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Abstract

We develop a Matlab toolbox to solve dynamic multivariate rational inattention problems
in the LQG framework. The toolbox works for general LQG control and tracking problems.
We describe Matlab codes to solve for the golden rule, the steady state, and the transition
dynamics of the optimal information structure. We also describe Matlab codes to replicate
numerical results in Miao, Wu, and Young (2021).
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This paper describes a Matlab toolbox to solve dynamic RI problems in the LQG framework

studied by Miao, Wu, and Young (MWY henceforth) (2021). This toolbox works for general LQG

control and tracking problems. We introduce Matlab codes to solve for the golden rule, the steady

state, and the transition dynamics of the optimal information structure. Section 1 presents the RI

problems. Section 2 describes our RI solvers. Section 3 describes Matlab codes to replicate results

in MWY (2021) and also to solve some additional examples.

1 Multivariate RI Problems

Our toolbox solves two types of RI problems in the LQG framework. We consider the infinite-

horizon setup. Our toolbox also works for finite-horizon problems with suitable modification. The

first type is control problems.

Problem 1 (LQG control problem under RI)

max
{ut},{Ct},{Vt}

− E
[ ∞∑
t=0

βt
(
x′tQxt + u′tRut + 2x′tSut

)]
− λ

∞∑
t=0

βtI
(
xt; st|st−1

)
subject to

xt+1 = Axt +But + εt+1, (1)

st = Ctxt + vt, t ≥ 0, (2)

where β ∈ (0, 1), st = {s0, ..., st} , s−1 = ∅, x0 is Gaussian N (x0,Σ−1) , Σ−1 � 0, εt is a Gaussian

white noise N (0,W ) , and vt is a Gaussian white noise N (0, Vt), and I
(
xt; st|st−1

)
denotes the

mutual information. Assume that x0, vt, and εt are independent. The control ut is adapted to st.

We apply the following three-step procedure.

Step 1. Compute the full information solution.

The value function under full information is given by

vFI (xt) = −x′tPxt −
β

1− β tr (WP ) ,

where P satisfies the Riccati equation

P = Q+ βA′PA−
(
βA′PB + S

) (
R+ βB′PB

)−1 (
βB′PA+ S′

)
. (3)

The optimal control is given by

ut = −Fxt, (4)

where

F =
(
R+ βB′PB

)−1 (
S′ + βB′PA

)
.
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Step 2. Compute the solution under limited information with fixed information structure.

The optimal control is given by

ut = −Fx̂t,

where x̂t ≡ E
[
xt|st

]
. The negative of maximized utility is given by

E

[ ∞∑
t=0

βt
(
x′tQxt + u′tRut + 2x′tSut

)]

= E
[
x′0P0x0

]
+

∞∑
t=0

βt+1tr (WP ) +

∞∑
t=0

βttr (ΩΣ) ,

where

Ω = F ′(R+ βB′PB)F � 0. (5)

The state under the optimal control satisfies the dynamics

xt+1 = Axt −BFx̂t + εt+1. (6)

By the Kalman filter formula, x̂t follows the dynamics

x̂t = x̂t|t−1 + Σt|t−1C
′
t

(
CtΣt|t−1C

′
t + Vt

)−1 (
st − Ctx̂t|t−1

)
, (7)

x̂t|t−1 = (A−BF ) x̂t−1, (8)

where x̂t|t−1 ≡ E
[
xt|st−1

]
with x̂0|−1 = x̄0 and Σt|t−1 ≡ E

[(
xt − x̂t|t−1

) (
xt − x̂t|t−1

)′ |st−1
]
with

Σ0|−1 = Σ−1 exogenously given. Moreover,

Σt+1|t = AΣtA
′ +W, (9)

Σt =
(

Σ−1
t|t−1 + Φt

)−1
, (10)

for t ≥ 0, where Σt ≡ E
[
(xt − x̂t) (xt − x̂t)′ |st

]
denotes the posterior covariance matrix given st

and Φt denotes the signal-to-noise ratio (SNR) defined by Φt = C ′tV
−1
t Ct � 0.

Step 3. Compute optimal information structure {Ct, Vt,Σt} .
First solve the following RI problem for {Σt}∞t=0 . Then recover (Ct, Vt) using

CtV
−1
t C ′t = Σ−1

t − (AΣtA+W )−1 .

Our toolbox focuses mainly on this step.

