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1 Introduction

Humans have limited capacity to process information when making decisions. People often ignore

some pieces of information and pay attention to some others. In seminal contributions, Sims (1998,

2003) formalizes limited attention as a constraint on information flow and models decision-making

with limited attention as optimization subject to this constraint. Such a framework for rational

inattention (RI) has wide applications in economics as surveyed by Sims (2011) and Maćkowiak,

Matějka, and Wiederholt (2018). Despite the rapid growth of this literature, most theories and

applications have been limited to univariate models.

Multivariate RI models are difficult to analyze both theoretically and numerically, especially

in dynamic settings. Because many economic decision problems involve multivariate states and

multivariate choices, it is of paramount importance to make progress in this direction as Sims

(2011) points out. Our paper contributes to the literature by developing a framework for analyzing

multivariate RI problems in a linear-quadratic-Gaussian (LQG) control setup.1 The LQG control

setup has a long tradition in economics and can deliver analytical results to understand economic

intuition. It is also useful to derive numerical solutions for approximating nonlinear dynamic models

(Kydland and Prescott (1982)). We formulate the LQG control problem under RI in both finite- and

infinite-horizon setups as a problem of choosing both the control and information structure. The

decision maker observes a noisy signal about the unobserved controlled states. The signal vector is

a linear transformation of the states plus a noise. The signal dimension, the linear transformation,

and the noise covariance matrix are all endogenously chosen subject to period-by-period capacity

constraints. Alternatively, the information choice incurs discounted (Shannon entropy) information

costs measured in utility units.

Our second contribution is to develop an efficient three-step solution procedure. The first step

is to derive the full information solution and the second step is to apply the certainty equivalence

principle and the separation principle to derive the optimal control under an exogenous information

structure. These two steps follow from the standard control literature. The third step is to solve

for the optimal information structure under RI. We will focus on the formulation with discounted

information costs and the analysis for the formulation with period-by-period capacity constraints

is similar.

Like Sims (2011), we show that solving for the optimal information structure is equivalent to

solving for the sequence of optimal posterior covariance matrices for the state vector. It seems

natural to solve this sequence using dynamic programming. The difficulty is that this problem may

not be convex and the choice variable must be a positive semidefinite matrix. Moreover, the RI

problem involves no-forgetting constraints which are matrix inequality constraints. To tackle these

1See Sims (2006), Matějka and McKay (2015), and Caplin, Dean, and Leahy (2018) for static non-Gaussian RI
models.
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issues, we adopt the semidefinite programming (SDP) approach in the mathematics and engineering

literature, which is the mathematical tool to study optimization over positive semidefinite matrices

(Vandenberghe and Boyd (1996), Vandenberghe, Boyd, and Wu (1998), and Tanaka et al (2017)).

We first transform the original dynamic programming problem into an auxiliary convex dynamic

program and then derive a SDP representation. To facilitate an efficient and robust numerical

implementation, we construct the representation as a disciplined convex program (DCP) (Grant

(2004) and Grant, Boyd and Ye (2006)). A DCP must conform to the DCP ruleset so that it can

be easily verified as convex and solvable in a computer. DCPs can be numerically solved using the

powerful software CVX (Grant and Boyd (2008) and CVX Research, Inc. (2012)), which is freely

available from the internet (http://cvxr.com/cvx/).2

The mathematics and engineering literature typically focuses on static SDP. We contribute to

the literature by studying dynamic SDP. For the infinite-horizon case, such a dynamic program

does not give a contraction mapping. Nevertheless, we use the method of value function iteration

to show that the sequence of value functions for the truncated finite-horizon problems converges to

the infinite-horizon value function. We can then derive the optimal sequence of posterior covariance

matrices and the limiting steady state. As is well known, the method of value function iteration

can be numerically slow especially for high dimensional problems. We thus borrow the idea in Sims

(2003) to simplify the solution for the steady-state posterior covariance matrix.

We study a problem that minimizes the steady-state welfare loss including the information

cost under RI. The solution is analogous to the golden-rule capital stock in the optimal growth

model, and thus called the golden-rule information structure to differentiate it from the steady-

state solution discussed earlier. For a pure tracking problem, the golden-rule solution is the same

as that studied by Sims (2003). However, for a general control problem, we must take care of

the initial state, which is drawn from an endogenous steady-state distribution. The literature has

mistakenly ignored this initial value problem.3

We provide a characterization of the golden-rule information structure for the case in which the

state transition matrix is diagonal with equal lag coefficients. This includes two special cases: (i) the

state vector is serially independently and identically distributed (IID), conditional on a control, and

(ii) all states are equally persistent AR(1) processes with correlated innovations. The first special

case also gives the solution for the static RI problem studied by Fulton (2018) and Kőszegi and

Matějka (2019). Our solution generalizes the static reverse water-filling solution studied in Theorem

10.3.3 of Cover and Thomas (2006, p. 314). We characterize the optimal signal dimension and

show that it weakly decreases with the information cost parameter. For tracking problems, we

prove that the optimal signal is one dimensional if the rank of the weighting matrix in the loss

2CVX supports two free SDP solvers, SeDuMi (Sturm (1999)) and SDPT3 (Toh, Todd, and Tutuncu (1999) and
Tutuncu, Toh, and Todd (2003)). These solvers use the primal-dual interior-point method.

3We are extremely grateful to Chris Sims for pointing out this issue to us.

3



function is equal to one. The optimal signal is equal to the target under full information plus a

noise.

Our third contribution is to apply our results to three economic problems. Our first application

is the price setting problem adapted from Maćkowiak and Wiederholt (2009), in which there are

two exogenous state variables representing two sources of uncertainty. We first ignore the general

equilibrium price feedback effect and just focus on the decision problem as in Sims (2011). The

profit-maximizing price is equal to a linear combination of the two shocks. We derive numerical

solutions under RI similar to those in Sims (2011). We then study a general equilibrium problem

in which the endogenous aggregate price level affects individual firms’ profit-maximizing prices.

We derive an efficient numerical algorithm to solve this problem. Because solving for an equi-

librium needs to repeatedly solve an individual firm’s RI problem, we focus on the golden-rule

information structure to save computation time. We approximate the equilibrium price by an

ARMA process and derive a state space representation for a firm’s tracking problem under RI.

We find that the optimal signal dimension is less than the state dimension. This result violates

the signal independence assumption in Maćkowiak and Wiederholt (2009), which assumes that the

firm receives a separate signal for a different source of uncertainty. While they justify this signal

independence assumption by bounded rationality and tractability, this assumption is not innocuous

because it is suboptimal for the original RI problem and also leads to some qualitatively different

predictions. In particular, given our optimal signal structure, a firm is confused about the sources

of shocks and hence there is a volatility spillover effect: An increase in the volatility of one source

of the shock causes the firm to raise price responses to both sources of shocks.

Our second application is the consumption/saving problem analyzed by Sims (2003), in which

there is an endogenous state variable (wealth) and two exogenous persistent state variables (income

shocks). We find that the optimal signal is one dimensional for many information cost parameter

values. The initial responses of consumption are larger for a more persistent income shock, indepen-

dent of its innovation variance relative to other shocks. This result is different from Sims’s (2003)

finding. His Figures 7 and 8 show that the initial consumption responses to the less persistent

income shock with a larger innovation variance is larger. Moreover, he assumes that the optimal

signal is three dimensional.

Our last application is the firm investment problem in which the firm makes both tangible and

intangible capital investment. We find that the signal dimension drops from two to one when the

information cost parameter is sufficiently large. Sims (1998, 2003) argues that RI can substitute

for adjustment costs in a dynamic optimization problem. Our numerical results show that RI can

generate inertia and delayed responses of investment to shocks, just like capital adjustment costs.

Moreover, we find that RI combined with capital adjustment costs can generate hump-shaped

investment responses.
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We now discuss the related literature. Sims (2003) is the first paper that introduces multivariate

LQG RI models with information-flow constraints and focuses on the golden-rule solution only.4

Sims (2011) studies the formulation with discounted information costs and formulates the LQG RI

problem without explicit reference to the signal structure. His solution procedure consists of two

steps. His first step is essentially the same as our first two steps. His second step is to transform

the control problem under RI into a problem of choosing a sequence of optimal posterior covariance

matrices for the state vector. Sims (2011) proposes to solve for the steady state as the limit point of

the optimal sequence. He outlines a method based on first-order conditions when the no-forgetting

constraints do not bind and recommends to use the Cholesky decomposition when they bind without

providing a detailed analysis. Sims (2003) suggests that the optimal signal is typically equal to the

state vector plus a noise. The impulse responses are generated by the Kalman filter based on this

signal vector. He does notice the nonuniqueness of the optimal signal and the possibility that the

signal vector is only equal to a linear combination of a subset of state variables. But he does not

offer an explicit solution.

While Sims’s methods are insightful, numerically solving first-order conditions for optimization

problems with matrix inequality constraints is nontrivial. Our approach using the software CVX

can handle such problems efficiently and robustly. Moreover, Sims’s approach does not solve for

the optimal information structure. His choice of the signal as the state plus noise is typically

suboptimal for multivariate RI problems so that the impulse response functions generated by that

signal vector are incorrect. Based on our theoretical and numerical results discussed earlier, we

find that the no-forgetting constraints often bind and the signal dimension does not exceed the

minimum of the control and state dimensions.

Because of the difficulty of solving multivariate RI models, researchers often make simplifying

assumptions. For example, Peng (2005), Peng and Xiong (2006), Maćkowiak and Wiederholt (2009,

2015), Van Niewerburgh and Veldkamp (2010), and Zorn (2018) impose the signal independence

assumption or some restriction on the signal form. Under this assumption, solving for the optimal

information structure is equivalent to solving for the noise covariance (or precision) matrix for the

signal. An undesirable implication is that initially independent states remain ex post independent.

