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We revisit Gaĺı’s (2014) analysis by extending his model to in-
corporate persistent bubble shocks. We find that, under adaptive
learning, a stable bubbly steady state and the associated sunspot so-
lutions under optimal monetary policy are not E-stable. When de-
riving the unique forward-looking minimum stable variable (MSV)
solution around an unstable bubbly steady state, we obtain results
that are consistent with the conventional views: leaning-against-
the-wind policy reduces bubble volatility and is optimal. Such a
steady state and the associated MSV solution are E-stable.

JEL Classification: E32, E44, E52

Keywords: asset bubble, monetary policy, learning, multiple equi-
libria, E-stability

Due to the recent financial crisis during 2008-2009, there is a renewed interest in
understanding the role of asset bubbles in business cycles and the associated pol-
icy implications. Gaĺı (2014) presents an elegant overlapping generations model
with nominal rigidities to study the impact of monetary policy on rational asset
bubbles. He finds some intriguing results that are inconsistent with conventional
views. These results are summarized below:

• A stronger interest rate response to bubble fluctuations (i.e., a “leaning
against the wind policy”) may raise the volatility of asset prices and of
their bubble component.

• The optimal monetary policy strikes a balance between stabilization of cur-
rent aggregate demand and the bubble. If the average size of the bubble is
sufficiently large, the latter motive will be dominant, making it optimal for
the central bank to lower interest rates in the face of a growing bubble.

In this paper we revisit Gaĺı’s analysis by extending his model to allow for
serially correlated bubble shocks. Our analysis complements his. We argue that
his results are driven by his particular choice of the equilibrium solution. In his
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model there are multiple steady states and multiple equilibria. In particular,
there is a continuum of stable bubbly steady states and a continuum of unstable
bubbly steady states. He focuses on a backward-looking sunspot solution around
a stable bubbly steady state. For this solution the value of a pre-existing asset
bubble only responds to its own innovations. In the absence of such innovations,
the size of an old bubble is predetermined, and an increase in the interest rate
will raise its future size. By contrast we analyze the forward-looking minimal
state variable (MSV) solution around an unstable bubbly steady state. For this
solution the asset bubble responds to shocks on impact just like any asset prices.
An increase in interest rates dampens the asset bubble on impact. We find results
that are consistent with conventional views and are different from Gaĺı’s results
mentioned above. In particular, the optimal policy calls for a leaning-against-the-
wind rule. Note that this result depends on the assumption of serially correlated
bubble shocks. If bubble shocks are serially uncorrelated, monetary policy would
not affect bubble volatility for the MSV solution.
All steady states and equilibria in Gaĺı’s model are consistent with rational

expectations. Following the methodology surveyed by Evans and Honkapohja
(1999, 2001), we use learning as a selection device to select a particular steady
state and a particular equilibrium.1 The idea is that agents of the model do not
initially have rational expectations and they instead form forecasts by using some
adaptive learning rules such as recursive least squares based on the data. The
question is whether the agents can learn a particular equilibrium or a particular
steady state. Marcet and Sargent (1989) and Evans and Honkapohja (1999, 2001)
show that the notion of expectational stability (E-stability) determines local con-
vergence of real time recursive learning algorithms in a wide variety of economic
models.
We find that the sunspot equilibrium solution adopted by Gaĺı (2014) is not

E-stable under his optimal monetary policy rule, but the forward-looking MSV so-
lution is E-stable. We also find that the unstable bubbly steady state Pareto domi-
nates the stable bubbly steady state. Moreover the former steady state is E-stable,
but the latter is not. Our results are analogous to those in Evans, Honkapohja,
and Marimon (2007, 2001). They show that the E-unstable high-inflation steady
state in a hyperinflation model has counterintuitive policy implications, while the
E-stable low inflation steady state has conventional implications.

I. Solving Gaĺı’s Model

We first summarize Gaĺı’s (2014) model and refer the reader to his paper for
detailed economic interpretations. We extend his model by allowing for persistent
bubble shocks. We then solve for all equilibria and select equilibrium using a
learning device.

1See Bullard and Mitra (2002), Adam (2003), Woodford (2003), Duffy and Xiao (2007), Benhabib,
Evans, and Honkapohja (2012), Christiano, Eichenbaum, and Johannsen (2018), among others, for the
application of learning to select equilibrium in macroeconomic models.
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A. Setup

The model economy consists of overlapping generations of agents, firms, and a
central bank. Each agent lives for two periods and an agent born in period t de-

rives utility according to logC1,t+βEt [logC2,t+1] , whereC1,t =
(

∫ 1
0 C1,t (i)

ε−1

ε

)
ε

ε−1

and C2,t+1 =
(

∫ 1
0 C2,t+1 (i)

ε−1

ε

)
ε

ε−1

are consumption bundles and ε > 1. Each

young agent is endowed with one unit of labor and supplies it to firms inelasti-
cally. Normalize the size of each cohort to unity.

Each young agent is endowed with δ ∈ (0, 1) units of an intrinsically useless
bubble asset. The bubble asset can be traded in an asset market. Each period a
fraction δ of each vintage of bubble assets loses its value so that the total amount
of bubble assets outstanding remains constant and equal to one. This modeling
allows a new bubble to be created once an old bubble bursts, as in Martin and
Ventura (2012), Wang and Wen (2012), and Miao, Wang, and Xu (2015).

