zt|

2 dt

]
= 0.

This completes the proof of the lemma.

Now we continue the proof of Theorem 1. In order to solve the linear FBSDE (A.6), we introduce

the following adjoint process:

Γat = 1 +

∫ t

0
αsds+

∫ t

0
βsdB̄

0
s ,

Y
a
t =

∫ T

t
ζsds−

∫ T

t
Z
a
sdB̄

0
s ,
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where α, β and ζ will be determined later. Applying Ito’s lemma, we have

d(Γat∇vt − Y
a
t∇At)

= [. . .]dB̄0
t + {−Γat [(∂Af1(t)∇At + ∂vf1(t)∇vt

+(∂zf1(t) + ∂zf2(Zat ,∇Zt))∇Zt + ∂af1(t)∆at)]

+αt∇vt + βt∇Zt − Y
a
t (4at) + ζt∇At}dt

= [. . .]dB̄0
t + {[∇At[−Γat ∂Af1(t) + ζt] +∇vt[−Γat ∂vf1(t) + αt]

+∇Zt[−Γat (∂zf1(t) + ∂zf2(Zat ,∇Zt)) + βt]−4at[Γat ∂af1(t) + Y
a
t ]}dt.

We set

−Γat ∂Af1(t) + ζt = −Γat ∂vf1(t) + αt = −Γat (∂zf1(t) + ∂zf2(Zat ,∇Zt)) + βt = 0.

That is, we define

ζt , Γat ∂Af1(t), βt , Γat (∂zf1(t) + ∂zf2(Zat ,∇Zt)), αt , Γat ∂vf1(t).

Then we have

Γat = 1 +

∫ t

0
Γas∂vf1(s,Aas , v

a
s , Z

a
s , as)ds

+

∫ t

0
Γas(∂zf1(s,Aas , v

a
s , Z

a
s , as) + ∂zf2(Zas ,∇Zs))dB̄0

s ,

Y
a
t =

∫ T

t
Γas∂Af1(s,Aas , v

a
s , Z

a
s , as)ds−

∫ T

t
Z
a
sdB̄

0
s .

Note that Γa, Y
a
, and Z

a
depend on a and 4a because ∂zf2(Zas ,∇Zs) depend on a and 4a. Then

we have

d(Γat∇vt − Y
a
t∇At) = [. . .]dB̄0

t −4at[Γat ∂af1(t) + Y
a
t ]dt.

By standard estimates, we know that the term [...] dB̄0
t corresponds to a true martingale. Integrating

over [0, T ] and using ∇vT = 0, ∇η̂0 = 0, Γa0 = 1, and Y
a
T = 0, we can show that

∇v0 = EP̄
0

{∫ T

0
4at[Γat ∂af1(t) + Y

a
t ]dt

}
. (A.14)

By (A.10),

∇v0 = lim
ε→0
∇vε0 ≤ 0.
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Then

∇v0 = EP̄
0

{∫ T

0
Γat 4 at[ua(wt,at) + Zat σ

−1 +
Y
a
t

Γat
]dt

}
≤ 0.

Next we express the term ua(wt,at) + Zat σ
−1 + Y

a
t

Γat
.

We define Zat σ
−1 = γat and compute the last term in the square bracket. Using the derivatives

above, we can show that

Γat = e−ρt exp


t∫

0

(
1

σ

(
−σ−2As
hs

+ as

)
+ ∂zf2(Zas ,∇Zs)

)
dB̄0

s

−1

2

t∫
0

∣∣∣∣ 1σ
(
−σ−2As
hs

+ as

)
+ ∂zf2(Zas ,∇Zs)

∣∣∣∣2 ds


and

Y
a
t = EP̄

0

t

[∫ T

t

−σ−2Zas
hsσ

Γasds

]
.

Define

Γat,τ , exp

(∫ τ

t

(
−σ−2As
σhs

+
as
σ

+ bc∗s

)
dB0

s −
1

2

∫ τ

t

∣∣∣∣−σ−2As
σhs

+
as
σ

+ bc∗s

∣∣∣∣2 ds
)
,

where bc∗s = ∂zf2(Zas ,∇Zs). Then we can verify that Γat,τ is a martingale for τ ∈ [t, T ] with

Et
[
Γat,τ

]
= 1. By the Girsanov theorem,

B̂a,bc∗

t = B̂a
t −

∫ t

0
bc∗s ds = B̄t −

∫ t

0

[
η̂(Ys −As, s) + as

σ
+ bc∗s

]
ds

= B̄0
t −

∫ t

0

[
−σ−2As
σhs

+
as
σ

+ bc∗s

]
ds

is a Brownian motion under dQa,b
c∗
/dP̄ 0 = Γa0,T . Note that the measure Qa,b

c∗
is a worst-case belief

for the agent since the density generator bc∗s ∈ Bc. Formally, κσ |γas | = κ |Zas | = min|bs|≤κ bsZ
a
s =

bc∗s Z
a
s . In particular, when Zas = 0, bc∗s can take any value in [−κ, κ] . Our choice of bc∗s =

∂zf2(Zas ,∇Zs) enables us to perform calculus of variations. But it implies that bc∗s depends on

ã because ∂zf2(Zas ,∇Zs) depends on 4a.

Now we can compute that

Y
a
t

Γat
= EP̄

0

t

[∫ T

t

−σ−2Zas
hsσ

Γas
Γat
ds

]
= EP̄

0

t

[∫ T

t

−σ−2Zas
hsσ

e−ρ(s−t)Γat,sds

]
= −σ

−2

ht
EQ

a,bc∗

t

[∫ T

t
e−ρ(s−t)γas

ht
hs
ds

]
.
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So Y
a
t

Γat
= σ−2

ht
pãt where pãt , htE

Qa,b
c∗

t

[∫ T
t −e

−ρ(s−t)γas
1
hs
ds
]
∈ Pct . Then we have

∇v0 = EP̄
0

{∫ T

0
Γat 4 at[ua(wt,at) + γat +

σ−2

ht
pãt ]dt

}
≤ 0 for all ã ∈ A.