Mondria (2010) and Kacperczyk, Van Niewerburgh, and Veldkamp (2016) remove this assumption

in static finance models. The former paper considers only two independent assets (states), while

the latter studies the case of many assets given some invertibility restriction on the signal form.

Except for Maćkowiak and Wiederholt (2009, 2015) and Zorn (2018), all these papers study static

models.

Under our formulation, both the linear transformation and the noise covariance matrix in the

4Luo (2008), Luo and Young (2010), and Luo, Nie and Young (2015) follow Sims’s approach closely, but mainly
focus on univariate models.
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signal form must be endogenously chosen. In addition to the attention allocation effect emphasized

in the literature, the learning effect induced by the linear transformation of states is also important

for decision making because the linear transformation determines how the decision maker collects

different sources of information by combining different states. Linear combination of states can

cause the decision maker to be confused about different sources of uncertainty, thereby generating

a spillover effect.

In independent work Fulton (2018) and Kőszegi and Matějka (2019) analyze similar multivariate

RI problems in the static case and derives results similar to our generalized reverse water-filling

solution. Fulton (2017) discusses dynamic RI tracking problems and proposes an approximation

method for the special case of low information costs (or high information-flow rate).5 Maćkowiak,

Matějka, and Wiederholt (2018) study a dynamic tracking problem with one control and one

exogenous state, which follows an ARMA process. They also briefly discuss the extension to the

case with multiple exogenous states, but still with one control. Consistent with our result, the

optimal signal is one dimensional. Our approach is different from those in these three papers and

applies to general dynamic LQG control problems under RI with both multiple states and multiple

controls.

Our paper is also related to other studies that are not in the discrete-time LQG framework. This

literature is growing. Recent papers include Steiner, Stewart, and Matějka (2017), Dewan (2018),

Hébert and Woodford (2018), and Zhong (2019). Miao (2019) studies continuous-time LQG RI

problems, which require different mathematical tools. He focuses on the golden-rule steady state,

but he does not study transitional dynamics and many economic examples in this paper.

2 LQG Control Problems with Rational Inattention

We start with a finite-horizon linear-quadratic control problem under rational inattention. Let the

nx dimensional state vector xt follow the linear dynamics

xt+1 = Atxt +Btut + ǫt+1, t = 0, 1, ..., T, (1)

where ut is an nu dimensional control variable and ǫt+1 is a Gaussian white noise with covariance

matrix Wt. The matrix Wt is positive semidefinite, denoted by Wt � 0.6 The state transition matrix

At and the control coefficient matrix Bt are deterministic and conformable. The state vector xt

may contain both exogenous states such as AR(1) shocks and endogenous states such as capital.

Suppose that the decision maker does not observe the state xt perfectly, but observes a multi-

5We would like to thank Gianluca Violante for pointing out Fulton’s papers to us, when we presented a preliminary
version of our paper in a conference in the summer of 2018.

6We use the conventional matrix inequality notations: W ≻ (�) W̃ means that W − W̃ is positive definite

(semidefinite) and W ≺ (�) W̃ means W − W̃ is negative definite (semidefinite).
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dimensional noisy signal st about xt given by

st = Ctxt + vt, t = 0, 1, ..., T, (2)

where Ct is a conformable deterministic matrix and vt is a Gaussian white noise with covariance

matrix Vt ≻ 0. Notice that we do not impose any other restriction on Ct or Vt.
7 In particular, Ct may

not be an identity matrix or invertible. Assume that x0 is a Gaussian random variable with mean

x̄0 and covariance matrix Σ−1 ≻ 0. The random variables ǫt, vt, and x0 are all mutually independent

for all t. The decision maker’s information set at date t is generated by st = {s0, s1, ..., st} . The

control ut is measurable with respect to st.

Suppose that the decision maker is boundedly rational and has limited information-processing

capacity. He or she faces the following period-by-period capacity constraint8

I
(
xt; st|s

t−1
)
≤ κ, t = 0, 1, ..., T, (3)

where κ > 0 denotes the information-flow rate or capacity and I
(
xt; st|s

t−1
)
denotes the conditional

(Shannon) mutual information between xt and st given st−1,

I
(
xt; st|s

t−1
)
≡ H

(
xt|s

t−1
)
−H

(
xt|s

t
)
.

Here H (·|·) denotes the conditional entropy operator.9 Let s−1 = ∅. Intuitively, entropy measures

uncertainty. At each time t, given past information st−1, observing st reduces uncertainty about

xt. The decision maker can process information by choosing the information structure represented

by {Ct, Vt}
T
t=0 for the signal st, but the rate of uncertainty reduction in each period is limited by

an upper bound κ.

Notice that the choice of {Ct, Vt}
T
t=0 implies that the dimension of the signal vector st and the

correlation structure of the noise vt are endogenous and may vary over time. The decision maker

makes decisions sequentially. He or she first chooses the information structure {Ct, Vt}
T
t=0 and then

selects a control {ut}
T
t=0 adapted to

{
st
}

to maximize an objective function. Suppose that the

objective function is quadratic. We are ready to formulate the decision maker’s problem as follows:

Problem 1 (Finite-horizon LQG problem under RI with period-by-period capacity constraints)

max
{ut},{Ct},{Vt}

−E

[
T∑

t=0

βt
(
x′tQtxt + u′tRtut + 2x′tStut

)
+ βT+1x′T+1PT+1xT+1

]

subject to (1), (2), and (3), where β ∈ (0, 1] and the expectation is taken with respect to the joint

distribution induced by the initial distribution for x0 and the state dynamics (1).

7As will be clear later, the signal form in (2) is not restrictive and can be recovered from the optimal posterior
covariance matrix for the state vector (see Proposition 1).

8We do not adopt the capacity constraint on the total information flows across periods because this formulation
causes the dynamic inconsistency issue.

9See Cover and Thomas (2006) or Sims (2011) for the definitions of entropy, conditional entropy, mutual informa-
tion, and conditional mutual information.
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The parameter β ∈ (0, 1] represents the discount factor. The deterministic matrices Qt, Rt,

and St for all t and PT+1 are conformable and exogenously given. In applications it may be more

convenient to consider the following relaxed problems with discounted information costs.

Problem 2 (Finite-horizon LQG problem under RI with discounted information costs)

max
{ut},{Ct},{Vt}

− E

[
T∑

t=0

βt
(
x′tQtxt + u′tRtut + 2x′tStut

)
+ βT+1x′T+1PT+1xT+1

]

− λ

T∑

t=0

βtI
(
xt; st|s

t−1
)

subject to (1) and (2), where β ∈ (0, 1] and the expectation is taken with respect to the joint

distribution induced by the initial distribution for x0 and the state dynamics (1).

In this problem λ > 0 can be interpreted as the shadow price (cost) of the information flow. For

the infinite-horizon stationary case, we set T → ∞ and remove the time index for all exogenously

given matrices At, Bt, Qt, Rt, St, andWt. Under some stability conditions, the posterior distribution

for xt will converge to a long-run stationary distribution.

For simplicity we will focus our analysis on Problem 2 and its infinite-horizon limit as T → ∞.

We will discuss how we solve Problem 1 in Appendix B.

2.1 Full Information Case

Before analyzing Problem 2, we first present the solution in the full information case, in which the

decision maker observes xt perfectly. The solution can be found in the textbooks by Ljungqvist

and Sargent (2004) and Miao (2014). Suppose that PT+1 � 0, Rt ≻ 0, and

[
Qt St

S′
t Rt

]
� 0

for all t = 0, 1, ..., T. Then the value function given a state xt takes the form

vFI
t (xt) = −x′tPtxt −

T∑

τ=t

βτ−t+1tr (WτPτ+1) , (4)

where Pt � 0 and satisfies

Pt = Qt + βA′
tPt+1At (5)

−
(
βA′

tPt+1Bt + St

) (
Rt + βB′

tPt+1Bt

)−1 (
βB′

tPt+1At + S′
t

)
,

for t = 0, 1, ..., T. Here tr(·) denotes the trace operator.

The optimal control is

ut = −Ftxt, (6)
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where

Ft =
(
Rt + βB′

tPt+1Bt

)−1 (
S′
t + βB′

tPt+1At

)
. (7)

For the infinite horizon case, all exogenous matrices are time invariant. As T → ∞, we obtain

the infinite-horizon solution under some standard stability conditions. The value function is given

by

vFI (xt) = −x′tPxt −
β

1− β
tr (WP ) ,

where P � 0 and satisfies

P = Q+ βA′PA−
(
βA′PB + S

) (
R+ βB′PB

)−1 (
βB′PA+ S′

)
.

The optimal control is given by

ut = −Fxt, (8)

where

F =
(
R+ βB′PB

)−1 (
S′ + βB′PA

)
.

2.2 Control under Exogenous Information Structure

We solve Problem 2 in three steps. In the first step we derive the full-information solution as

in Section 2.1. In the second step we observe that Problem 2 is a standard LQG problem under

partial information when the information structure {Ct, Vt}
T
t=0 is exogenously fixed. Thus the usual

separation principle and certainty equivalence principle hold. This implies that the optimal control

is given by

ut = −Ftx̂t, (9)

where x̂t ≡ E
[
xt|s

t
]
denotes the estimate of xt given information st. Notice that the matrix Ft is

determined by (7) in the full information case, which is independent of the information structure.