An agent born in period t chooses differentiated consumption goods C1,t (i) and
C2,t+1 (i), bond holdings ZM

t , and holdings ZB
t|t−k

of bubble asset introduced in

period t− k to maximize utility subject to the following budget constraints

(1)

∫ 1

0

Pt (i)C1,t (i)

Pt

di+
ZM
t

Pt

+
∞
∑

k=0

QB
t|t−kZ

B
t|t−k = Wt + δQB

t|t,

∫ 1

0

Pt+1 (i)C2,t+1 (i)

Pt+1
di = Dt+1 +

ZM
t (1 + it)

Pt+1
+ (1− δ)

∞
∑

k=0

QB
t+1|t−kZ

B
t|t−k,

where Pt =
(

∫ 1
0 Pt (i)

1−ε di
)

1

1−ε

is the consumption price index, Wt is the real

wage, it is the nominal interest rate, Dt+1 is firm dividends, and QB
t|t−k

is the

period-t real price of the bubble asset introduced in period t− k. Define the gross
real interest rate as

(2) Rt = (1 + it)Et
1

Πt+1
.

Each agent owns a firm that produces a differentiated product Yt (i) using labor
input Nt (i) according to the technology Yt (i) = Nt (i). Each firm is monopolisti-
cally competitive and sets price P ∗

t one period in a advance, generating nominal
rigidities. It solves the following problem

max
P ∗

t

Et−1

[

βC1,t−1

C2,t
Yt (i)

(

P ∗
t

Pt

−Wt

)]

subject to the demand schedule Yt (i) = (P ∗
t /Pt)

−ε Ct, where Ct = C1,t +C2,t. In
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a symmetric equilibrium we have

(3) 0 = Et−1

[

βC1,t−1

C2,t
(1−MWt)

]

,

where M = ε/ (ε− 1) denotes the markup.

The labor and goods markets clearing implies

C1,t + C2,t = 1,(4)

Dt +Wt = 1.(5)

Asset market clearing requires ZM
t = 0 and ZB

t|t−k
= δ (1− δ)k . Define the aggre-

gate bubble index Qt and the old bubble index Bt as

Qt = δ

∞
∑

k=0

(1− δ)k QB
t|t−k, Bt = δ

∞
∑

k=1

(1− δ)k QB
t|t−k.

Let Ut = δQB
t|t denote the size of new bubbles. Then by definition and the agent’s

bubble asset choice condition,

Qt = Bt + Ut,(6)

Bt + Ut = βEt

[

C1,t

C2,t+1
Bt+1

]

.(7)

The consumption Euler equation gives

(8) 1 = β (1 + it)Et

[

C1,t

C2,t+1

1

Πt+1

]

.

The budget constraint (1) and the market-clearing conditions imply

(9) C1,t +Qt = Wt + Ut.

To close the model, the central bank sets the nominal interest rate according
to a feedback rule, which may respond to asset bubbles,

(10) ln (1 + it) = lnR+ φπ ln

(

Πt

Π

)

+ φb ln

(

Qt

Q

)

+ lnEtΠt+1,

where φπ > 0, Πt = Pt/Pt−1 denotes gross inflation, and a variable without time
subscript denotes its steady-state value. The central questions are how monetary
policy affects asset bubbles and whether monetary policy should respond to asset
bubbles.

The equilibrium system consists of eight equations (3), (4), (5), (6), (7), (8), (9),
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and (10) for nine stochastic processes {C1,t} , {C2,t} , {Dt} , {Wt} , {Πt} , {it} , {Qt} , {Bt} ,
and {Ut} . Since there are eight equilibrium conditions for nine variables, the equi-
librium system cannot determine the size of the old bubble and the new bubble
independently. Gaĺı (2014) assumes that the new bubble {Ut} is an exogenously
given IID process. We consider the more general case in which {Ut} is serially cor-
related. Gaĺı (2014) also considers the innovation in the old bubble Bt − Et−1Bt

as another independent source of uncertainty. We will show below that this is
true for the sunspot equilibria. Except for these two sources of uncertainty, there
is no other shock in the model.

B. Multiple Equilibria

We first present Gaĺı’s results in the deterministic case where Ut = U > 0 for
all t. Then the old bubble {Bt} satisfies the difference equation

(11) Bt+1 =
(1− 1/M) (Bt + U)

β/M− (1 + β)Bt − U
≡ H (Bt, U) .

The necessary and sufficient condition for the existence of a deterministic bubbly
steady state is given by

(12) M < 1 + β.

Furthermore, when this condition is satisfied there exists a continuum of stable
bubbly steady states indexed by U ,

{

(Bs (U) , U) : Bs (U) = H (Bs (U) , U) for U ∈
(

0, Ū
)}

,

and a continuum of unstable bubbly steady states also indexed by U,

{

(Bu (U) , U) : Bu (U) = H (Bu (U) , U) for U ∈ [0, Ū ), Bu (U) > Bs(U)
}

,

where

Ū = β + (1 + β) (1−W )− 2
√

β (1 + β) (1−W ) > 0 and W =
1

M
.

The economy also has a bubbleless steady state in which B = U = 0. In this
steady state we can show the bubbleless real interest rate is Rf = (M− 1) /β.
Thus condition (12) is the same as Rf < 1, which is the standard condition
in the literature (Tirole (1985)), i.e., the bubbleless equilibrium is dynamically
inefficient.