Note that pãt depends on the perturbation ã. We need to select elements in Pct that are independent

of ã. Because Γat > 0 for all ã ∈ A, we have

EP̄
0

{∫ T

0
Γat 4 at[ua(wt,at) + γat +

σ−2

ht
p̂ãt ]dt

}
≤ ∇v0 ≤ 0 for all ã ∈ A, (A.15)

where

p̂ãt =

{
p
t
, if ãt ≥ at;

pt, if ãt < at,

pt and p
t

are defined in Theorem 1. Then we can see that the condition in (A.15) is equivalent to

(15). Q.E.D.

Proof of Lemma 1: We use the notation in the proof of Theorem 1. For given time t, we

consider the following FBSDEs for s ∈ [t, T ] when the history of the effort is {aτ : τ ∈ [0, t]} :
dÃs = ãsds

dvãs =
[
ρvãs − u(ws, ãs) + κ

∣∣Z ãs ∣∣− σ−1Z ãs

(
−σ−2Ãs

hs
+ ãs

)]
dt+ Z ãs dB̄

0
s

vãT = U(WT )

, (A.16)

where Ãt = At =
∫ t

0 asds, and {ãs}s∈[0,T ] ∈ At , {ã ∈ A : ãτ = aτ , τ ∈ [0, t]}. The preceding

system for s ∈ [t, T ] has a unique solution for {Ãs, vãs , Z ãs }s∈[t,T ]. Let us define the output history

Y t
0 , {Yτ : 0 ≤ τ ≤ t}. The wage wt is a function of Y t

0 and is written as w(Y t
0 ). Then we consider

the control problem

ess sup
ã∈At

v
(ã,w,WT )
t (Y t

0 , At)

subject to (A.16), for any history (Y t
0 , At).

If ess sup
ã∈At

v
(ã,w,WT )
t (Y t

0 , At) > v
(a,w,WT )
t (Y t

0 , At), then we can find some â ∈ At such that

v
(â,w,WT )
t (Y t

0 , At) ≥ v
(a,w,WT )
t (Y t

0 , At)

and

P̄ 0
(
v

(â,w,WT )
t (Y t

0 , At) > v
(a,w,WT )
t (Y t

0 , At)
)
> 0.

So we have v
(â,w,WT )
t ≥ v

(a,w,WT )
t and P̄ 0

(
v

(â,w,WT )
t > v

(a,w,WT )
t

)
> 0. Then from the comparison
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theorem of BSDEs we have vâ0 > va0 , contradicting the fact that a is incentive compatible. Thus

ess sup
ã∈At

v
(ã,w,WT )
t (Y t

0 , At) = v
(a,w,WT )
t (Y t

0 , At). Q.E.D.

Proof of Lemma 2: Fix the contract c = (a,w,WT ). When as > 0 for s ∈ [t, T ], from (15) we

have γcs ≥ −σ−2

hs
ps − ua(ws, as) for s ∈ [t, T ]. We know that if γs ≡ 0 for s ∈ [t, T ], we have ps ≡ 0.

Let γcs = −σ−2

hs
ps − ua(ws,as) + ∆s, where ∆s ≥ 0 for s ∈ [t, T ]. By Theorem 1, p satisfies BSDE:

dps =

[
ps

(
ρ+

σ−2

hs

)
+ γcs − σpsσb

c∗
s

]
dt+ σpsσdB̂

a
s

=
[
psρ− ua(ws, as) + ∆s − σpsσb

c∗
s

]
dt+ σpsσdB̂

a
s , (A.17)

pT = 0,

where b
c∗

is the worst-case density generator associated with p. We define the negative drift of this

BSDE as

g(s, p, σp) , −
[
psρ− ua(ws, as) + ∆s − σpsσb

c∗
s

]
.

We then have g(s, 0, 0) < 0 for s ∈ [t, T ] since ua(ws, as) < 0 and −∆s ≤ 0. From the comparison

theorem in the BSDE theory, we have ps ≤ 0 for s ∈ [t, T ]. Thus γcs > 0 and any worst-case density

generator bc∗ must satisfy bc∗s = −κ for s ∈ [t, T ]. Moreover, ps defined by this density generator is

the unique element in Pcs for s ∈ [t, T ]. Q.E.D.

Proof of Lemma 3: Define p′s = σ−2

hs
ps. Then we have p′s = −EQ

a,bc∗

s

[∫ T
s e−ρ(v−s)γcv

σ−2

hv
dv
]

for

some worst-case density generator bc∗ by Theorem 1. By Ito’s Lemma,

dp′s = (ρp′s +
σ−2

hs
γcs)ds+ [. . .]dB̂a,bc∗

s =

[
ρp′s −

σ−2

hs
(ua(ws, a

∗
s) + p′s)

]
ds+ [. . .]dB̂a,bc∗

s ,

where we use the binding condition γcs = −ua(ws, as)− ps. From the equation above, we can derive

p′s = EQ
a,bc∗

s

[∫ T

s
e[−ρ(v−s)+

∫ v
s
σ−2

hτ
dτ ]ua(wv, av)

σ−2

hv
dv

]
.

Noting that

exp

(∫ v

s

σ−2

hτ
dτ

)
=
hv
hs
,

we can show that

p′s = EQ
a,bc∗

s

[∫ T

s
e−ρ(v−s)hv

hs
ua(wv, av)(

σ−2

hv
)dv

]
=

σ−2

hs
EQ

a,bc∗

s

[∫ T

s
e−ρ(v−s)ua(wv, av)dv

]
.
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Since ua(ws, as) < 0, we have p′s < 0 and hence ps < 0. Furthermore, since γcs = −σ−2

hs
ps − ua(ws,

as) by assumption, we have γcs > 0 for s ∈ [t, T ]. Thus the worst-case density satisfies bc∗s = −κ for

s ∈ [t, T ] so that there is only one element ps in Pcs for s ∈ [t, T ]. We then obtain

ps = EQ
a,bc∗

s

[∫ T

s
e−ρ(τ−s)ua(wτ , aτ )dτ

]
,

which is (18). Q.E.D.