The state under the optimal control satisfies the dynamics

xt+1 = Atxt −BtFtx̂t + ǫt+1. (10)

By the Kalman filter formula, x̂t follows the dynamics

x̂t = x̂t|t−1 +Σt|t−1C
′
t

(
CtΣt|t−1C

′
t + Vt

)−1 (
st −Ctx̂t|t−1

)
, (11)

x̂t|t−1 = (At−1 −Bt−1Ft−1) x̂t−1, (12)

where x̂t|t−1 ≡ E
[
xt|s

t−1
]
with x̂0|−1 = x̄0 and Σt|t−1 ≡ E

[(
xt − x̂t|t−1

) (
xt − x̂t|t−1

)′
|st−1

]
with

Σ0|−1 = Σ−1 exogenously given. Moreover,

Σt+1|t = AtΣtA
′
t +Wt, (13)

Σt =
(
Σ−1
t|t−1 +Φt

)−1
, (14)
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for t = 0, 1, ..., T , where Σt ≡ E
[
(xt − x̂t) (xt − x̂t)

′ |st
]
denotes the posterior covariance matrix

given st and Φt denotes the signal-to-noise ratio (SNR) defined by Φt = C ′
tV

−1
t Ct � 0, t = 0, 1, ..., T.

We need the following lemma to derive the optimal information structure. Its proof and proofs

of all other results are collected in Appendix A.

Lemma 1 Under the optimal control policy in (9) for fixed information structure {Ct, Vt}
T
t=0 , we

have

E

[
T∑

t=0

βt
(
x′tQtxt + u′tRtut + 2x′tStut

)
+ βT+1x′T+1PT+1xT+1

]

= E
[
x′0P0x0

]
+

T∑

t=0

βt+1tr (WtPt+1) +
T∑

t=0

βttr (ΩtΣt) ,

where

Ωt = F ′
t(Rt + βB′

tPt+1Bt)Ft � 0. (15)

Notice that the matrix Ωt is positive semidefinite because Rt ≻ 0 and Pt+1 � 0. Since Ft is an

nu by nx dimensional matrix, the rank of Ωt, denoted by rank(Ωt), does not exceed the minimum of

the dimension nx of the state vector and the dimension nu of the control vector. Thus it is possible

that Ωt is singular. If nx ≥ nu and Ft has full column rank, then rank(Ωt) = nu. If nx < nu and Ft

has full row rank, then rank(Ωt) = nx.

2.3 Optimal Information Structure

In the final step of our solution procedure, we solve for the optimal information structure {Ct, Vt} .

In doing so, we compute the mutual information10

I
(
xt; st|s

t−1
)

= H
(
xt|s

t−1
)
−H

(
xt|s

t
)

=
1

2
log det

(
At−1Σt−1A

′
t−1 +Wt−1

)
−

1

2
log det (Σt)

for t = 1, 2, .., T, and

I
(
x0; s0|s

−1
)
= H (x0)−H (x0|s0) =

1

2
log det (Σ−1)−

1

2
log det (Σ0)

for t = 0, where the functionsH (·) andH (·|·) denote the entropy and conditional entropy operators,

and det(·) denotes the determinant operator.

Since {Pt} is independent of the information structure and E [x′0P0x0] is determined by the

exogenous initial prior distribution, it follows from Lemma 1 that solving for the optimal information

structure in Problem 2 is equivalent to solving for the optimal sequence of posterior covariance

matrices for the state vector:
10The usual base for logarithm in the entropy formula is 2, in which case the unit of information is a “bit.” In this

paper we adopt natural logarithm, in which case the unit is called a “nat.”
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Problem 3 (Optimal information structure for Problem 2)

min
{Σt}

T
t=0

T∑

t=0

βt
[
tr (ΩtΣt) + λI

(
xt; st|s

t−1
)]

subject to

I
(
xt; st|s

t−1
)
=

1

2
log det

(
At−1Σt−1A

′
t−1 +Wt−1

)
−

1

2
log det (Σt) ,

I
(
x0; s0|s

−1
)
=

1

2
log det (Σ−1)−

1

2
log det (Σ0) ,

Σt � At−1Σt−1A
′
t−1 +Wt−1, (16)

Σ0 � Σ−1, (17)

for t = 1, 2, ..., T.

It follows from Lemma 1 and (4) that the expression
∑T

t=0 β
ttr (ΩtΣt) represents the expected

welfare loss due to the limited information (i.e., the difference between the expected discounted

utilities under full information and under limited information). The optimal information structure

under RI minimizes the welfare loss plus the discounted information cost. Sims (2011) formulates

an essentially identical problem for the infinite-horizon case as T → ∞, except that there is a

difference in constraints at date zero. The matrix inequalities (16) and (17) are called the no-

forgetting constraints (Sims (2003, 2011)). They can be derived from (13) and (14) as the SNR Φt

is positive semidefinite. After obtaining {Σt} , we can recover {Φt} and hence {Ct} and {Vt} from

the following result.

Proposition 1 Given an optimal sequence {Σt}
T
t=0 determined from Problem 3, the optimal SNR

is given by

Φ0 = Σ−1
0 − Σ−1

−1, Φt = Σ−1
t −

(
At−1Σt−1A

′
t−1 +Wt−1

)−1
, t ≥ 1.

An optimal information structure {Ct, Vt}
T
t=0 satisfies Φt = C ′

tV
−1
t Ct. A particular solution is that

Vt = diag
(
ϕ−1
it

)mt

i=1
and the mt columns of nx ×mt matrix C ′

t are orthonormal eigenvectors for all

positive eigenvalues of Φt, denoted by {ϕit}
mt

i=1 . The optimal dimension of the signal vector st is

equal to rank (Φt) = mt ≤ nx.

This proposition shows that the optimal information structure {Ct, Vt}
T
t=0 is not unique and can

be computed by the singular-value decomposition. The optimal signal can always be constructed

such that the components in the noise vector vt of the signal st are independent. Throughout

the paper we will focus on the signal structure such that Vt is diagonal for each t. In this case

Ct is unique up to a scalar constant and up to an interchange of rows. When Ct is scaled by a

constant b, Vt is scaled by b2. By the Kalman filter, the impulse responses to structural shocks

to all state variables do not change, but the responses to noise shocks are scaled by 1/b. Notice
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that optimal signals are in general not independent in the sense that the matrix Ct may not be

diagonal or invertible. The signal independence assumption is widely adopted in the literature

(e.g., Maćkowiak and Wiederholt (2009)), but we show that this assumption can be restrictive and

lead to suboptimal solutions.

3 Dynamic Semidefinite Programming

In this section we focus on the analysis of Problem 3, which is not a trivial dynamic problem because

the choice variables are positive semidefinite matrices and the constraints are matrix inequalities.

We extend the semidefinite programming approach recently proposed by Tanaka et al (2017) for

static programs to the dynamic case. We also provide some characterization results for some special

cases.

3.1 Finite-Horizon Case

We use dynamic programming to study Problem 3 (Stokey and Lucas with Prescott (1989) and

Miao (2014)). Let V0 (Σ−1) be the value function for Problem 3. Let Vt (Σt−1) be the value function

for the continuation problem in period t ≥ 1 defined as

Vt (Σt−1) = min
{Στ}

T
τ=t

T∑

τ=t

βτ−t
[
tr (ΩτΣτ ) + λI

(
xτ ; sτ |s

τ−1
)]

subject to

I
(
xτ ; sτ |s

τ−1
)
=

1

2
log det

(
Aτ−1Στ−1A

′
τ−1 +Wτ−1

)
−

1

2
log det (Στ ) ,

Στ � Aτ−1Στ−1A
′
τ−1 +Wτ−1,

for τ = t, t+ 1, ..., T.

The sequence of value functions Vt (Σt−1) for t ≥ 0 satisfies Bellman equations. But Vt (Σt−1)

may not be convex, as will become clear later. We thus solve an auxiliary convex problem. We

formulate this problem as DCP so that we can apply the efficient software CVX. Specifically, in

the last period T, consider

JT (ΣT−1) ≡ min
ΣT≻0

tr (ΩTΣT )−
λ

2
log det (ΣT ) (18)

subject to (16) for t = T. Since the log-determinant function is strictly concave and (16) is a linear

matrix inequality, the problem in (18) is a convex program and hence JT (ΣT−1) is also strictly

convex in ΣT−1.

In any period t = 0, 1, ..., T − 1, consider the Bellman equation:

Jt (Σt−1) = min
Σt≻0

tr (ΩtΣt) +
λ

2

[
β log det

(
AtΣtA

′
t +Wt

)
− log det (Σt)

]
+ βJt+1 (Σt) (19)
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subject to (16) for t ≥ 1 and (17) for t = 0.

It is straightforward to verify that

Vt (Σt−1) = Jt (Σt−1) +
λ

2
log det

(
At−1Σt−1A

′
t−1 +Wt−1

)
(20)

for t ≥ 1 and

V0 (Σ−1) = J0 (Σ−1) +
λ

2
log det (Σ−1) . (21)

Moreover, the optimal solution {Σt}
T
t=0 for (18) and (19) also gives the optimal solution to Problem

3 by the dynamic programming principle.

In Lemma 2 of Appendix A we show that

β log det
(
AtΣtA

′
t +Wt

)
− log det (Σt)

is strictly convex in Σt when β ∈ (0, 1]. Thus we can show that the problem in (19) is a convex

program. However, the software CVX cannot recognize whether the difference of two concave

functions is convex by its ruleset. We need to transform this problem into a DCP form. To achieve

this goal, the following proposition derives a dynamic semidefinite program representation.