Next we study the stochastic case by log-linearizing the equilibrium system
around a deterministic bubbly steady state for a fixed U ∈

(

0, Ū
)

. In Appendix
A we show that the log-linearized equilibrium system can be reduced to a unidi-
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mensional system

bt =
1

R(φb + 1)
Etbt+1 +

φb − εB(1 + β)

φb + 1
Et−1bt(13)

+
R− 1

R
ut +

(εB − φb)(R− 1)

(φb + 1)R
Et−1ut,

where we use a lower case variable to denote the log deviation from its steady-state
value and R denotes the bubbly steady-state real interest rate given by

R =
1

β

1− 1/M+B

1/M−B
=

B

B + U
∈ (0, 1) .

Note that there are two bubbly steady states for a fixed U ∈
(

0, Ū
)

. Without
risk of confusion, we use the same notation B to represent either one of the
steady-state size of the old bubble in the analysis below.

Our objective is to solve for a rational expectations equilibrium (REE) using
(13). Gaĺı (2014) assumes that ut is IID. We consider a more general AR(1)
process

(14) ut = ρut−1 + et, ρ ∈ [0, 1),

where et is an IID random variable with mean zero and variance σ2
e.

Gaĺı (2014) focuses his analysis on a sunspot solution around a stable bubbly
steady state. Given (14), we can derive the following more general solution. Its
proof and the proofs of the remaining propositions in the paper are given in
Appendix B.

PROPOSITION 1: Fix U ∈
(

0, Ū
)

. For any b0, there is a linear sunspot solution
in a neighborhood of the bubbly stable steady state given by

bt = χbt−1 + (1−R) (1 + εB) ρut−2 + ϕ∗
2et + ϕ∗

3et−1 + ϕ∗
4ξt + ϕ∗

5ξt−1,

where ξt denotes a sunspot shock satisfying Et−1ξt = 0, ϕ∗
3 and ϕ∗

5 are arbitrary
real numbers, and

ϕ∗
2 =

ϕ∗
3 + (R− 1) (1 + φb)

R (φb + 1)− χ
, ϕ∗

4 =
ϕ∗
5

R(φb + 1)− χ
,

χ = R (1 + εB (1 + β)) ∈ (0, 1).

Gaĺı (2014) shows that χ = ∂H (B,U) /∂B. For a stable bubbly steady state,
we must have χ ∈ (0, 1) , which also implies that the backward-looking solution in
Proposition 1 is stationary. Gaĺı (2014) defines a sunspot variable ξt = bt−Et−1bt.
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Substituting this variable into (13) yields a particular solution

bt = χbt−1 + (φb + 1) (1−R)ut−1 − (φb − εB)(1−R)ρut−2(15)

+ξt + (φb − εB (1 + β))Rξt−1,

which can also be obtained by setting

ϕ∗
2 = 0, ϕ∗

3 = (1−R) (1 + φb) , ϕ∗
5 = (φb − εB (1 + β))R

in our general solution given in Proposition 1. The solution in equation (30) of
Gaĺı (2014) corresponds to ρ = 0 in (15).
For this solution, the initial value b0 is indeterminate. Gaĺı (2014) derives all

his results for a fixed b0. From (15) we can see that monetary policy only affects
the anticipated component of the old bubble Et−1bt through the interest rate
coefficient φb. In the case of ρ = 0, Gaĺı (2014) shows that a leaning-against-
the-wind policy which corresponds to φb > 0 generates a larger volatility in the
bubble than a policy of benign neglect (φb = 0).
Now we consider the solution in the neighborhood of the unstable bubbly steady

state.

PROPOSITION 2: Fix U ∈
(

0, Ū
)

. There is a unique forward-looking linear
solution in a neighborhood of the unstable bubbly steady state given by

(16) bt = (R− 1)
εB + 1

χ− ρ
ρut−1 +

R− 1

R

[

ρ

1 + φb

1 + εB

χ− ρ
+ 1

]

et,

where χ = R (1 + εB (1 + β)) > 1.

In a neighborhood of the unstable bubbly steady state, we have χ > 1. The
backward-looking solution in (15) is not stationary. We must solve for bt forward
to obtain the forward-looking solution in (16) so that bt is stationary. This solution
is also called the minimal state variable (MSV) solution in the literature (e.g.,
Evans and Honkapohja (2001)). In the next section we will focus our analysis on
this solution.
Note that if ρ = 0 as in Gaĺı (2014), then the MSV solution gives bt =

et (R− 1) /R. In this case monetary policy through φb does not affect bubble
dynamics. We thus assume ρ ∈ (0, 1) throughout the paper.

C. Learning and Equilibrium Selection

There are multiple (deterministic) steady states and multiple REE solutions
in Gaĺı (2014). We will use learning as a selection device to select a particular
steady state and a particular REE solution. To understand the basic idea, we
consider an economic model with a solution described as a particular parameter
vector ϕ̄ (e.g., the parameters of an autoregressive process or a steady state).
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Under adaptive learning agents do not know ϕ̄ but estimate it from data using
a statistical procedure such as least squares. This leads to estimates ϕt at time
t and the question is whether ϕt → ϕ̄ as t → ∞. Evans and Honkapohja (2001)
show that, for a wide range of economic examples and learning rules, convergence
is governed by the corresponding E-stability condition, i.e., the local asymptotic
stability of ϕ̄ under the differential equation

(17)
dϕ

dτ
= T (ϕ)− ϕ,

where τ denotes notional or virtual time, T (ϕ) is the mapping from the perceived
law of motion (PLM) ϕ to the implied actual law of motion (ALM) T (ϕ). In the
following analysis we will check the E-stability condition.
We start by the steady states.