Proof of Theorem 2: For notation convenience, we use {a∗t }
T
t=0 to denote an incentive com-

patible effort process. We also attach an asterisk to any stochastic process associated with the

incentive compatible contract. Given any effort path {at}Tt=0 ∈ A, define δt ≡ at − a∗t and

∆t ≡
∫ t

0 δsds = At −A∗t . We can show that

dYt = (η̂(Yt −A∗t , t) + a∗t ) dt+ σdB̂a∗
t

= (η̂(Yt −A∗t , t) + a∗t ) dt+ σ
(
dB̂a∗,b∗

t + b∗tdt
)
, (A.18)

where {b∗t = −κ · sgn
(
γa
∗
t

)
: t ≥ 0} ∈ Bc is some worst-case density generator associated with the

optimal effort a∗. Fix this generator and use the Girsanov theorem to deduce that B̂a,b∗ defined by

dB̂a,b∗

t = dB̂a
t − b∗tdt

is a standard Brownian motion under the measure Qa,b
∗

defined by

dQa,b
∗

dP a
= exp

(∫ T

0
b∗sdB̂

a
t −

1

2

∫ T

0
|b∗s|

2 ds

)
.

Then we obtain

dYt = (η̂(Yt −At, t) + at) dt+ σdB̂a
t

= (η̂(Yt −At, t) + at) dt+ σ
(
dB̂a,b∗

t + b∗tdt
)
. (A.19)

Using (A.18) and (A.19), we can show that

σdB̂a∗,b∗

t = σdB̂a,b∗

t + [η̂(Yt −At, t) + at − η̂(Yt −A∗t )− a∗t ]dt

= σdB̂a,b∗

t +

(
δt −

σ−2

ht
∆t

)
dt. (A.20)

Define

va,b
∗

0 = EQ
a,b∗
[∫ T

0
e−ρtu(wt, at)dt+ e−ρTU(WT )

]
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for any effort level a. Then va
∗

0 = va
∗,b∗

0 since b∗ is the worst-case density generator associated with

the optimal effort process a∗.

We consider the total reward from the optimal strategy a∗

Ia
∗
(T ) =

∫ T

0
e−ρtu(wt, a

∗
t )dt+ e−ρTU(WT ).

From the martingale representation theorem, there exists a process φ∗ such that

Ia
∗
(T ) = va

∗
0 +

∫ T

0
φ∗tσdB̂

a∗,b∗

t

= va
∗

0 +

∫ T

0
φ∗t

[
δt −

σ−2

ht
∆t

]
dt+

∫ T

0
φ∗tσdB̂

a,b∗

t ,

where we have substituted (A.20) into the equation above. By the BSDE for va
∗

in (7) with a = a∗,

we have φ∗t = e−ρtγa
∗
t . Hence, the total reward from the arbitrary policy is given by

Ia(T ) =

∫ T

0
[e−ρtu(wt, at)− e−ρtu(wt, a

∗
t )]dt+ Ia

∗
(T )

=

∫ T

0
[e−ρtu(wt, at)− e−ρtu(wt, a

∗
t )]dt+ va

∗
0

+

∫ T

0
φ∗t

[
δt −

σ−2

ht
∆t

]
dt+

∫ T

0
φ∗tσdB̂

a,b∗

t .

We can show that

−
∫ T

0
φ∗t
σ−2

ht
∆tdt = −

∫ T

0
φ∗t
σ−2

ht

(∫ t

0
δsds

)
dt

=

∫ T

0
δt

(
−
∫ T

t
φ∗s
σ−2

hs
ds

)
dt

=

∫ T

0
δt

(
−
∫ T

t
e−ρsγa

∗
s

σ−2

hs
ds

)
dt.

Since EQ
a∗,b∗

t

[
−
∫ T

0 e−ρsγa
∗
s
σ−2

hs
ds
]

is a martingale and from the martingale representation theorem

and definition (23), there exists a predictable process ξ∗ such that∫ T

t
−e−ρsγa∗s

σ−2

hs
ds = EQ

a∗,b∗

t

[
−
∫ T

t
e−ρsγa

∗
s

σ−2

hs
ds

]
+

∫ T

t
ξ∗sσdB̂

a∗,b∗

t

= e−ρt
σ−2

ht
p∗t +

∫ T

t
ξ∗sσdB̂

a∗,b∗

t

= e−ρt
σ−2

ht
p∗t +

∫ T

t
ξ∗s

(
σdB̂a,b∗

t +

(
δt −

σ−2

ht
∆t

)
dt

)
,

where we have substituted (A.20) into the last equation. Using the equations above, we can derive
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that

va,b
∗

0 − va∗0 = EQ
a,b∗

[Ia(T )]− va∗0

= EQ
a,b∗
[∫ T

0

(
e−ρtu(wt, at)− e−ρtu(wt, a

∗
t ) + δt

(
φ∗t + e−ρt

σ−2

ht
p∗t

))
dt

]
+EQ

a,b∗
[∫ T

0
δt

(∫ T

t
ξs[δs −

σ−2

hs
∆s]ds

)
dt

]
= EQ

a,b∗
[∫ T

0
(e−ρtu(wt, at)− e−ρtu(wt, a

∗
t ) + δt(e

−ρtγa
∗
t + e−ρt

σ−2

ht
p∗t ))dt

]
+EQ

a,b∗
[∫ T

0
ξ∗t∆t

(
δt −

σ−2

ht
∆t

)
dt

]
.

Since u(wt, at)− u(wt, a
∗
t ) ≤ ua (wt, a

∗
t ) δt by the concavity of u and since a∗ satisfies the necessary

condition (15), the first expectation is at most equal to zero.