Proposition 2 Suppose that Wt ≻ 0 and Ωt � 0 for t = 0, 1, ..., T. Then the value function

Jt (Σt−1) is strictly convex in Σt−1 and satisfies the dynamic semidefinite program for t = 0, 1, ..., T−

1 :

Jt (Σt−1) = min
Πt≻0,Σt≻0

tr (ΩtΣt)−
λ

2
(1− β) log det (Σt) (22)

+
λβ

2
(log detWt − log detΠt) + βJt+1 (Σt)

subject to (16) and [
Σt −Πt ΣtA

′
t

AtΣt Wt +AtΣtA
′
t

]
� 0,

where JT (ΣT−1) satisfies (18) and is also strictly convex. For t = 0, (16) is replaced by (17).

Since Jt (Σt−1) is strictly convex for t = 0, 1, ..., T and since the log-determinant function is

strictly concave, the objective function in (22) as the sum of four convex functions is convex in Σt

and Πt. Since the constraints are linear matrix inequalities, the dynamic programming problem

in Proposition 2 is a DCP. We can then apply the software CVX to derive numerical solutions

efficiently. Notice that Vt (Σt−1) also satisfies a dynamic programming equation. But we do not

solve it directly because Vt (Σt−1) may not be convex as it is equal to the sum of a convex function

Jt (Σt−1) and a concave function by (20).

The assumption of Wt ≻ 0 ensures that log detWt is well defined. This assumption can be

restrictive in economic applications. It implies that there must be a nontrivial random shock to
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each state transition equation (1). It is possible that there is no random shock to the state transition

equation for some state variables. For example, we typically assume that the capital stock kt follows

the law of motion kt+1 = (1− δ) kt + It, where δ > 0 denotes the depreciation rate and It denotes

investment. To get around this issue, one can eliminate this constraint by substituting out It.

Another way is to introduce a depreciation or capital quality shock often used in the literature.

See Section 5.3 for the details. Alternatively, we allow Wt � 0 and present a result similar to

Proposition 2 in Appendix C. We need to impose a new assumption that A is invertible. This

assumption can also be restrictive. For example, it rules out the case in which an IID shock is used

as a state variable. This shock may represent a component of the TFP shock that enters the profit

function in a firm’s price setting problem or investment problem analyzed in Section 5.

After obtaining the solutions for {Ft,Σt, Ct, Vt} , we use the system of equations (1), (2), (6),

(11), and (12) to generate impulse responses and simulations of the model.

3.2 Infinite-horizon Case

In the infinite-horizon case, all exogenous matrices At, Bt, Qt, Rt, St, andWt are time invariant. We

can derive the solution for the infinite-horizon case by taking the limit of the finite-horizon solution

as T → ∞. For numerical implementation, we can apply the method of value function iteration.

We present a formal analysis in Appendix D, where Proposition 9 establishes a convergence result.

Here we sketch the key idea.

Under some stability conditions in the standard control theory, Pt and Ft converge to P and F

given in Section 2.1 as T → ∞. By (15), Ωt converges to

Ω ≡ F ′(R+ βB′PB)F � 0. (23)

Moreover, the value functions Jt (Σt−1) and Vt (Σt−1) also converge to some time-invariant functions

J (Σt−1) and V (Σt−1) for any fixed t ≥ 1 as T → ∞. Let the optimal policy function for problem

(19) be Σt = ht (Σt−1) for a finite T. As T → ∞, ht converges to a time-invariant function h for

any fixed t ≥ 1. Since the initial no-forgetting constraint (17) is different from (16) for t ≥ 1, the

initial policy function h0 is different from h.

In the infinite-horizon case, as t → ∞, Σt = h (Σt−1) may converge to a steady state Σ. We can

then recover the steady-state SNR Φ using the no-forgetting constraint

Φ = Σ−1 −
(
AΣA′ +W

)−1
� 0, (24)

and recover the steady-state information structure (C, V ) using Φ = C ′V −1C. The signal st takes

the form st = Cxt + vt, where vt is a Gaussian white noise with covariance matrix V.
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3.3 Golden Rule of Information Structure

The procedure of solving the dynamics of Σt and the limiting steady state in the previous subsection

is complicated. To simplify the steady-state solution, suppose that x0 is drawn from the prior

Gaussian distribution with covariance matrix Σ0|−1 = Σ−1 = AΣA′+W, where Σ is the endogenous

steady-state posterior covariance matrix. Then we have Σt = Σ for all t ≥ 0 by the Kalman filter.

In this subsection we present a simple method to solve for Σ.

In the steady state, it follows from Lemma 1 that, under the optimal control policy,

E

[
∞∑

t=0

βt
(
x′tQxt + u′tRut + 2x′tSut

)
]

= x̄′0Px̄0 + tr
(
A′PAΣ

)
+

1

1− β
tr (WP ) +

1

1− β
tr (ΩΣ) ,

where we have used the fact that

E
[
x′0Px0

]
= x̄′0Px̄0 + tr (PΣ−1) = x̄′0Px̄0 + tr

(
P
(
AΣA′ +W

))
. (25)

The steady-state mutual information is given by

I
(
xt; st|s

t−1
)
=

1

2
log det

(
AΣA′ +W

)
−

1

2
log det (Σ) for t ≥ 0.

The steady-state no-forgetting constraint becomes

Σ � AΣA′ +W. (26)

Now we consider the following static problem that determines Σ.

Problem 4 (Golden rule of information structure for Problem 3)

min
Σ≻0

(1− β) tr
(
A′PAΣ

)
+ tr (ΩΣ) +

λ

2

[
log det

(
AΣA′ +W

)
− log det (Σ)

]
(27)

subject to (26).

To understand this problem, we draw an analogy to the optimal growth model with the resource

constraint Ct + Kt+1 = f (Kt) . The steady-state optimal capital stock satisfies the first-order

condition βf ′ (K) = 1. But the golden rule of capital that maximizes the steady-state discounted

utility (or consumption) satisfies f ′ (K) = 1. These two levels of the capital stock are generally

different. Similarly, the optimal information structure for Problem 4 maximizes the steady-state

discounted utility minus the discounted information cost multiplied by 1 − β,11 or equivalently,

minimizes the steady-state welfare loss including the information cost. We call this solution the

11Notice that we have ignored the term x̄′
0P x̄0 because they are independent of Σ.
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golden rule of information structure to differentiate it from the limiting steady state studied in

Section 3.2.

Sims (2003) simplifies the formulation of the steady-state problem with information-flow con-

straints and much of the literature follows his formulation. In particular, he studies the following

static problem:

min
Σ≻0

tr (ΩΣ)

subject to (26) and

log det
(
AΣA′ +W

)
− log det (Σ) ≤ 2κ.

The steady-state RI problem with discounted information costs can be similarly formulated by

removing the first term in (27).

The pitfall of this formulation is that maximizing the steady-state expected utility under limited

information is not equivalent to minimizing the steady-state expected welfare loss for general control

problems.12 This is because the expected welfare loss nets out the initial value E [x′0Px0] , but this

value in the steady state is endogenous as the prior distribution for x0 is drawn from the Gaussian

distribution with endogenous covariance matrix AΣA′ +W (see (25)). This pitfall does not arise

in Problem 3 because in that problem x0 is drawn from an exogenously given prior distribution. It

also does not arise in tracking problems studied in Section 4.

As in Proposition 2, we transform Problem 4 into a DCP using a semidefinite program repre-

sentation.

Proposition 3 Suppose that W ≻ 0 and Ω � 0. Then the golden-rule solution Σ to Problem 4 is

the solution to the following semidefinite program:

min
Π≻0,Σ≻0

(1− β) tr
(
A′PAΣ

)
+ tr (ΩΣ) +

λ

2
[log detW − log detΠ] (28)

subject to (26) and [
Σ−Π ΣA′

AΣ AΣA′ +W

]
� 0. (29)

Because of the difficulty of the dynamic multivariate RI problems, characterization results are

rarely available in the literature. We are able to derive an analytical result for the special case

in which all states are equally persistent in the sense that A = ρI with |ρ| < 1. We find that the

golden-rule RI problem admits a generalized reverse water-filling solution described below.

We first introduce some notations. Let

Ω̄ = Ω + (1− β)A′PA.

12We are extremely grateful to Chris Sims for raising this issue to us.
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Let W
1

2 ≻ 0 denote the positive definite square root of W . Then the positive semidefinite matrix

W
1

2 Ω̄W
1

2 admits an eigendecomposition W
1

2 Ω̄W
1

2 = UΩdU
′, where U is an orthonormal matrix

and Ωd ≡ diag(d1, ..., dnx
) is a diagonal matrix with di ≥ 0, i = 1, ..., nx, denoting the eigenvalues

of the positive semidefinite matrix W
1

2 Ω̄W
1

2 .

Proposition 4 Suppose that Ω � 0, W ≻ 0, and A = ρI with |ρ| < 1 in Problem 4. Then the

golden-rule posterior covariance matrix for xt is given by

Σ = W
1

2U Σ̂U ′W
1

2 , (30)

where Σ̂ ≡ diag
(
Σ̂i

)nx

i=1
with

Σ̂i = min

(
1

1− ρ2
, Σ̂∗

i

)
, Σ̂∗

i =
1

2ρ2



√

1 +
2ρ2λ

di
− 1


 . (31)

To understand this proposition, we consider two special cases. First, in the IID case with

ρ = 0 or A = 0, the solution reduces to that for the static problem with T = 0. The static case

corresponds to Ω = Ω0 and W = Σ−1, and the optimal posterior covariance matrix is given by

(30) with Σ̂i = min (1, λ/ (2di)) . This static solution generalizes the standard reverse water-filling

solution analyzed by Cover and Thomas (2006) for the problem in which Ω is an identity matrix

and W is diagonal.13 For that problem, we have Ω̄ = Ω = I, W =diag
(
w2
i

)nx

i=1
. Then the optimal

posterior covariance matrix is diagonal with the ith diagonal entry given by Σi = min
(
w2
i , λ/2

)
.