PROPOSITION 3: For any fixed U ∈
(

0, Ū
)

, the bubbly unstable steady state
Pareto dominates the bubbly stable steady state. Moreover the bubbly unstable
steady state is E-stable if and only if φb > −1 and the bubbly stable steady state
is E-stable if and only if φb < −1.2

Next we consider the stochastic MSV and sunspot solutions.

PROPOSITION 4: For φb > −1 the sunspot solution in Proposition 1 is not
E-stable. The MSV solution in Proposition 2 is E-stable if and only if φb > −1.

Gaĺı (2014) shows that the optimal response coefficient φb that minimizes the
welfare loss is greater than −1 for the sunspot solution. Proposition 4 shows
that this solution under the optimal policy is not E-stable. By contrast, the MSV
solution for φb > −1 is E-stable. In the next section we will show that the optimal
coefficient φb is positive for the MSV solution and hence the MSV solution under
optimal monetary policy is E-stable.

II. Monetary Policy

What is the impact of the monetary policy on bubble dynamics? We first use
(16) to compute the volatility of the old bubble for the MSV solution

V ar (bt) =

(

εB + 1

χ− ρ
ρ

)2 (R− 1)2σ2
e

1− ρ2
+

(

R− 1

R

)2 [ ρ

1 + φb

1 + εB

χ− ρ
+ 1

]2

σ2
e.

It is minimized at

(18) φb = −
ρ(1 + εB)

χ− ρ
− 1 < −1.

2In a previous version of the paper, we started with the deterministic system (11) directly. The PLM
is Bt+1 = a and the ALM is T (a) = H−1 (a, U) . The ODE is ȧ = T (a)− a. In this case the assumption
on φb is not needed.
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Gaĺı (2014) shows that the volatility of both the old and aggregate bubbles is
minimized at φb = −1 for his sunspot solution.

Now we log-linearize equation (6) to obtain

(19) qt = Rbt + (1−R)ut

and combine it with (16) to derive the volatility of the aggregate bubble for the
MSV solution:

V ar (qt) = (R− 1)2
[

R
εB + 1

χ− ρ
− 1

]2

ρ2(1− ρ2)−1σ2
e +

[

(R− 1) ρ

1 + φb

1 + εB

χ− ρ

]2

σ2
e.

Thus a leaning-against-the-wind policy (i.e., φb > 0) generates a lower volatility of
the aggregate bubble than a policy of benign neglect (φb = 0), contrary to Gaĺı’s
result. The volatility is minimized when φb → +∞. Interestingly, when φb de-
creases to negative infinity, the bubble volatility also decreases to zero. However,
since in this case the MSV solution is E-unstable, the adaptive learning perspec-
tive argues against the relevance of this case: restriction attention to values of φb

for which the solution is learnable, increasing φb reduces bubble volatility.

The results above show that the volatilities of the old and aggregate bubbles
are proportional to the volatility of new bubble innovations, which are the only
source of uncertainty. By contrast, for the sunspot solution in Gaĺı (2014) (see
(15) here), innovations in old bubbles are another source of uncertainty that can
drive the movements of the aggregate bubble independent of fundamentals. This
is an appealing feature, though both sources of uncertainty are not observable
and hardly testable.

Figure 1 presents the relation between φb and the volatilities of the old and
aggregate bubbles for the MSV solution. We choose the same parameter values
as in Gaĺı (2014) by setting β = 1, ε = 6, U = 0.175. These values imply Bs = 0.1,
Bu = 0.1458, and M = 1.2. While Gaĺı (2014) studies equilibria around the stable
bubbly steady state Bs = 0.1, we focus on the solution around the unstable bubbly
steady state Bu = 0.1458. Gaĺı’s result is illustrated in Figure 2 of his paper, which
shows that the bubble volatility increases with φb > 0.

To understand the intuition behind Figure 1, we consider the economy’s re-
sponses to an exogenous positive bubble shock to ut. We first use equations (2),
(6), (7), and (8) to derive the log-linearized asset pricing equation

(20) qt = Etbt+1 − rt,

which says that total bubble is equal to the future old bubble discounted by rt.
Using this equation and (19), we see that the old bubble satisfies the asset pricing
equation

(21) bt =
1

R
Etbt+1 −

1

R
rt −

(1−R)

R
ut.
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Figure 1. Monetary Policy and Bubble Volatility. The vertical line on the right panel indi-

cates the value of φb that minimizes the standard deviation of the old bubble. The parameter

values are β = 1, ε = 6, U = 0.175, φπ = 2, ρ = 0.8, and σ2
e = 0.01. We focus on the unstable

bubbly steady state with B = 0.1458.

Solving forward shows that the old bubble is equal to the (negative) discounted
value of future real interest rates and new bubbles. Since 0 < R < 1, new bubbles
{ut} act as negative dividends. An increase in ut has a direct effect of lowering
bt and an indirect effect through the change in the interest rate rt. Due to the
endogenous response of rt, a unique forward-looking solution for bt exists as shown
in Proposition 2, even when 0 < R < 1. In contrast to Gaĺı (2014), bt is a jump
variable and responds to shocks on impact like any asset prices.