Next we define the predictable process χ∗t , γa
∗
t −eρtξ∗tA∗t and define the Hamiltonian function:

H(t, a, A;χ∗, ξ∗, p∗) , u(w, a) + (χ∗ + eρtξ∗A)a− eρtξ∗σ
−2

ht
A2 +

σ−2

ht
p∗a.

We may simply write it as Ht (a,A) . Then we have

Ht(at, At)−Ht(a∗t , A∗t )− ∂AHt(a∗t , A∗t )∆t

= eρt
[
e−ρtu(wt, at)− e−ρtu(wt, a

∗
t ) + δt(φ

∗
t + e−ρt

σ−2

ht
p∗t ) + ξ∗t∆t(δt −

σ−2

ht
∆t)

]
.

Thus

va,b
∗

0 − va∗0 = EQ
a,b∗
[∫ T

0
e−ρt(Ht(at, At)−Ht(a∗t , A∗t )− ∂AHt(a∗t , A∗t )∆t)dt

]
.

If Ht(a,A) is jointly concave in (a,A) for any (t, χ∗, ξ∗, p∗), we can use condition (15) to show that

Ht(at, At)−Ht(a∗t , A∗t )− ∂AHt(a∗t , A∗t )∆t

≤ Ht(at, At)−Ht(a∗t , A∗t )− ∂AHt(a∗t , A∗t )∆t − ∂aHt(a∗t , A∗t )δt

≤ 0

for (t, χ∗, ξ∗, p∗). Then va,b
∗

0 − va∗0 ≤ 0 and we have

va
∗

0 ≥ v
a,b∗

0 ≥ inf
Qa,b∈PΘa

va,b0 = va0 .

We then conclude that the strategy a∗ is the optimal control.
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The Hessian matrix of Ht(a,A) is(
uaa(wt, a

∗
t ) eρtξ∗t

eρtξ∗t −2eρtξ∗t
σ−2

ht

)
.

The joint concavity of Ht(a,A) at (a∗, A∗) is equivalent to the negative semidefiniteness of the

Hessian matrix of Ht(·) at (a∗t , A
∗
t ), which is equivalent to uaa(wt, a

∗
t ) ≤ 0 and∣∣∣∣∣ uaa(wt, a∗t ) eρtξ∗t

eρtξ∗t −2eρtξ∗t
σ−2

ht

∣∣∣∣∣ ≥ 0,

or

−2
σ−2

ht
uaa(wt, a

∗
t ) ≥ eρtξ∗t ≥ 0.

as stated in (22). Note that in the statement of the theorem we use a to denote the optimal strategy

instead of a∗. Q.E.D.

Proof of Theorem 3: In the first-best case there is no incentive constraint and the HJB

equation is

ρJFB (v) = sup
a,w,γ

a− w + J ′FB (v) (ρv − u(w, a) + κσ |γ|) +
1

2
J ′′FB (v)σ2γ2.

By the first-order condition for w,

1 + J ′FB (v)α exp (−α (w − λa)) = 0.

Since λ ∈ (0, 1) , the first-order condition for a gives

1 + J ′FB (v)λα exp exp (−α (w − λa)) > 0.

Thus the optimal effort aFB = 1.

Conjecture that ρJFB (v) = 1 − λ + ln(−ρv)/α. Using the preceding first-order condition, we

obtain the optimal wage policy

wFB = − ln(−ρv)

α
+ λ =⇒ u (wFB, 1) = ρv.

If the optimal sensitivity satisfies γ > 0, then the first-order condition gives γ =
−κJ ′FB(v)

σJ ′′FB(v)
< 0,

a contradiction. If the optimal sensitivity satisfies γ < 0, then the first-order condition gives

γ =
κJ ′FB(v)

σJ ′′FB(v)
> 0, also a contradiction. Thus the optimal sensitivity must be γ = 0. This implies

that dvt = 0 so that vt = v0 for all t. Thus the first-best wage is also constant over time. We can
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verify the preceding value function JFB and policies for a,w, and γ satisfy the HJB equation above

so that they are indeed optimal. Q.E.D.

Proof of Lemma 4: The value function JN (v) satisfies the HJB in (28). Conjecture that it

takes the form in (29). Since JN is concave and decreasing in v, we can show that the incentive

constraint γ ≥ −ua(w, a) always binds so that γ > 0 and the worst-case density satisfies b∗t = −κ.

We next show that the optimal effort satisfies a∗ ≡ 1. By the first-order condition for w, we obtain

−1− J ′N (v) [κσuaw (w, a) + uw (w, a)]− J ′′N (v)σ2γuaw (w, a) = 0.

Given the exponential form of u, we have

1 + J ′N (v)
(
κσλα2 + α

)
exp (−α (w − λa)) + J ′′N (v)σ2γλα2 exp (−α (w − λa)) = 0. (A.21)

Differentiating with a in (29) yields

1− J ′N (v) [κσuaa (w, a) + ua (w, a)]− J ′′N (v)σ2γuaa (w, a)

= 1 + J ′N (v)
[
κσ (λα)2 + λα

]
exp (−α (w − λa)) + J ′′N (v)σ2γ (λα)2 exp (−α (w − λa))

= 1 + λ · [J ′N (v)
(
κσλα2 + α

)
exp (−α (w − λa)) + J ′′N (v)σ2γλα2 exp (−α (w − λa))]

= 1− λ > 0,

where the inequality follows from the fact that λ ∈ (0, 1) and the third equality follows from (A.21).

Thus we must have a∗ = 1.

We now conjecture that the optimal wage policy is given by

w∗ (v) = − ln(−Kv)

α
+ λ =⇒ u(w∗ (v) , 1) = Kv, (A.22)

where K is a positive constant to be determine soon. The binding incentive constraint becomes

γ = −ua(w, 1) = −αλKv. (A.23)

For a∗ = 1, the first-order condition for wage (A.21) gives equation (31). The constant K must be

the positive root of this equation.