This means that any prior variance higher than λ/2 is reduced to λ/2 ex post. The decision

maker does not pay attention to the components of prior variances lower than λ/2 so that the

corresponding posterior variances remain the same.

Second, consider the dynamic univariate case with nx = 1, Ω̄ = 1, and W = w2. Then

Σ = w2 min

(
1

1− ρ2
,

1

2ρ2

(√
1 +

2ρ2λ

w2
− 1

))
.

If 0 < λ < 2w2/
(
1− ρ2

)2
, then the posterior variance Σ is reduced from the stationary prior

variance w2/
(
1− ρ2

)
to a smaller variance. But if λ ≥ 2w2/

(
1− ρ2

)2
, no information is collected

and Σ = w2/
(
1− ρ2

)
.

Proposition 4 generalizes the preceding two special cases. In particular, di is the ith eigenvalue

of the weighted innovation covariance matrix and Σ̂ may be interpreted as a scaling factor for

these eigenvalues. The attention is allocated according to a decreasing order of {di} , instead of

innovation variances. High eigenvalues di are scaled down by the factor Σ̂i for sufficiently small

information costs.

13See Fulton (2018) and Kőszegi and Matějka (2019) for similar results.
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What kind of signal structure can generate the optimal covariance matrix Σ for Problem 4? Let

the signal be st = Cxt + vt, where vt is a Gaussian white noise with covariance matrix V. Using

equation (24), we can recover Φ, C, and V. Then by the steady-state version of the Kalman filter,

we have

x̂t = x̂t|t−1 +
(
AΣA′ +W

)
C ′
[
C
(
AΣA′ +W

)
C ′ + V

]−1 (
st − Cx̂t|t−1

)
, (32)

x̂t|t−1 = (A−BF ) x̂t−1, x̂0|−1 = x̄0. (33)

The posterior covariance matrix Σt of xt will stay at Σ for all t ≥ 0 by (13) and (14), whenever x0

is drawn from the prior Gaussian distribution with covariance matrix AΣA′ + W . The following

result characterizes the signal structure.

Proposition 5 Suppose that Ω � 0, W ≻ 0, and A = ρI with |ρ| < 1 in Problem 4. Then the

golden-rule information structure (C, V ) satisfies

C ′V −1C = W− 1

2U diag

{
max

(
0,

2di
λ

[
1−

(
1− ρ2

)
Σ̂∗
i

])}nx

i=1

U ′W− 1

2 ,

where Σ̂∗
i is given in Proposition 4. The signal dimension is equal to the number of di such that

λ < 2di/
(
1− ρ2

)2
. The signal dimension (weakly) decreases as λ increases if positive eigenvalues

di > 0 are not identical.

This proposition shows that the signal dimension decreases with the information cost. The

maximal dimension does not exceed the rank of the matrix Ω̄ = Ω+ (1− β)A′PA, which does not

exceed the minimum of the state dimension and the control dimension. For the general case, we

are unable to derive analytical results, but Proposition 3 offers a useful formulation to implement

an efficient numerical procedure using semidefinite programming. After obtaining the solutions for

{F,Σ, C, V } , we use the steady-state Kalman filter equations (32) and (33) to generate impulse

responses and simulations of the model. By contrast, Sims (2003, p. 679) adopts a different system

in which he assumes that the signal vector is given by st = xt + ξt. Proposition 5 shows that this

signal vector may be suboptimal for multivariate problems. Moreover, any prior assumption on the

signal form and dimension can lead to a suboptimal solution.

4 Tracking Problems

Consider the following tracking problem similar to that in Sims (2011). Suppose that the state

vector xt and the target yt have a state space representation:

xt+1 = Axt + ηt+1, yt = Gxt,

where G is a conformable matrix, x0 is Gaussian with mean x̄0 and covariance matrix Σ−1 ≻ 0,

and ηt+1 is a Gaussian white noise with covariance matrix W. The decision maker does not observe
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xt and wants to keep an action zt close to yt with a quadratic loss, given his or her observation

of histories of signals st. The signal st satisfies (2) with T = ∞. The decision maker selects an

optimal information structure before choosing zt by paying an information cost of λ per nat.

Let Σt denote the posterior covariance matrix of xt given information st. We formulate the

tracking problem with discounted information costs as follows:

Problem 5 (Tracking problem with discounted information costs)

min
{zt},{Σt}

E

∞∑

t=0

βt
[
(yt − zt)

′ (yt − zt) + λI
(
xt; st|s

t−1
)]

subject to (17),

I
(
x0; s0|s

−1
)
=

1

2
log det (Σ−1)−

1

2
log det (Σ0) ,

I
(
xt; st|s

t−1
)
=

1

2
log det

(
AΣt−1A

′ +W
)
−

1

2
log det (Σt) ,

Σt � AΣt−1A
′ +W, (34)

for t ≥ 1.

As is well known, it is optimal to set zt = GE
[
xt|s

t
]
. Thus E

[
(yt − zt)

′ (yt − zt)
]
= tr (G′GΣt)

and this problem becomes an infinite-horizon version of Problem 3 with Ω = G′G. The analysis in

Section 3 applies. In particular, the golden rule of information structure solves Problem 4, where

the first term in (27) is removed (or β = 1). The reason is that we do not need to consider the

initial utility value E [x′0Px0] for the tracking problem as the objective is already a loss function.

Propositions 4 and 5 still apply.

To understand the distinction between the steady state as the limit point of the optimal sequence

{Σt} and the golden rule of information structure studied in Sections 3.2 and 3.3, we consider a

simple univariate example with nx = 1, A = ρ, W = w2, and G = 1, similar to that of Sims (2011).

Then the no-forgetting constraint (34) becomes the usual scalar inequality constraint. When (34)

does not bind in the long run, the first-order condition gives

1−
λ

2Σt
+

λ

2

βρ2

ρ2Σt + w2
= 0. (35)

When λ is sufficiently small, this is indeed the case and the positive root Σt of equation (35) gives

the steady-state optimal posterior variance.

By contrast, the golden rule of information structure satisfies the following first-order condition

when (34) does not bind:

1−
λ

2Σ
+

λ

2

ρ2

ρ2Σ+ w2
= 0. (36)

Again this happens when λ is sufficiently small and the positive root Σ of equation (36) gives the

golden rule of variance. Clearly the preceding two solutions are different for β ∈ (0, 1).
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It is interesting to consider the special case in which G is an nx-dimensional row vector. Then

the rank of Ω = G′G is one. We are able to derive an analytical result for the golden-rule solution

when all states have the same persistence parameter ρ, but innovations are arbitrarily correlated.14

Proposition 6 Consider Problem 4 where the first term (1− β) tr (A′PAΣ) in (27) is removed.

Let G be an nx-dimensional row vector. Suppose that Ω = G′G, W ≻ 0, and A = ρI (|ρ| < 1). If

λ ≥ 2
∥∥W 1/2G′

∥∥2 /
(
1− ρ2

)2
, then no information is processed and the optimal posterior covariance

matrix is given by Σ = W/
(
1− ρ2

)
. If 0 < λ < 2

∥∥W 1/2G′
∥∥2 /

(
1− ρ2

)2
, then the golden-rule signal

is one dimensional and can be normalized as15

st = yt +
∥∥∥W 1/2G′

∥∥∥ vt. (37)

The variance V of vt satisfies

V −1 =
2
∥∥W 1/2G′

∥∥2

λ

[
1−

(
1− ρ2

)
Σ̂∗
1

]
> 0,

and the golden-rule posterior covariance matrix Σ for xt is given by

Σ =
W

1− ρ2
−

WΩW
∥∥W 1/2G′

∥∥2
[(
1− ρ2

)−1
− Σ̂∗

1

]
,

where

Σ̂∗
1 =

1

2ρ2

(√
1 +

2ρ2λ
∥∥W 1/2G′

∥∥2 − 1

)
.

Using numerical examples we can easily verify that Proposition 6 holds. For the general case,

we are unable to derive analytical results. We can verify numerically that the signal dimension is

still one even if the exogenous states have different persistence. But the signal does not take the

form as in (37).

To see this, we numerically solve an example taken from Sims (2011) using the methods de-

veloped in Section 3. This example can be interpreted as a single firm’s price setting problem

adapted from Maćkowiak and Wiederholt (2009).16 Let xt represent exogenous shocks, yt the full

information profit-maximizing price, and zt the optimal price under RI. We use the same parameter

values as in Sims (2011): β = 0.9,

A =

[
0.95 0
0 0.4

]
, W =

[
0.0975 0

0 0.85

]
, G = [1, 1] .

We first set λ = 2.17 It takes about 3 seconds for a PC with Intel Core i7-7700 CPU and 16GB

memory to compute the golden-rule posterior covariance matrix using CVX:

Σ =

[
0.3376 −0.1779
−0.1779 0.7996

]
.

14When ρ = 0, Proposition 6 reduces to the IID case, which is also the static case studied by Fulton (2018).
15We use ‖·‖ to denote the Euclidean norm.
16See Woodford (2003, 2009) for related pricing models.
17The parameter λ in our paper corresponds to 2λ in Sims (2011).
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We also find that the eigenvalues of AΣA′ + W − Σ are −8.53 × 10−6 and 0.2529. Thus the

no-forgetting constraint (26) binds in the sense that AΣA′ + W − Σ is singular and hence the

golden-rule signal is one dimensional with an error less than 10−5. The signal takes the form

st = [1, 0.6836] xt + vt, where vt is a Gaussian white noise with variance 1.1901.