The impact of monetary policy on asset bubbles qt and bt is transmitted through
the real interest rate rt, which in turn depends on the size of bubbles bt. Thus
we need to understand the dynamic responses of rt for different values of φb. In
Appendix C we show that

(22) rt = (R− 1)

[

(εB + 1)(ρ −R)

χ− ρ
+ 1

]

ρut−1 +
φbρ(R− 1)(εB + 1)

(φb + 1)(χ − ρ)
et.

When ρ = 0, rt = 0 and bt = et (R− 1) /R by Proposition 2. It follows from (20)
that qt = 0. The intuition is that the impact of a positive new bubble shock on
the aggregate bubble is exactly offset by a negative response of the old bubble so
that the size of the aggregate bubble does not change. Thus the value of φb does
not affect the real interest rate by the monetary policy rule in (10) and hence it
does not affect bubble dynamics.

Figure 2 presents the impulse response functions for {bt} , {qt} , {rt} , and {πt}
given a 1% shock to e0 in period 0 for ρ = 0.8. When monetary policy does not
respond to bubbles (φb = 0), a positive shock to expand the new bubble u0 at
date 0 crowds out the size of old bubbles b0 and dampens the aggregate bubble
q0, but r0 does not change, as shown in equations (16), (19), and (22).

When φb > 0, the central bank will cut the interest rate according to the interest
rate rule as q0 and b0 decline and hence the fall of the old and aggregate bubbles
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is mitigated by (21). For this channel to work we need ρ ∈ (0, 1) so that the
term related to et in (22) is negative as R ∈ (0, 1) and χ > 1. Both ρ > 0 and
the forward-looking solution (initial changes of aggregate bubbles) are important
for a leaning-against-the-wind policy to lower bubble volatility in response to a
bubble shock e0. For a larger φb > 0, the mitigation effect is stronger so that
aggregate and old bubbles respond less to the bubble shock. This explains why
the volatilities of qt and bt decrease with φb > 0 as illustrated in Figure 1.

By contrast, for Gaĺı’s backward-looking solution, we rewrite (21) as

bt+1 = Rbt + rt + (1−R)ut + ξt+1,

where ξt = bt − Et−1bt is a sunspot shock and b0 is predetermined. Either a
positive bubble shock or a positive sunspot shock raises the size of future bubbles
without changing the initial size b0. A leaning-against-the-wind policy with φb > 0
will raise the interest rate rt so that future bubbles will grow even faster. This
explains why such a policy will raise bubble volatility in Gaĺı (2014).

For our forward-looking solution, Figure 2 shows that qt and bt fall on impact
and then gradually rise to their steady state values. Their dynamics for different
values of φb differ only in the initial period. This can be seen from equations
(16), (19), and (22) because R ∈ (0, 1) , et = 0 for t > 0, and ut is an AR(1)
process with persistence ρ > 0. The effect of φb is only on the terms related to
the temporary shock et.

When φb < 0, the old and aggregate bubbles may rise on impact in response to a
positive bubble shock. When the central bank cuts the interest rate to encourage
bubbles, this effect may dominate the direct negative effect of the rise in the new
bubble on the old bubble as shown in equation (21). As shown in Figure 2, when
φb decreases from −2 to −5, the old and aggregate bubbles are dampened and
the fall of interest rate is also mitigated. If bubbles expanded, the central bank
would cut the interest rate more, which in turn would encourage bubbles further.
This positive feedback effect might make the bubble explode.

Since firms adjust prices one period in advance before shocks are realized, the
inflation rate πt is predetermined. Thus it does not respond to the bubble shock on
impact. As shown in Figure 2, it may rise or fall in the second period depending
on the value of φb. In Appendix C we show that the inflation rate around the
unstable bubbly steady state is given by

πt =
ρ(R− 1)[ρ(εB + 1) + (1 + φb)(βεBR− ρ)]

φπ(χ− ρ)
ut−1.

If φb = 0, the inflation rate falls in the second period because R ∈ (0, 1) and
χ > 1. The central bank can stabilize inflation by two strategies: First, it can set
φπ at an arbitrary large value and set φb at a finite value. Second, it can set φπ

at a finite value and set φb = ρ(εB + 1)/ (ρ− βεBR)− 1.

In Gaĺı’s (2014) model inflation is not a source of welfare losses given synchro-
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Figure 2. Impulse Responses to A New Bubble Shock. This figure plots the impulse response

functions for a one percent positive new bubble shock, in percentage deviation from the

steady state. The parameter values are β = 1, ε = 6, U = 0.175, φπ = 2, ρ = 0.8, and σ2
e = 0.01.

We focus on the unstable bubbly steady state with B = 0.1458.

nized price-setting and an inelastic labor supply. Thus it is not optimal for the
central bank to stabilize inflation. To study optimal monetary policy, we follow
Gaĺı (2014) to take the unconditional mean of an agent’s lifetime utility as a wel-
fare criterion. In a neighborhood of a steady state, we can derive the second-order
approximation to the mean:

E [lnC1,t + β lnC2,t+1] ' lnC1 + β lnC2 −
1

2
(V ar (c1,t) + V ar (c2,t)) .

By the resource constraint C1,t+C2,t = 1, V ar (c1,t) is proportional to V ar (c2,t) .
Thus the optimal monetary policy that maximizes welfare will minimize the vari-
ance of

c2,t = (1− Γ) dt + Γbt,

where Γ = εB/(εB + 1).