Plugging the expressions γt = −αλKvt, u(w∗t , 1) = Kvt in the dynamics for vt

dvt = (ρvt − u (w∗t , 1) + κσγt) + γtσdB
1
t ,

and using equation (31), we obtain (32).
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Plugging (29), (A.22), (A.23) into the HJB equation (28) and matching coefficients, we obtain

(30), where we have also used equation (31). We can verify that the preceding policies for a,w and

γ attain the maximum in the HJB equation (28) and hence they are indeed optimal. Q.E.D.

Proof of Lemma 5: Suppose that shirking a = 0 is incentive compatible. Then the HJB

equation is

ρJNS (v) = sup
w,γ
− w + J ′NS (v) (ρv − u(w, 0) + κσ |γ|) +

1

2
J ′′NS (v)σ2γ2

subject to γ ≤ −ua(wt, 0). We ignore the incentive constraint for now. We conjecture that the

value function takes the form

ρJNS (v) = ln(−ρv)/α.

From the first-order condition for w, we can derive that

w = − ln(−ρv)

α
=⇒ u(w, 0) = ρv.

Suppose that γ > 0. Then the first-order condition for γ gives

J ′NS (v)κσ + J ′′NS (v)σ2γ = 0.

Since J ′NS < 0 and J ′′NS < 0, it follows that γ < 0, a contradiction. Similarly, we can show that

γ < 0 is impossible. Thus we must have γ = 0. Since ua < 0, the solution γ = 0 satisfies the

incentive constraint γ < −ua (w, a) . Then vt satisfies dvt = 0 so that vt = v0 for all t ≥ 0. Finally,

we can verify that the preceding conjectured value function JNS (v) and the wage policy solve the

HJB equation above and thus they are indeed optimal. Q.E.D.

Proof of Lemma 6: Without loss of generality we consider the case of s ∈ [0, T ]. Given (35),

(36), and exponential utility u, we deduce that pt is a function of vt and hence we can write γt as

γ(t, v, w, a). Then the first-order condition for effort a ∈ (0, 1] in HJB (38) is

1− ∂JTt
∂v

ua(w, a) + κσ
∂JTt
∂v

∂γ(t, v, w, a)

∂a
+ σ2∂

2JTt
∂v2

γ(t, v, w, a)
∂γ(t, v, w, a)

∂a
≥ 0.

The first-order condition for the wage is

−1− ∂JTt
∂v

uw(w, a) + κσ
∂JTt
∂v

∂γ(t, v, w, a)

∂w
+ σ2∂

2JTt
∂v2

γ(t, v, w, a)
∂γ(t, v, w, a)

∂w
= 0. (A.24)
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When the incentive constraint binds, we have

uw(w, a) = − 1

λ
ua(w, a) and

∂γ(t, v, w, a)

∂w
= − 1

λ

∂γ(t, v, w, a)

∂a
.

It follows from (A.24) that

−∂J
T
t

∂v
ua(w, a) + κσ

∂JTt
∂v

∂γ(t, v, w, a)

∂a
+ σ2∂

2JTt
∂v2

γ(t, v, w, a)
∂γ(t, v, w, a)

∂a

= −λ
[
−∂J

T
t

∂v
uw(w, a) + κσ

∂JTt
∂v

∂γ(t, v, w, a)

∂w
+ σ2∂

2JTt
∂v2

γ(t, v, w, a)
∂γ(t, v, w, a)

∂w

]
= −λ.

Since λ ∈ (0, 1), we can deduce that

1− ∂JTt
∂v

ua(w, a) + κσ
∂JTt
∂v

∂γ(t, v, w, a)

∂a
+ σ2∂

2JTt
∂v2

γ(t, v, w, a)
∂γ(t, v, w, a)

∂a
> 0,

Thus optimal effort is always at the full level a∗ = 1. Q.E.D.

Proof of Lemma 7: We adapt the proof in Prat and Jovanovic (2014) and divide the proof

into six steps.

1. Initial guess. By Lemma 6, the optimal incentive effort a∗ = 1. We conjecture that the value

function takes the form:

ρJTI (t, v) = fTt +
ln(−ρv)

α
,

where fTt is a term to be determined. We also guess the form of the optimal wage and the

information rent:

w∗ (t, v) = − ln(−kTt v)

α
+ λ =⇒ u(w∗t , 1) = kTt v,

p∗ (t, v) = αλφTt v,

where kTt and φTt are continuously differentiable functions to be determined. Since U (WT ) =

− exp (−αρWT ) /ρ, the terminal boundary condition for the value function is given by

ρJTI (T, v) = −ρWT =
ln(−ρv)

α
.

2. Deriving kTt . By Lemma 6, a∗ = 1. The incentive constraint becomes

γ1
t = −ua(w∗t , 1)− σ−2

ht
p∗t = −αλ

(
kTt +

σ−2

ht
φTt

)
vt,
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where we have substituted the conjectured solutions for w∗t and p∗t . Then we can derive the

derivative of γ1
t with respect to the wage:

∂γ(t, v, w∗, 1)

∂w
= −uaw(w∗t , 1) = α2λvkTt .

The first-order condition for the wage (A.24) is then given by

−1 +
∂JTI (t, v)

∂v
αkTt v +

∂JTI (t, v)

∂v
κσ
∂γ1

∂w

−σ2∂
2JTI (t, v)

∂v2
α3(λv)2(kTt (kTt +

σ−2

ht
φTt ))

=
1

ρ

(
−ρ+ (1 + κσαλ)kTt + (αλσ)2[kTt (kTt +

σ−2

ht
φTt )]

)
= 0.

Simplifying yields an equation for kTt :

(αλσ)2(kTt )2 +

(
1 + κσαλ+ (αλ)2φ

T
t

ht

)
kTt − ρ = 0. (A.25)

Since utility is negative, we need kTt to be the positive root of this equation. Then the law of

motion for agent’s continuation value (7) becomes:

dvt = vt

[
ρ− (1 + κασλ)kTt − κσαλ

σ−2

ht
φTt

]
dt− vtασλ

(
kTt +

σ−2

ht
φTt

)
dB̂1

t .