We next solve for the steady state as the limit point of the sequence of optimal posterior

covariance matrices. As is well known, the convergence for the method of value function iteration

is sensitive to the discount factor β. For β = 0.9, it takes about 18 minutes for the same PC to get

convergence of Jt and Σt with an error less than 10−4.18 Given the initial prior Σ−1 = W, it takes

about 18 periods for the optimal posterior covariance matrix to converge to the steady state:

Σ =

[
0.3590 −0.1769
−0.1769 0.7945

]
.

Again we find that the no-forgetting constraint (26) binds in the steady state (the eigenvalues of

AΣA′ +W −Σ are 3.53× 10−5 and 0.2551) and the steady-state optimal signal is one dimensional

with an error less than 10−4.

When λ = 0.2 and β = 0.9, the steady-state optimal posterior covariance matrix and the

golden-rule posterior covariance matrix are respectively given by

Σ =

[
0.3199 −0.3041
−0.3041 0.3861

]
, Σ =

[
0.3181 −0.3040
−0.3040 0.3875

]
.

The no-forgetting constraint (26) binds for both solutions with an error less than 10−4 (the two

eigenvalues of AΣA′+W−Σ are −4.58×10−5 and 0.6020, and 1.94×10−5 and 0.6010, respectively)

and the implied signals are one dimensional.

In summary, the golden-rule solution and the limiting steady-state solution are generally differ-

ent, but close together especially for β close to 1. Both solutions imply a similar one-dimensional

signal structure. Sims (2011) shows that the solutions for λ = 2 and λ = 0.2 are respectively given

by

Σ =

[
0.373 −0.174
−0.174 0.774

]
, Σ =

[
0.318 −0.300
−0.300 0.380

]
.

The implied eigenvalues of AΣA′+W−Σ are 4.5×10−3 and 0.2665 for λ = 2, and are 2.3×10−3 and

0.6050 for λ = 0.2. While Sims’s solutions are close to ours, they may lead to a different conclusion

regarding signal dimension and impulse response functions when errors are specified to be less than

10−3.

Because the golden-rule solution is much easier to compute numerically and because much of

the literature just analyzes this type of solutions following Sims (2003), we will also focus on it in

the next section for a better comparison with the literature.

18The convergence is much faster for small values of β. For example, the program converges in about 2 minutes for
β = 0.4.
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5 Applications

In this section we study three applications to illustrate our results. We analyze a pure tracking

problem in an equilibrium setting in the first application and dynamic control problems in the other

two. In the first application there are two exogenous states and one control. In the second appli-

cation there are one endogenous and two exogenous states and one control. In the last application

there are two endogenous and two exogenous states and two controls.

5.1 Equilibrium Sticky Prices

We extend the pricing problem in Section 4 to an equilibrium setting as in Maćkowiak and Wieder-

holt (2009). Here we present the key equilibrium conditions directly and refer the reader to their

paper for detailed derivations and interpretations.

Consider an economy with a continuum of firms indexed by j ∈ [0, 1] . Firm j sells good j and

sets its prices to maximize the present discounted value of profits. The full-information profit-

maximizing price is given by

p∗jt = (1− α2) pt + α2qt + α3zjt, (38)

where pt is the aggregate price level, qt is nominal aggregate demand, and zjt represents an idiosyn-

cratic shock. The parameter α2 ∈ (0, 1] describes the degree of strategic complementarity. Suppose

that zjt and qt follow exogenous AR(1) processes

zjt = ρizj,t−1 + ǫjt, 0 < ρi < 1,

qt = ρaqt−1 + ǫat, 0 < ρa < 1,

where ǫjt and ǫat are independent Gaussian white noise processes with variances σ2
i and σ2

a. Assume

that zjt is also independent across firms j ∈ [0, 1] such that
∫
ǫjtdj = 0.

Each firm j does not observe qt and zjt. It acquires an optimal signal vector sjt about a vector

xjt of unobserved states subject to discounted entropy information costs. To fit in the framework of

Section 4, assume that the vector of states xjt and the target p∗jt have a state space representation.

We will specify the state vector xjt later.

Firm j sets price pjt to track p∗jt subject to entropy information costs. For simplicity, we focus

on the long-run Golden-rule solution to the following problem:

max
pjt,Σj

α1E

[(
pjt − p∗jt

)2]
+ λI

(
xjt; sjt|s

t−1
j

)
, (39)

subject to a no-forgetting constraint, where α1 > 0, Σj is the posterior covariance matrix, sjt =

Cjxjt + vjt, and vjt is a Gaussian white noise with covariance matrix Vj . Then the optimal price

under RI is given by pjt = E

[
p∗jt|s

t
j

]
. Assume that vjt is independent of all other shocks, and is

22



independent across firms j ∈ [0, 1] such that
∫
vjtdj = 0. The model is closed by the equilibrium

condition:

pt =

∫ 1

0
pjtdj. (40)

In the analysis below, we normalize α1 = 1.

5.1.1 No Strategic Complementarity

When there is no strategic complementarity (α2 = 1), we have p∗jt = qt + α3zjt. Then there is

no equilibrium price feedback to individual pricing decisions. After defining the state vector as

xjt = (zjt, qt)
′ , we obtain the state space representation: p∗jt = Gxit, G = (α3, 1) ,

xjt = Axj,t−1 +

[
ǫjt
ǫat

]
, A =

[
ρi 0
0 ρa

]
, W =

[
σ2
i 0
0 σ2

a

]
.

The problem (39) becomes a single firm’s pricing problem under RI studied in Section 4.

Firm j’s optimal price under RI is given by

pjt = E
[
p∗jt|s

t
j

]
= GE

[
xjt|s

t
i

]
= Gx̂jt, (41)

where x̂jt satisfies the Kalman filter:

x̂jt = (I −KjCj)Ax̂j,t−1 +Kjsjt, (42)

for t ≥ 0, with x̂j,−1 = 0. Here {Cj , Vj} is derived from Proposition 1 and

Kj ≡
(
AΣA′ +W

)
C ′
j

[
Cj

(
AΣA′ +W

)
C ′
j + Vj

]−1

is the Kalman gain and Σ is the solution to (39). Notice that Σ is the same for all firms j, but

(Cj , Vj) may not be the same across firms because this pair is not uniquely determined. We focus on

symmetric equilibrium in which all (Cj, Vj) are the same across firms j, so we remove the subscript

j.

Equations (41) and (42) show that individual price responses pjt to shocks through sjt are

determined by two effects: (i) the learning effect reflected by the term GK, and (ii) the attention

allocation effect reflected by the optimal choice of information structure C, V, Σ, and K.

In Appendix E we show that the equilibrium aggregate price satisfies

pt =

∫ 1

0
pjtdt = G

∫ 1

0
x̂jtdj = G [I − (I −KC)AL]−1KC(I −AL)−1 [0, 1]′ ǫat,

where L represents the lag operator. Since we can verify that KC = I − Σ (AΣA′ +W )−1 , pt is

determined by G, A, and Σ, and is independent of C and V.

When ρi = ρa, Proposition 6 applies. Equation (37) shows that the optimal signal can be

normalized as the profit-maximizing price plus a noise (i.e., sjt = p∗jt + vjt). This signal form
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implies that the impulse responses of individual prices to the idiosyncratic shock zjt are larger than

to the aggregate shock qt if and only if it carries a larger weight α3 as shown in equations (41)

and (42). The individual price responses are the same when α3 = 1. This result is independent

of the dimension of states and the innovation covariance matrix W . By contrast, Maćkowiak and

Wiederholt (2009) assume that the firm receives one signal about one shock and the two signals

are independent. They argue that this assumption is reasonable in practice. They show that the

price is more responsive to the shock with a higher variance even when ρi = ρa and α3 = 1.

When ρi 6= ρa, based on numerical solutions for a wide range of parameter values, we find

that the optimal signal is still one dimensional, but it does not take the normalized form of the

profit-maximizing price plus a noise. Instead of presenting a detailed comparative statics analysis

here, we turn to the more interesting case with strategic complementarity.

5.1.2 Strategic Complementarity

When there is strategic complementarity, i.e., α2 ∈ (0, 1) , there is equilibrium price feedback in

(38). The equilibrium solution becomes more involved due to higher-order beliefs. We present the

technical details in Appendix E.

We focus on the equilibrium in which the aggregate price pt follows a causal stationary pro-

cess, which has an MA(∞) representation. We approximate such an equilibrium by a stationary

ARMA(r,m) process pt = Ψ(L) ǫat for a large enough r ≥ m + 1, 19 where L represents the lag

operator and

Ψ(z) ≡
b0 + b1z + b2z

2 + · · · + bmzm

1− a1z − a2z2 − · · · − arzr
. (43)

Here z is a complex number in the unit circle. All coefficients in the rational function Ψ and the

order (r and m) are endogenous with ar 6= 0 and bm 6= 0. Notice that the equilibrium aggregate

price pt contains only aggregate innovations ǫat, because idiosyncratic innovations ǫjt wash out in

the aggregate.