In Appendix C we show that

dt =
χ(R− 1)[φb (ρ− εBβR)− εB(βR+ ρ)]

βR2(1 + φb)(χ− ρ)
et.
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Thus minimizing the volatility of dividends calls for setting

φb =
εB (βR+ ρ)

εBβR− ρ
.

However this policy would raise the volatility of the old bubble because it is
minimized at a different value given in (18). Thus optimal monetary policy trades
off between the volatility of dividends and the volatility of the old bubble.
Note that bt and dt are also correlated. In Appendix C we derive that

V ar(c2,t) =

(

εBρ(R− 1)

χ− ρ

)2

(1− ρ2)−1σ2
e +

[

(R− 1)ρ(φb − εB)

βR(1 + φb)(χ− ρ)

]2

σ2
e.

From this equation we can show that the optimal coefficient is given by φb =
εB > 0 for ρ 6= 0. Thus the leaning-against-the-wind policy is optimal. Moreover
the optimal coefficient increases with the size of the bubble. This property is in
contrast with Figure 4 of Gaĺı (2014), which shows that the optimal coefficient
φb is positive for a small size of bubbles and becomes negative for a sufficiently
large size of bubbles.
Figure 3 illustrates the relation between φb and V ar (c2,t) and the relation

between φb and V ar (dt). The welfare loss is minimized at φb = 0.875.
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Figure 3. Monetary Policy and Welfare. The vertical lines indicate the values of φb that

minimize the standard deviation of consumption and dividend respectively. The parameter

values are β = 1, ε = 6, U = 0.175, φπ = 2, ρ = 0.8, and σ2
e = 0.01. We focus on the unstable

bubbly steady state with B = 0.1458.

III. Conclusion

In this paper we have shown that Gaĺı’s (2014) counterintuitive results are
driven by his choice of a backward-looking sunspot solution around a stable bub-
bly steady state. His model also features a continuum of unstable bubbly steady
states, which Pareto dominate the corresponding stable bubbly steady states.
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We extend his model to incorporate persistent bubble shocks. When deriving the
unique forward-looking MSV solution around an unstable bubbly steady state, we
obtain results that are consistent with the conventional views. We apply learning
as a selection device to select steady state and equilibrium. We find that the un-
stable bubbly steady state and the associated MSV equilibrium are E-stable under
optimal monetary policy. But the stable bubbly steady state and the associated
sunspot equilibrium are not E-stable under optimal monetary policy.

In an infinite-horizon framework without recurrent creation of new bubbles,
Miao and Wang (2018) prove that the economy has two steady states. The local
equilibrium around the bubbly steady state is unique and the local equilibrium
around the bubbleless steady state is indeterminate of degree one. We conjecture
that learning will select the bubbly steady state and the associated forward-
looking solution as in this paper. Miao, Wang, and Xu (2015) and Dong, Miao,
and Wang (2017) incorporate recurrent bubbles and show that the economy has
a continuum of bubbly steady states as in Gaĺı (2014). However, they are unable
to prove the stability of these steady states analytically due to the complexity
of their multi-dimensional equilibrium systems. In contrast to Gaĺı (2014), their
numerical results indicate that each bubbly steady state is a saddle point and
the local equilibrium around each bubbly steady state is unique. We suspect
that the difference in results may be due to the difference in the infinite-horizon
and overlapping-generations frameworks. Further theoretical research is needed
to understand this issue.

Appendix

A. Deriving Equilibrium Bubble Dynamics

As in Gaĺı (2014), the log-linearize equilibrium system consists equations (19),
(20), and

0 = c1,t + βRc2,t,(A1)

c1,t = Etc2,t+1 − rt,(A2)

c2,t = (1− Γ)dt + Γbt,(A3)

Et−1wt = Et−1dt = 0,(A4)

rt = φππt + φbqt.(A5)

Combining (A1), (A2), and (A3) we derive

rt = (1− Γ)Etdt+1 + ΓEtbt+1 + βR((1− Γ)dt + Γbt)

= ΓEtbt+1 + βR((1− Γ)dt + Γbt),

where we have used Etdt+1 = 0 by (A4) in the second equality.
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Combining the equation above with (19) and (20) yields

rt = Γ(rt +Rbt + (1−R)ut) + βR((1− Γ)dt + Γbt).

We substitute Γ = εB/(εB + 1) into the equation above to obtain

(A6) rt = εBR(1 + β)bt + εB(1−R)ut + βRdt.

Taking expectations conditional on information at time t− 1 yields

(A7) Et−1rt = εBR(1 + β)Et−1bt + εB(1−R)Et−1ut,

where we have used Et−1dt = 0. We use equation (A7) and interest rate rule (A5)
to derive

rt −Et−1rt = φπ(πt − Et−1πt) + φb(qt − Et−1qt)

= φb(qt −Et−1qt)

= φbR(bt − Et−1bt) + φb(1−R)(ut − Et−1ut),(A8)

where the second equality follows from πt = Et−1πt due to price stickiness and
we use (19) to substitute for qt to derive the third equality.

Using (A7) and (A8) we derive

rt = rt − Et−1rt + Et−1rt

= φbRbt + (εB(1 + β)− φb)REt−1bt + φb(1−R)ut + (εB − φb)(1−R)Et−1ut.