3. Deriving fTt . Now we need that the value function satisfies the dynamic programming equa-

tion:

ρJTI (t, v) = 1− w +
∂JTI (t, v)

∂t
+
∂JTI (t, v)

∂v
(ρv − u(w∗t , 1) + κσγ1

t )

+
∂2JTI (t, v)

∂v2
(
1

2
σ2)

(
γ1
t

)2
= 1 +

ln(−v)

α
+

ln(kTt )

α
− λ+

1

ρ

dfTt
dt

+
ρ− kTt
ρα

−κσλ
ρ

(
kTt +

σ−2

ht
φTt

)
− α(σλ)2

2ρ

(
kTt +

σ−2

ht
φTt

)2

.

From equation (A.25), we can see the HJB equation holds for all promised value v as long as

dfTt
dt
− ρfTt = −ρ

(
1− λ+

ln(kTt /ρ)

α

)
+

1

2
(σλ)2α

(
(
σ−2

ht
φTt )2 − (kTt )2

)
+ κσλ

σ−2

ht
φTt .
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Define

ψTs , ρ(1− λ+
ln(kTs /ρ)

α
)− 1

2
(σλ)2α((

σ−2

hs
φTs )2 − (kTs )2)− κσλσ

−2

hs
φTs . (A.26)

We then integrate fTt with respect to time t to obtain

fTt =

∫ T

t
e−ρ(s−t)ψTs ds.

4. Deriving φTt . We need to verify the guess of the form p∗t . First we need to characterize the

law of motion for p∗t . Because

γ1
t = −αλ

(
kTt +

σ−2

ht
φTt

)
vt,

we reinsert this expression of γ1
t into the BSDE for vt (8) to obtain

dvs = [ρvs − u(w∗s , 1)]ds+ σγ1
sdB̂

1,−κ
s

= vs

[
(ρ− kTs )ds− αλ(kTs +

σ−2

hs
φTs )σdB̂1,−κ

s

]
.

If αλ(kTt + σ−2

ht
φTt ) is bounded (this can be verified below), then we have

EQ
1,−κ

t [vT ] = vt exp

(∫ T

t
(ρ− kTs )ds

)
and so

p∗t = αλ(vt − e−ρ(T−s)EQ
1,−κ

t [vT ]) = αλ

(
1− exp

(
−
∫ T

t
kTs ds

))
vt.

So we should define φTt , 1− exp
(
−
∫ T
t kTs ds

)
. Since kTt > 0, φTt ∈ (0, 1) for all t < T . Let

K and kt be the positive solution to equations (31) and (42), respectively. Then we can show

that

(αλσ)2K2 +

(
1 + κσαλ+ (αλ)2φ

T
t

ht

)
K − ρ

> (αλσ)2K2 + (1 + κσαλ)K − ρ = 0

and

(αλσ)2(kt)
2 +

(
1 + κσαλ+ (αλ)2φ

T
t

ht

)
kt − ρ

< (αλσ)2(kt)
2 +

(
1 + κσαλ+

(αλ)2

ht

)
kt − ρ = 0.
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This implies that kTt ∈ (kt,K) for all t < T . Thus we have verified that αλ(kTt + σ−2

ht
φTt )

is bounded and also verified the guess of the expression for p∗t . Also we have p∗T = φTT = 0,

which means that there is no remaining information rent.

5. Verification of the HJB equation. It is straightforward to show that the solution above for

the value function JTI and policy functions for a∗, w∗, and γ∗ solve the HJB equation in (38)

and the maximum is attained at the solution. Thus the usual verification theorem holds and

the value function for the control problem is JTI (t, v) with the optimal Markovian controls

w∗t = − ln(−kTt v)
α + λ and a∗t = 1.

6. Convergence of T to infinity. Remember that kTt and φTt are deterministic where kTt is defined

in (A.25) and φTt , 1 − exp
(
−
∫ T
t kTs ds

)
with φTT = 0. We have shown that kTt ∈ (kt,K) .

Moreover, we can show that k′(h) > 0, where

k(h) ,

√
(1 + (αλ)2/h+ καλσ)2 + 4ρ(αλσ)2 − 1− (αλ)2/h− καλσ

2(αλσ)2
.

Thus we have
dkt
dt

=
dk (ht)

dht

dht
dt

> 0.

It follows that
∫ T
t kTs ds >

∫ T
t ksds > kt(T − t), which means that lim

T→∞

∫ T
t kTs ds =∞. Then

lim
T→∞

φTt = lim
T→∞

(1− e−
∫ T
t kTs ds) = 1.

Plugging this limit into (A.25), we obtain lim
T→∞

kTt = kt. Then the agent’s continuation value

satisfies

dvt = vt

[
ρ− (1 + κασλ)kt − κσαλ

σ−2

ht

]
dt− vtασλ

(
kt +

σ−2

ht

)
dB̂1

t ,

when T → ∞. Then the pointwise convergence of kTt to kt and φTt to 1 implies that ψTt

converges pointwise to

ψt , lim
T→∞

ψTt = ρ(1− λ+
ln(kt/ρ)

α
)− 1

2
(σλ)2α

(
(
σ−2

ht
)2 − (kt)

2

)
− κσλσ

−2

ht
. (A.27)

Note that we can define fTt =
∫ T
t e−ρ(s−t)ψTs ds =

∫∞
t e−ρ(s−t)ψTs ds because ψTt = 0 for all

t > T . Given that
∣∣ψTt ∣∣ is bounded, e−ρ(s−t)ψTs is dominated by some integrable function and

we can apply dominated convergence theorem to get that lim
T→∞

fTt = ft =
∫∞
t e−ρ(s−t)ψsds.