We adopt the following state space representation (Hamilton (1994)):

xjt =




ρi 0 0 0 0 · · · 0 0
0 ρa 0 0 0 · · · 0 0
0 0 a1 a2 · · · · · · ar−1 ar
0 0 1 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 0 · · · 1 0




xj,t−1 +




ǫjt
ǫat
ǫat
0
...
0
0




, (44)

p∗jt = Gxjt, G = [α3, α2, (1− α2)D] , D =
[
b0 b1 · · · br−2 br−1

]
, (45)

19This assumption ensures the state transition matrix A constructed in equation (44) is invertible.
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where the state vector x′jt =
[
zjt, qt, ξ

′
t

]
consists of the exogenous states zjt, qt, and an endogenous

state (column) vector ξt such that pt = Dξt. Moreover, we set bm+1 = bm+2 = ... = br−1 = 0. Let

the (r + 2) × 1 noise vector be ηjt ≡ [ǫjt, ǫat, ǫat, 0, ..., 0]
′ . Then ηjt is a Gaussian white noise and

its covariance matrix W is singular. Let A denote the transition matrix in equation (44). We can

check that A is invertible.

Because W is singular, we cannot apply Proposition 3 to solve for the golden-rule solution to

the RI problem. But we can apply Proposition 8 in Appendix C as A is invertible. After obtaining

the optimal information structure, we aggregate individual optimal prices using (40) and (41). We

then obtain a fixed point problem for (a1, a2, ..., ar, b0, b1, ..., bm) . In Appendix E, we describe the

algorithm to solve this fixed point problem and determine the endogenous r and m. Once obtaining

these coefficients, we can determine the equilibrium aggregate price function and individual pricing

rules.

We set baseline parameter values as follows: λ = 0.002, ρi = ρa = 0.95, σi = 10%, σa = 1%,

α1 = α3 = 1, and α2 = 0.15. For these parameter values we find that an ARMA(2,1) process

is a good approximation of the equilibrium aggregate price pt.
20 Then the state vector xjt is

r+2 = 4 dimensional. We also find that the optimal signal vector sjt is three dimensional and the

no-forgetting constraint binds. Thus the signal vector violates the signal independence assumption

in the literature (Maćkowiak and Wiederholt (2009)). Moreover, Proposition 6 does not apply in

that the optimal signal cannot be normalized as the profit-maximizing price plus a noise. Impor-

tantly, the optimal signal form implies that the aggregate and idiosyncratic shocks (qt and zjt) are

confounded. We will show below that this feature has interesting economic implications.

Now we consider the impact of the information cost λ on the impulse responses of the aggregate

equilibrium price to a one-standard-deviation shock to the nominal aggregate demand, shown in

the left panel of Figure 1. Under full information, the aggregate price moves one-to-one with the

nominal aggregate demand shock so that real output does not change. Under rational inattention,

the responses are dampened and delayed. The higher the information cost λ, the less responsive

the aggregate price is.

[Insert Figure 1 Here.]

The right panel of Figure 1 shows the impact of the degree of strategic complementarity α2. The

case with α2 = 1 corresponds to the solution without strategic complementarity studied earlier.

As in Maćkowiak and Wiederholt (2009), when the profit-maximizing price is less sensitive to real

aggregate demand (i.e., when α2 is lower), the response of the price level to a nominal demand

shock is more dampened and delayed. The reason is that the price feedback effects are stronger.

20It takes about 24 seconds for a PC with Intel Core i7-7700 CPU and 16GB memory to find an equilibrium.
The order of the ARMA process of the aggregate price may be higher for a high innovation variance and a high
information cost.
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Next we study the impact of innovation volatilities presented in Figure 2. Under the signal

independence assumption, Maćkowiak and Wiederholt (2009) find when the innovation variance

of a shock increases, firms shift attention toward that shock, and away from the other shock. By

contrast, Figure 2 shows that when the innovation variance of a shock increases, the individual price

responses to both aggregate and idiosyncratic shocks rise. Thus there is a spillover effect similar to

that in Mondria (2010). The intuition is that the optimal signal structure implies that aggregate

and idiosyncratic shocks are confounded. The effect of an increase in the innovation variance of

one shock is transmitted to the other shock due to the learning effect via the term GK.

[Insert Figure 2 Here.]

We finally study the impact of persistence of shocks presented in Figure 3. When we change a

persistence parameter ρi or ρa, we adjust the innovation variance to hold the unconditional variance

fixed as in Maćkowiak and Wiederholt (2009). We find that the impact of persistence on individual

price responses is ambiguous, a result similar to Maćkowiak and Wiederholt (2009). For the baseline

parameter values, Figure 3 shows that individual price responses to the aggregate shock are larger if

the idiosyncratic shock is less persistent. But individual price responses to the idiosyncratic shock

are not monotonic with the persistence of the idiosyncratic shock. By contrast, individual price

responses to the aggregate shock are larger if the aggregate shock is more persistent, even though

its unconditional variance is much smaller than that of the idiosyncratic shock. But individual price

responses to the idiosyncratic shock barely changes with the persistence of the aggregate shock.

[Insert Figure 3 Here.]

5.2 Consumption/Saving

In this subsection we study a consumption/saving problem similar to those in Hall (1978), Sims

(2003), and Luo (2008). A household maximizes its quadratic utility over a consumption process

{ct} :

−
1

2
E

[
∞∑

t=0

βt (ct − c̄)2
]

subject to the budget constraint

wt+1 = (1 + r) (wt − ct) + yt+1, t ≥ 0,

where c̄ is a bliss level of consumption, wt is wealth, and yt is income. For simplicity we suppose

β (1 + r) = 1. Suppose that income yt consists of two persistent components and a transitory
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component:

yt = ȳ + z1,t + z2,t + ǫy,t,

z1,t = ρ1z1,t−1 + η1,t,

z2,t = ρ2z2,t−1 + η2,t,

where ȳ is average income and innovations ǫy,t, η1t, and η2t are mutually independent Gaussian

white noises with variances σ2
y, σ

2
1, and σ2

2. The two persistent components z1,t and z2,t, and the

transitory component ǫy,t may capture aggregate, local, and individual income uncertainties. The

state vector is xt = (wt, z1,t, z2,t)
′ plus a constant state 1.

By the certainty equivalence principle, it is straightforward to show that optimal consumption

under RI is given by

ct =
ȳ

1 + r
+

r

1 + r

(
ŵt +

ρ1
1 + r − ρ1

ẑ1,t +
ρ2

1 + r − ρ2
ẑ2,t

)
,

where x̂t = E
[
xt|s

t
]
. We need to use numerical methods to solve for the optimal information

structure {C, V } for the signal vector st = Cxt + vt. Set the same parameter values as in Sims

(2003): β = 0.95, ρ1 = 0.97, ρ2 = 0.90, σ2
y = 0.01, σ2

1 = 0.0001, and σ2
2 = 0.003. Unlike Sims

(2003), we focus on the golden-rule information structure with discounted information costs, instead

of capacity constraints.21

[Insert Figure 4 Here]

For the information cost parameter λ = 0.01, we find that the optimal signal vector st is

one dimensional and C = [1, 11.7433, 5.8978] and V = 1.4319.22 Thus the household processes

information about a linear combination of all three state variables with the more persistent shock

z1,t having the largest weight. As λ increases, the linear transformation C barely changes. But the

signal noise variance increases significantly. Intuitively, the signal becomes more noisy when the

information cost is larger.

Figure 4 plots the impulse response functions for consumption to a one-standard-deviation shock

to each of the three true income components and the signal noise, starting from zero consumption.

The flat lines correspond to the responses for the full information case. Under RI, the consumption

responses to all three true component income shocks are damped initially, and then gradually rise

permanently to high levels. Intuitively, the rationally inattentive household responds to shocks

sluggishly. Lower consumption early leads to higher wealth. The extra savings earn a return 1 + r

21We have also solved for the transition dynamics of the posterior covariance matrix and its steady state. In
previous version of the paper we solved the case with capacity constraints. The impulse response functions are
qualitatively similar.

22We normalize C1 = 1 for all cases.
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and allow the household to accumulate higher wealth to fund higher consumption later. We also

find that the initial response is larger for a more persistent income shock given the same λ. And the

initial responses to all true income shocks are larger when λ is smaller. Unlike the income shocks,

the noise shock causes consumption to rise immediately and then gradually decreases over time.

Our numerical results are different from that reported by Sims (2003). His Figures 7 and 8

show that the initial consumption response to the less persistent income shock is larger. He argues

that this is because the innovation to this shock has a larger variance. Based on a wide range

of parameter values, we find that the initial response to the less persistent income shock (η2t) is

smaller, even if its innovation variance is very large.

5.3 Firm Investment

We finally solve a firm’s investment problem subject to convex adjustment costs. The firm chooses

two types of capital investment to maximize its discounted present value of dividends:

max
{I1,t,I2,t}

E

[
∞∑

t=0

βtdt

]

subject to

dt = exp (zt + et) k
α
1,tk

θ
2,t − I1,t − I2,t −

φ1

2

(
I1,t
k1,t

− δ1

)2

k1,t −
φ2

2

(
I2,t
k2,t

− δ2

)2

k2,t

−τ
(
exp (zt + et) k

α
1,tk

θ
1,t − χI2,t

)
,

where dt, k1,t, k2,t, I1,t, and I2,t denote dividends, tangible capital, intangible capital, tangible capital

investment, and intangible capital investment, respectively. The parameters satisfy δ1, δ2, α, θ, τ ∈

(0, 1) , α + θ < 1, and φ1, φ2 > 0. The variables zt and et represent persistent and temporary

Gaussian TFP shocks, zt = ρzt−1 + ǫz,t. We include taxation of corporate profits because a key

distinction between the two types of capital is that a fraction χ of intangible investment is expensed

and therefore exempt from taxation. The capital evolution equations are

k1,t+1 = (1− δ1) k1,t + I1,t + ǫ1,t+1,

k2,t+1 = (1− δ2) k2,t + I2,t + ǫ2,t+1,

where ǫ1,t+1 and ǫ2,t+1 represent depreciation or capital quality shocks. Suppose that ǫz,t, et, ǫ1,t,

and ǫ2,t are mutually independent Gaussian white noises with variances σ2
z, σ

2
e, σ

2
1, and σ2

2.