Problem 2 (Optimal information structure for Problem 1)

min
{Σt}∞t=0

∞∑
t=0

βt
[
tr (ΩΣt) + λI

(
xt; st|st−1

)]
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subject to

I
(
xt; st|st−1

)
=

1

2
log det

(
AΣt−1A

′ +W
)
− 1

2
log det (Σt) ,

I
(
x0; s0|s−1

)
=

1

2
log det (Σ−1)− 1

2
log det (Σ0) ,

Σt � AΣt−1A
′ +W, (11)

Σ0 � Σ−1, (12)

for t ≥ 0, where Ω is given by (5).

Our toolbox can also solve pure tracking problems. In independent work, Afrouzi and Yang

(2019) develop a Julia toolbox to solve this type of problems.

Problem 3 (Pure tracking problem under RI)

min
{zt,Ct,Vt}

E
∞∑
t=0

βt
[
(yt − zt)′ (yt − zt) + λI

(
xt; st|st−1

)]
subject to (2) and

xt+1 = Axt + ηt+1, yt = Gxt.

The optimal action is zt = E
[
yt|st

]
= GE

[
xt|st

]
. Then the optimal information structure in

the above tracking problem is the solution to Problem 2, where we set Ω = G′G.

We impose the following assumption taken from Afrouzi and Yang (2019) to ensure that

(AΣtA+W ) is invertible for Σt � 0 and that the dynamic RI problem is convex, so that the

first-order conditions are necessary and suffi cient for optimality.

Assumption 1 W � 0 and AA′ +W � 0.

Our toolbox works under this assumption.

2 RI Solvers

This section presents Matlab codes to solve Problems 1, 2, and 3 under Assumption 1. We also

describe Matlab codes to characterize the signal structure and plot impulse response functions.

The description of algorithms and theoretical foundation are presented in MWY (2021). Each

algorithm has its own pros and cons in terms of computation speed, stability, convergence, and

robustness. When using value function based methods, one needs to download CVX from the

internet (http://cvxr.com/cvx/). CVX supports two free semidefinite programming (SDP) solvers,

SeDuMi (Sturm (1999)) and SDPT3 (Toh, Todd, and Tutuncu (1999)), and a commercial SDP

solver, Mosek, which is also free for academic users. These solvers use the interior point method.

None of the solvers is perfect. We find that Mosek is the fastest and SDPT3 is the most reliable

for our examples.
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2.1 Golden Rule Solution

• RI_GR.m: Compute the golden rule solution for dynamic RI problems.

Problem 4 (Golden-rule information structure)

min
Σ�0

(1− β) tr
(
A′PAΣ

)
+ tr (ΩΣ) +

λ

2

[
log det

(
AΣA′ +W

)
− log det (Σ)

]
. (13)

subject to Σ � AΣA′ +W.

When β = 1, the golden-rule solution is the same as the steady state solution.

2.2 Value Function Based Methods

• RI_VFI.m: This code computes the steady state and transition dynamics of the optimal
information structure for the pricing example in Sims (2011) using the basic VFI method.

• RI_SS_EC.m: Compute the steady state of dynamic RI problems using the modified VFI
method based on the envelope condition.

• RI_TD_EC.m: Compute the transition dynamics for dynamic RI problems using the modi-
fied VFI method based on the envelope condition.

• RI_SS_SQ: Compute the steady state of dynamic RI problems using the modified VFI
method based on a sequence of static RI models.

• RI_TD_SQ: Compute the transition dynamics for dynamic RI problems using the modified
VFI method based on a sequence of static RI models.

• RI_Static.m: Solve static RI problems.

2.3 First-order Conditions Based Methods

• RI_SS_FOC.m: Compute the steady state of dynamic RI problems using the first-order
conditions.

• RI_TD_FOC.m: Compute the transition dynamics for dynamic RI problems using first-order
conditions.

2.4 Signal Structure and Impulse Response Function

• RI_IRF.m: Compute the impulse response function for dynamic RI problems where the
innovation covariance matrix for the state dynamics is diagonal.
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• RI_IRF2.m: Compute the impulse response function for a general innovation covariance
matrix in the state dynamics.

• RI_SIG.m: Compute the optimal signal structure for dynamic RI problems using Corollary
1 of MWY (2021).

• RI_SIG1.m: Compute the signal structure for given prior and posterior covariance matrices
using Proposition 1 of MWY (2021).

2.5 Utilities

• LQG.m: Solve the standard linear-quadratic-Gaussian control model under full information.

• svdc.m: Singular value decomposition in a compact form.

• armafit.m: Fit VARMA(p, q) representation to a set of points {(z, f(z))}.