This completes the proof. Q.E.D.
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Proof of Lemma 8: As in the roof of Lemma 7, we define

ψt , ρ

[
1− λ+

ln(kt/ρ)

α

]
− 1

2
(σλ)2α

[(
σ−2

ht

)2

− (kt)
2

]
− κσλσ

−2

ht
(A.28)

and

ft =

∫ ∞
t

e−ρ(s−t)ψsds.

Differentiating the expression of ψt with respect to time t leads to

ψ′t =
ρ

α

k′t
kt
− (σλ)2α

(
−σ
−6

h3
t

− k′tkt
)

+
κσλσ−4

h2
t

.

From the definition of kt, which is a positive root of (42), we have k′t > 0 and kt > 0; so we have

ψ′t > 0. Also since lim
s→∞

hs = ∞, we get that limt→∞ kt = K and lim
s→∞

ψs = ρF, where F is defined

in (30) and K is the solution to equation (31). Note that ft =
∫∞
t e−ρ(s−t)ψsds, so we have the

differential equation f ′(t) = ρf(t)−ψ(t). Because ψt converges when t goes to infinity, we have the

boundary condition lim
s→∞

ρf(s) = lim
s→∞

ψ(s) = ρF , which means f(t) converges to F . Since

ft =

∫ ∞
t

e−ρ(s−t)ψsds > ψt

∫ ∞
t

e−ρ(s−t)ds =
ψt
ρ
,

we have f ′(t) = ρf(t)− ψ(t) > 0.

It is easily known that kt decreases with κ, and because ψt increases with kt, from the definition

of ψt we can show that ψt decreases with κ for all t. So f(t) also decreases with κ.

We differentiate kt with respect to t to obtain

.
kt
kt

= − 1√
(1 + κασλ+ (αλ)2

ht
)2 + 4ρ(αλσ)2

d
(

(αλ)2

ht

)
dt

> 0.

So k̇t/kt decreases with κ. Q.E.D.

Lemma 9: Because kTt and φTt are deterministic, we directly let the horizon T go to infinity. To

derive the law of motion pt, we define the auxiliary process

µt , EQ
1,−κ

t

[
−
∫ T

0
e−ρsγ1

s

σ−2

hs
ds

]
= µ0 +

∫ t

0
ξsσdB̂

1,−κ
t for all t ∈ [0, T ],
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where the process ξ is derived from the martingale representation theorem. Then the definition of

pt in (18) can be expressed as

pt = eρtσ2ht

[
µt +

∫ t

0
e−ρsγ1

s

σ−2

hs
ds

]
.

It follows from Ito’s lemma that

dpt =

[
ρpt +

d(σ2ht)

dt

σ−2

ht
pt + γ1

t

]
dt+ eρtσ2htdµt

=

[
pt

(
ρ+

σ−2

ht

)
+ γ1

t

]
dt+ σptσdB̂

1,−κ
t ,

where σpt , eρtσ2htξt.

When T goes into infinity, we have pt = αλvt, a
∗
t = 1, uaa(w

∗
t , 1) = (αλ)2vtkt and then

eρtσ2htξt = σpt = αλγ1
t = −(αλ)2

(
kt +

σ−2

ht

)
vt > 0.

In order to satisfy the sufficient condition (22), we should have

−2(αλ)2vtkt ≥ −(αλ)2

(
kt +

σ−2

ht

)
vt ≥ 0.

This is equivalent to

kt >
σ−2

ht
.

Since kt is the positive solution to (42), we can show that this condition is equivalent to the condition

(αλσ)2

(
σ−2

ht

)2

+

(
1 + κασλ+

(αλ)2

ht

)
σ−2

ht
− ρ < 0, (A.29)

which is also equivalent to (45). Since dkt/dt > 0 and dht/dt > 0, when this condition is satisfied

for a fixed t, it will be satisfied for all s ≥ t. Q.E.D.

Proof of Lemma 10: The proof is similar to that for Lemma 5. The key is to first consider the

relaxed problem by ignoring the incentive constraint (21) and then show that the solution to the

relaxed problem satisfies (21). It turns out γ = p = 0 so that this condition is easy to verify. We

omit the detail here. Q.E.D.

Proof of Theorem 5: We consider the infinite-horizon limit directly. Allowing for shirking, we

can write the HJB equation as

ρJt = max{H1 (t) , H2 (t)}, (A.30)
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where

H1 (t) = max
w,γt
−w +

∂Jt
∂t

+
∂Jt
∂v

(ρv − u(w, 0) + κσ |γt|) +
1

2

∂2Jt
∂v2

σ2γ2
t

subject to (16) and γt ≤ −σ−2

ht
p
t
− ua (w, 0) , and

H2 (t) = max
a>0,w,γt

a− w +
∂Jt
∂t

+
∂Jt
∂v

(ρv − u(w, a) + κσγt) +
1

2

∂2Jt
∂v2

σ2γ2
t

subject to

γt = −σ
−2

ht
pt − ua (w, a) > 0, pt = αλvt.

(a) Suppose that F > 0. Consider the case where ρJt = H1 (t) ≥ H2 (t) . We conjecture that

the function

ρJt = gt +
ln(−ρv)

α

solves the HJB equation ρJt = H1 (t), where gt is a function to be determined. The optimal wage

satisfies
1

αρv
uw (w, 0) = −1 =⇒ w =

− ln (−ρv)

α
.

Thus u (w, 0) = ρv. Ignoring the incentive constraint, we can verify that the optimal sensitivity is

γt = 0 so that dvt = 0. Thus p
t

= 0 and γt = 0 satisfies the incentive constraint. Substituting the

conjectured Jt back into the HJB equation, we obtain

ρg (t) = g′ (t) .

Consider the case where ρJt = H2 (t) ≥ H1 (t) . By Lemma 7,

ρJt = ft +
ln(−ρv)

α
.