Now we substitute the equation above into (20) and use (19) to derive

Etbt+1 = Rbt + (1−R)ut

+ φbRbt − (φb − εB(1 + β))REt−1bt + φb(1−R)ut − (φb − εB)(1−R)Et−1ut

= (φb + 1)Rbt − (φb − εB(1 + β))REt−1bt + (φb + 1)(1 −R)ut − (φb − εB)(1−R)Et−1ut.

We then obtain (13). Q.E.D.

B. Proofs

Proof of Proposition 1

Conjecture that the solution takes the form

bt = ϕ0bt−1 + ϕ1ut−2 + ϕ2et + ϕ3et−1 + ϕ4ξt + ϕ5ξt−1,
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where ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, and ϕ5 are coefficients to be determined. Substituting
this solution into (13) yields

bt =
1

R(φb + 1)
[ϕ0bt + ϕ1ut−1 + ϕ3et + ϕ5ξt]

+
φb − εB(1 + β)

φb + 1

(

ϕ0bt−1 + ϕ1ut−2 + ϕ3et−1 + ϕ5ξt−1

)

+
R− 1

R
(ρut−1 + et) +

(εB − φb)(R − 1)

(φb + 1)R
ρut−1.

That is,

bt =
1

R(φb + 1)
[ϕ0

(

ϕ0bt−1 + ϕ1ut−2 + ϕ2et + ϕ3et−1 + ϕ4ξt + ϕ5ξt−1

)

+ϕ1 (ρut−2 + et−1) + ϕ3et + ϕ5ξt]

+
φb − εB(1 + β)

φb + 1

(

ϕ0bt−1 + ϕ1ut−2 + ϕ3et−1 + ϕ5ξt−1

)

+
R− 1

R

(

ρ2ut−2 + ρet−1 + et
)

+
(εB − φb)(R− 1)

(φb + 1)R

(

ρ2ut−2 + ρet−1

)

.

Using the conjectured form for bt again and matching coefficients, we obtain

ϕ0 =
1

R(φb + 1)
ϕ2
0 +

φb − εB(1 + β)

φb + 1
ϕ0,

(B1)

ϕ1 =
1

R(φb + 1)
(ϕ0ϕ1 + ρϕ1) +

φb − εB(1 + β)

φb + 1
ϕ1 +

R− 1

R
ρ2 +

(εB − φb)(R− 1)

(φb + 1)R
ρ2,

(B2)

ϕ2 =
1

R(φb + 1)
(ϕ0ϕ2 + ϕ3) +

R− 1

R
,

(B3)

ϕ3 =
1

R(φb + 1)
(ϕ0ϕ3 + ϕ1) +

φb − εB(1 + β)

φb + 1
ϕ3 +

R− 1

R
ρ+

(εB − φb)(R − 1)

(φb + 1)R
ρ,

(B4)

ϕ4 =
1

R(φb + 1)
(ϕ0ϕ4 + ϕ5) ,

(B5)

ϕ5 =
1

R(φb + 1)
ϕ0ϕ5 +

φb − εB(1 + β)

φb + 1
.

(B6)
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There are two solutions for ϕ0 : ϕ0 = 0 and

ϕ0 = χ = R (1 + εB (1 + β)) .

In a neighborhood of the stable bubbly steady state, we have χ ∈ (0, 1). The only
stationary solution must corresponds to ϕ0 = χ as Gaĺı (2014) points out. We
can then solve for the other coefficients:

ϕ1 = (1−R) (1 + εB) ρ, ϕ2 =
ϕ3 + (R− 1) (1 + φb)

R (φb + 1)− χ
, ϕ4 =

ϕ5

R(φb + 1)− χ
,

and ϕ3 and ϕ5 are arbitrary numbers. Q.E.D.

Proof of Proposition 2

We take expectations conditional on information at time t− 1 on both sides of
(13) to obtain

Et−1bt

[

1−
φb − εB(1 + β)

φb + 1

]

=
1

R(φb + 1)
Et−1bt+1

+

[

R− 1

R
+

(εB − φb)(R − 1)

(φb + 1)R

]

ρut−1.

This implies that

Et−1bt =
1

R[1 + εB(1 + β)]
Et−1bt+1 −

(1−R)(εB + 1)

R(1 + εB(1 + β))
ρut−1.

By iterating the equation above forward we can derive

Et−1bt = −
(1−R)(εB + 1)

R(1 + εB(1 + β))

(

1

1− ρ/R[1 + εB(1 + β)]

)

ρut−1

= −
(1−R)(εB + 1)

χ− ρ
ρut−1,

under the condition χ ≡ R[1 + εB(1 + β)] > 1. Therefore we also have

Etbt+1 = −
(1−R)(εB + 1)

χ− ρ
ρut = −

(1−R)(εB + 1)

χ− ρ
(ρ2ut−1 + ρet).

Substituting the preceding expressions for Etbt+1 and Et−1bt into (13), we obtain
the rational expectations solution in (16). Q.E.D.
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Proof of Proposition 3

We use lifetime utility as the welfare criterion. Define the steady state welfare
as

Wf ≡ ln(C1) + β ln(C2),

where C1 and C2 denote the steady-state consumption of a consumer in his young
and old. In a steady state we have C1 = 1/M − B and C2 = 1 − 1/M + B.
Therefore

Wf = ln(
1

M
−B) + β ln(1−

1

M
+B).

We can compute

∂Wf

∂B
=

( 1
M − 1

1+β
)−B

C1C2(1 + β)
.