• Varma2ma1.m: Approximate VARMA(p, q) by VMA(N) with large N .

• armaeval.m: Evaluate VARMA(p, q) representation.

3 Examples

This section lists codes to replicate all numerical examples in MWY (2021) and verify propositions

in MWY (2021).

3.1 Sims (2011) Example

• Nonconverge.m: This code solves for the steady state information structure for the pricing
example in Sims (2011) using (i) the modified VFI method based on a sequence of static

RI problems, (ii) the modified VFI method using envelope condition, (iii) our FOC based

method, and (iv) Afrouzi and Yang (2019) method using their code Solve_RI_Dynamics.m.

• SimsEx_rho.m: This code replicates numerical examples in Section 4 of MWY (2021) and

replicates Figure 1.

• SimsEx_betav.m: This code replicates numerical examples in Section 4 of MWY (2021) and
replicates Figure 2.

• SimsEx_beta.m: This code is called by SimsEx_betav.m.

• SimsEx_NewConstraint.m: This code computes the steady state information structure for the
pricing example in Sims (2011) with an additional constraint on the entropy of the posterior
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covariance matrix, i.e.,

log det (Σt) ≥ l for some l. (14)

The code uses the modified VFI method using the envelope condition and the modified VFI

method based on a sequence of static RI problems. The two methods replicate the same

solution in Online Appendix G.4 of MWY (2021). The method of Afrouzi and Yang (2019)

does not apply to this problem.

• SimsEx_Plot_rho.m: This code calls SimsEx_IRF.m to plot impulse response functions for

different values of ρ.

• SimsEx_IRF.m: This code computes the impulse response function and signal structure in
the steady state for the Sims (2011) pricing example.

• SimsEx_TD.m: This code computes the transition dynamics of the pricing example in Sims
(2011) starting from any initial prior covariance matrix. The code compares the first-order

conditions based method with the modified VFI method based on a sequence of static RI

problems.

• PriceCapacity.m: This code solves the golden-rule information structure (or the steady state
with β = 1) for the pricing example in Sims (2011) with period-by-period capacity constraints.

3.2 Confirming Propositions in MWY (2021)

• VerifyLemma3.m: This code verifies the static generalized reverse water-filling solution in
Lemma 3 of MWY (2021).

• VerifyProp.m: This code uses examples to numerically verify Propositions 4-6 in MWY (2021).

• UnivariateEx.m: This code verifies Proposition 7 in MWY (2021).

3.3 Equilibrium Pricing

No Strategic Complementarity

• PriceNSC1.m: Solve equilibrium based on the steady state information structure for the

baseline parameter values.

• PriceSigmaNSC1.m: Derive comparative statics of volatilities, which calls PriceNSC1.m.

• PriceRhoNSC1.m: Derive comparative statics with respect to persistence, which calls Pri-
ceNSC1.m.
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Strategic Complementarity

• PricingCostIRF1.m: Compute comparative statics with respect to the information cost para-
meter, which calls PricingGE1.m.

This codes replicates Figure 3 of MWY (2021).

• PricingSCIRF1.m: Compute comparative statics with the degree of strategic complementar-
ity, which calls PricingGE1.m.

This codes replicates Figure 3 of MWY (2021).

• PricingSigmaIRF1.m: Compute comparative statics of volatilities, which calls PricingGE1.m.

This codes replicates Figure 4 of MWY (2021).

• PricingRhoIRF1.m: Compute comparative statics with respect to persistence, which calls
PricingGE1.m.

This codes replicates Figure 5 of MWY (2021).

• PricingGE1.m: Compute the general equilibrium model of Máckowiak and Wiederholt (2009)
without the signal independence assumption for one set of parameter values.

3.4 Consumption

• ConsRI.m: This code replicates Figure 6 of MWY (2021). Call LQG.m to solve for the value

function and the policy function under full information.

3.5 Investment

• FirmRI.m: This code computes the firm investment example and replicates Figure 7 of MWY
(2021). Call the code LQG.m to solve for the value function and the policy function under

full information.

3.6 Tracking Problem with General ARMA Processes

• ExampleMA.m: This code computes the steady state and transition dynamics information
structure for a tracking problem with discounted information costs and with MA(2) process

and compares with different solution methods. This code replicates the example in Online

Appendix D of MWY (2021).

• ExampleARMA.m: This code computes the steady state and transition dynamics information
structure for a tracking problem with discounted information costs and with ARMA(p, q)

process (p ≤ q + 1) and compares with different solution methods.
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