We then obtain two segments of the value function. These two segments must be smoothly con-

nected. We thus have the value-matching condition

g (τ) = f (τ)

and the smooth-pasting condition

g′ (τ) = f ′ (τ) =⇒ ρf (τ) = f ′ (τ) ,

at some time τ . We can then show that

g (t) = e−ρ(τ−t)f (τ)
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for any t.

We next show that if F > 0, there exists a unique τ > 0 such that ρf (τ) = f ′ (τ) or ψ (τ) =

ρf (τ) − f ′ (τ) = 0. By (42) and (A.28), we deduce that ψt is a function of ht. Since dψt/dt > 0

and dht/dt > 0, ψt is an increasing function of ht. Define this function as

ϕ(h) , ρ

[
1− λ+

ln(k(h)/ρ)

α

]
− 1

2
(σλ)2α

(
(
σ−2

h
)2 − k(h)2

)
− kσ−1λ

h
,

where

k(h) =
−(1 + κασλ+ (αλ)2

h ) +

√
(1 + κασλ+ (αλ)2

h )2 + 4ρ(αλσ)2

2(αλσ)2
.

Then we have ϕ(ht) = ψ(t) and k (ht) = kt. We can check that limht→∞ ϕ (ht) = ρF and

limht→0 ϕ (ht) = −∞. Thus if F > 0 there exists a unique h̄ such that ϕ
(
h̄
)

= 0. Then τ > 0

is the unique solution to hτ = h̄ when h0 < h̄.

We now derive the sufficient condition (45), which is equivalent to kτ >
σ−2

hτ
. Suppose that

kt0 = σ−2

ht0
at some time t0. Using this equation to eliminate ht0 in (42), we can derive the positive

solution for kt0 :
σ−2

ht0
= kt0 =

2ρ

(1 + κσαλ) +
√

(1 + κσαλ) + 8α2λ2ρσ2
.

Since kt − σ−2/ht and ϕ(ht) are increasing functions of ht or time t and since ϕ (hτ ) = 0, we know

kτ >
σ−2

hτ
if we can show that ϕ (ht0) < 0. Substituting kt0 = σ−2

ht0
into (A.27) for t = t0, we obtain

ρ(1− λ+
ln(kt0/ρ)

α
)− κσλσ

−2

ht0
< 0.

Substituting the preceding expressions for kt0 and σ−2/ht0 into the inequality above, we obtain

the parameter condition (46), which guarantees that when ϕ(hτ ) = 0, (45) holds for all s ≥ τ . By

Proposition 9, we deduce that the optimal full effort contract is incentive-compatible for s ≥ τ .

We now show that

g (t) =
g′ (t)

ρ
> f (t) for t < τ,

and

g (t) =
g′ (t)

ρ
< f (t) for t > τ,

so that H1 (t) > H2 (t) on [0, τ) and H1 (t) < H2 (t) on (τ ,∞) . We only need to show that

e−ρ(τ−t)f (τ) > f (t) on t < τ,
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or

G (t) = e−ρtf (t)− e−ρτf (τ) < 0 on t < τ.

Since G′ (t) = e−ρt (f ′ (t)− ρf (t)) > 0 if and only if

ψ (t) = ρf (t)− f ′ (t) < 0,

and since ψ′t > 0 and ψ (τ) = 0, we obtain the desired result.

(b) When F ≤ 0, we know that ψ (t) ≤ 0 for all t. This implies that H1 (t) ≥ H2 (t) or f(t) ≤ 0

for all t ≥ 0. Thus shirking forever is optimal. The result then follows from Lemma 10. Q.E.D.

Proof of Proposition 1: Let k(h) and ϕ(h) be defined as in the proof of Theorem 5. Fixed

h, we can see that k(h) is decreasing with respect to κ. Since ϕ(h) is increasing with respect to

k(h), we deduce that ϕ(h) is decreasing with respect to κ. Since ϕ (h) is an increasing function of

h and since there is a unique h̄ such that ϕ
(
h̄
)

= 0, we deduce that h increases with κ and hence

τ increases with κ.

By (31), we can show that

K =
2ρ√

b2 + 4aρ+ b
,

where we define a , (αλσ)2 and b , (1 + κασλ) ∈ [1,∞) for κ ∈ [0,∞). When κ → ∞, we have

b → ∞ and hence K → 0. Thus F → −∞ by (30) so that h̄ → ∞. That is, there is no solution h̄

such that ϕ
(
h̄
)

= 0. When κ is sufficiently large, the principal will fully insure the agent and allow

him shirk forever. Q.E.D.

Proof of Proposition 2: From Lemma 8 we know that k(t) and k̇t/kt decrease with κ. It follows

from equation (47) that the drift of the process for wt increases with κ and the volatility decreases

with κ. Also, the limit of the drift is the constant drift of wages in case of known quality under

ambiguity: 1
α [−1

2(ασλK)2] < 0. So the drift of wage process will be negative when t is large. Since

dkt
dt

=
1

2

[
(1 + κασλ)/(ασλ)2 + σ−2/ht√

((1 + κασλ)/(ασλ)2 + σ−2/ht)2 + 4ρ/(ασλ)2
− 1

]
d(σ−2/ht)

dt
,

we have

d(kt + σ−2/ht)

dt
=

1

2

[
(1 + κασλ)/(ασλ)2 + σ−2/ht√

((1 + κασλ)/(ασλ)2 + σ−2/ht)2 + 4ρ/(ασλ)2
+ 1

]
d(σ−2/ht)

dt

< 0.

53



Thus the PPS term decreases with time t and converges to λσK. Q.E.D.

Proof of Proposition 3: We differentiate ϕ(h) with respect to h to obtain

ϕ′(h) = (
ρ

α
)
k′(h)

k(h)
− (σλ)2α

[
−σ
−4

h3
− k′(h)k(h)

]
+
kσλσ−2

h2
> 0.

Since ϕ(h0 + σ−2t) = ψ(t), we deduce that ψ(t) increases with h0. So we get f(t) increases with

h0. Other results are directly derived from Lemma 8. Q.E.D.
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