Denote B∗ ≡ 1/M−1/(1+β). Note that B∗ > 0 under the condition M < 1+β.
This implies that welfare is increasing with B when B < B∗. As shown in Gaĺı
(2014) Lemma 1, for any U ∈ (0, Ū ) the model has two bubbly steady states.
Moreover the stable one Bs is always less than the unstable one Bu. Thus to
show the welfare is greater at Bu than at Bs, it suffices to show that Bu < B∗.

Since Bu is the larger root of equation H(B,U) = B, we have

Bu =
−(1 + U − 1+β

M ) +
√

(1 + U − 1+β
M )2 − 4(1 + β)(1− 1

M)U

2(1 + β)
.

Therefore

Bu −B∗ =
(1− U − 1+β

M ) +
√

(1 + U − 1+β
M )2 − 4(1 + β)(1 − 1

M)U

2(1 + β)
.

Note that 1− U − 1+β
M < 0 by (12). To show Bu < B∗, it suffices to show that

(1− U −
1 + β

M
)2 > (1 + U −

1 + β

M
)2 − 4(1 + β)(1 −

1

M
)U.

This inequality is equivalent to 4(1+β)U > 4U, which holds true since U, β > 0.

To study E-stability, we rewrite (13) in a general form

(B7) bt = β0Et−1bt + β1Etbt+1 + γ0ut + γ1ut−1,
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where

β0 =
φb − εB(1 + β)

φb + 1
, β1 =

1

R(φb + 1)
,

γ0 =
R− 1

R
, γ1 =

ρ(εB − φb)(R− 1)

(φb + 1)R
.

We can check that χ ≡ R(1 + εB(1 + β)) = β−1
1 (1 − β0). Suppose that the

PLM is bt = a. Set Et−1bt = Etbt+1 = a and ut = ut−1 = 0. Then the ALM
is bt = T (a) = (β0 + β1) a. By Evans and Honkaphja (2001), the E-stability
condition for the steady state a = 0 given the ODE ȧ = T (a)−a = (β0 + β1) a−a
is β0+β1 < 1. Since χ > 1 for the unstable bubbly steady state and χ ∈ (0, 1) for
the stable bubbly steady state, we immediately establish the proposition. Q.E.D.

Proof of Proposition 4

We start with the MSV solution. We write the PLM as

bt = µ+ ϕ1ut−1 + ϕ2et,

where we include a constant term µ. Stability under learning requires µ conver-
gence of µ to zero. Plugging this equation into (B7) we obtain the ALM with the
map T (µ,ϕ1, ϕ2) . By Evans and Honkapohja (2001), the E-stability condition is

(B8) β0 + β1 < 1, β0 + β1ρ < 1.

Using the definition in the proof of Proposition 3, we have

β0 + β1 =
1 +Rφb −RεB(1 + β)

R(φb + 1)
= 1 +

1− χ

R(φb + 1)
,

β0 + ρβ1 =
ρ+Rφb −RεB(1 + β)

R(φb + 1)
= 1 +

ρ− χ

R(φb + 1)
.

Since χ > 1 at the unstable bubbly steady state, the E-stability condition for the
MSV solution is φb > −1.

Now we consider the backward sunspot solution. We write PLM as

bt = µ+ ϕ1bt−1 + ϕ2ut−1 + ϕ3et + ϕ4et−1 + ϕ5ξt + ϕ6ξt−1.

Plugging this equation into (B7) we obtain the ALM with the T−map. By Evans
and Honkapohja (2001), the E-stability condition is β0 > 1, β1 < 0. Also the
stationarity of the solution requires |β−1

1 (1 − β0)| < 1. In terms of our model
parameters, the E-stability condition is φb < −1. Q.E.D.
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C. Deriving MSV Equilibrium

From Proposition 2 we have the forward-looking MSV solution for the old bub-
ble:

(C1) bt =
(R− 1)(εB + 1)

χ− ρ
ρut−1 +

R− 1

R

[

ρ(εB + 1)

(φb + 1)(χ− ρ)
+ 1

]

et.

We use this solution to derive solutions for other variables in the model. By (19)
we obtain the solution for qt:

qt = Rbt + (1−R)ut

= (1−R)

[

1−
R(εB + 1)

χ− ρ

]

ρut−1 + (R − 1)

[

ρ(1 + εB)

(φb + 1)(χ − ρ)

]

et.(C2)

By (20) we obtain the solution for rt:

rt = Etbt+1 − qt

= (R− 1)

[

(εB + 1)(ρ−R)

χ− ρ
+ 1

]

ρut−1 +
φbρ(R − 1)(εB + 1)

(φb + 1)(χ− ρ)
et.(C3)

By (A5) we obtain the solution for πt:

πt =
(R− 1)[(εB + 1)ρ+ (φb + 1)(εBRβ − ρ)]

φπ(χ− ρ)
ρut−1.

Substituting (C3) and (C1) into (A6) we obtain the solution for dt:

dt =
χ(R − 1)[φbρ− εB(βR(1 + φb) + ρ)]

βR2(1 + φb)(χ− ρ)
et.

By (A3) we obtain the solution for c2,t:

c2,t = (1− Γ)dt + Γbt

=
εBρ(R− 1)

χ− ρ
ut−1 +

ρ(R − 1)(φb − εB)

βR(1 + φb)(χ− ρ)
et.(C4)
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