To solve this problem numerically, we first approximate the firm’s objective function by a

quadratic function in the neighborhood of the nonstochastic steady state. We then obtain a linear-

quadratic control problem with the state vector xt =
(
zt, et, k̃1,t, k̃2,t

)′
plus a constant state 1,

where k̃i,t, i = 1, 2, denotes the deviation from the steady state. From this problem we can derive

the decision rules and the weighting matrix Ω in the control problem in which the relevant state
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vector is xt. For the no adjustment cost case under full information, the linearized optimal decision

rules are given by

k̃i,t+1 =
kiρ

1− α− θ
zt + ǫi,t+1,

where ki is the steady-state capital stock. Notice that the optimal capital and investment choice is

independent of transitory shocks et.

We now solve for the long-run golden-rule information structure using the semidefinite program-

ming approach.23 We set baseline parameter values as in McGrattan and Prescott (2010): α = 0.26,

θ = 0.076, δ1 = 0.126, δ2 = 0.05, τ = 0.35, and χ = 0.5. Set ρ = 0.91, σz = σ1 = σ2 = 0.01,

and σe = 0.1. We choose β = 0.9615 to generate a 4 percent steady state interest rate. Following

Saporta-Eksten and Terry (2018), we set the capital adjustment cost parameter values as φ1 = 0.46

and φ2 = 1.40. For these parameter values, the steady-state levels of capital are k1 = 0.98 and

k2 = 0.639.

[Insert Figure 5 here.]

Since this model features two control variables and four state variables, we can study the non-

trivial determination of the information structure. We find that the signal dimensional decreases

with the information cost λ. As shown in Proposition 5, the signal dimension does not exceed the

minimum of the state dimension and the control dimension. To understand how the signal dimen-

sion changes, we display here the optimal signal structure for two values of λ with no adjustment

costs: For λ = 0.01,

st =

[
−0.94zt + 0.30k̃1,t + 0.16k̃2,t
−0.04zt + 0.39k̃1,t − 0.92k̃2,t

]
+ vt,

where the covariance matrix of vt is diag(0.03, 0.15) , but for λ = 0.08,

st = −0.93zt + 0.23k̃1,t + 0.30k̃2,t + vt,

where the variance of vt is 0.65. With adjustment costs, the optimal signal structure is similar.

Note that in neither case does the signal depend on et, the transitory productivity shock;

since et does not affect the value-maximizing level of investment under full information, there is

no point using information capacity to learn about it. Thus rational inattention does not explain

why investment responds to transitory shocks in the data documented by Saporta-Eksten and Terry

(2018). If the information structure is exogenously given as in a standard signal extraction problem,

then firms would be confused about the source of a productivity change; as a result, they would

respond to transitory shocks. However, since value-maximizing investment is independent of the

transitory shock et, if the firm can choose the allocation of attention, it will ignore the transitory

shock completely.

23We have also numerically solved for the transition dynamics and the limiting steady state of the optimal posterior
covariance matrix.
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We now turn to the impulse responses of two types of capital investment to a positive one-

standard-deviation shock to the persistent TFP component displayed in Figure 5. Each panel of the

figure includes the full information case as well as at least one case with sufficiently high λ such that

the signal vector becomes one-dimensional. The top two panels show the case without adjustment

costs. Under full information, in response to a positive persistent TFP shock, investment increases

immediately and then falls back to the steady state following a path similar to the TFP shock.

As the information cost λ rises, the investment responses under RI become dampened and delayed

– investment rises less on impact and remains above the steady state longer. If λ is sufficiently

large, then the signal becomes one dimensional and the responses are very small and persistent (see

dashed lines).

In the case with adjustment costs displayed in the bottom two panels, investment responses

under RI are delayed further, and can become hump-shaped, a pattern not present in the full

information case. The reason for the hump-shape is a horse race between two effects. Consider the

response of tangible investment to a positive TFP shock zt (bottom left panel). Value-maximizing

investment under full information rises on impact and then gradually falls back to the steady state,

but at a slower rate than the case without adjustment costs. Under rational inattention, since the

firm does not know zt with certainty, exactly how much investment has risen is unknown. Since

the firm learns slowly and the capital adjustment is costly, it takes several periods before the firm

knows the investment level it should have chosen on impact, which leads to a rising investment

path. On the other hand, since zt is mean reverting the value-maximizing level of investment is

falling over time. Thus optimal investment under RI will eventually falls back to the steady state.

Without adjustment costs, mean reversion is sufficiently fast such that learning is always behind,

leading to monotonic but delayed responses. With adjustment costs, but without information cost,

there is no hump-shaped investment response either.

Our results are similar to Zorn’s (2018) findings, while his model has only one type of capital

and assumes there is no capital quality shock.24 He documents evidence that investment at the

sectoral level displays a hump-shaped response to aggregate shocks and a monotonic response to

sectoral shocks. He shows that a model with both rational inattention and capital adjustment costs

can deliver the two different types of responses. In contrast, models with just capital adjustment

costs, models with just investment adjustment costs, and models with just rational inattention

cannot match both types of impulse responses.

24Notice that this assumption is subtle. Without capital quality shocks ǫi,t+1, ki,t+1 is measurable with respect
to date t information. The firm only needs to track the persistent shock zt and the optimal signal is always one
dimensional. Such an analysis is available upon request.
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6 Conclusion

We have developed a framework to analyze multivariate RI problems in a LQG setup. We have

proposed a three-step solution procedure to theoretically analyze and numerically solve these prob-

lems. We have provided generalized reverse water-filling solutions to some special cases. We have

also applied our approach to three economic examples. Our analysis demonstrates that many sim-

plifying assumptions adopted in the literature such as signal independence are not innocuous. They

lead to suboptimal behavior and some qualitatively different predictions from ours. While some

simplifying assumptions may be justified by bounded rationality and deliver interesting results, re-

moving these assumptions can generate new insights such as different roles of the shock persistence

and the innovation variance, information spillover, and price comovement. Our approach provides

researchers a useful toolkit to solve multivariate RI problems without simplifying assumptions and

will find wide applications in economics and finance.
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Appendix

A Proofs

Proof of Lemma 1: Fix the information structure {Ct, Vt} . Consider the control problem:

v̂t ≡ min
{uτ}

E

[
T∑

τ=t

βτ−t
(
x′τQτxτ + u′τRτuτ + 2x′τSτuτ

)
+ βT+1x′T+1PT+1xT+1

∣∣∣∣∣ s
t

]

subject to (1) and (2) from period t on. Claim that

v̂t = E
[
xtPtxt|s

t
]
+

T∑

τ=t

βτ−t+1tr (WτPτ+1) +

T∑

τ=t

βτ−ttr (ΩτΣτ ) , (A.1)

where Pt and Ωt satisfy (5) and (15). We prove this claim using backward induction. In the last

period T, we compute the objective function as

E
[(
x′TQTxT + u′TRTuT + 2x′TSTuT

)
+ βx′T+1PT+1xT+1|s

T
]

(A.2)

= E
[(
x′TQTxT + u′TRTuT + 2x′TSTuT

)
|sT
]

+βE
[
(ATxT +BTuT + ǫT+1)

′ PT+1 (ATxT +BTuT + ǫT+1) |s
T
]
.

Rewrite the above expression as

E
[(
x′TQTxT + u′TRTuT + 2x′TSTuT

)
|sT
]

+βE
[
x′TA

′
TPT+1ATxT + u′TB

′
TPT+1BTuT + ǫ′T+1PT+1ǫT+1|s

T
]

+2βE
[
x′TA

′
TPT+1BTuT |s

T
]

= βtr (WTPT+1) + E
[
x′TQTxT |s

T
]
+ βE

[
x′TA

′
TPT+1ATxT |s

T
]

+E
[
u′T
(
RT + βB′

TPT+1BT

)
uT + 2x′T

(
ST + βA′

TPT+1BT

)
uT |s

T
]

Taking the first-order condition gives the optimal control uT = −FT x̂T , where FT satisfies (7) for

t = T . Substituting this equation back into the objective function yields

v̂T = E
[
x′TPTxT |s

T
]
+ βtr (WTPT+1) + tr (ΩTΣT ) ,

where PT satisfies (5) for t = T and where we notice that xT conditional on sT is Gaussian with

mean x̂T and covariance matrix ΣT .

Suppose that (A.1) holds for v̂t+1 in period t+ 1. By dynamic programming, we have

v̂t = min
ut

E
[(
x′tQtxt + u′tRtut + 2x′tStut

)
+ βv̂t+1|s

t
]
.
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Rewriting the objective function by the induction hypothesis yields

E
[(
x′tQtxt + u′tRtut + 2x′tStut

)
+ βv̂t+1|s

t
]

= E
[(
x′tQtxt + u′tRtut + 2x′tStut

)
|st
]
+ βE

[
xt+1Pt+1xt+1|s

t
]

+
T∑

τ=t+1

βτ−t+1tr (WτPτ+1) +
T∑

τ=t+1

βτ−ttr (ΩτΣτ ) .

The expression on the second line has the same form as in (A.2). By the previous analysis, we

deduce that the optimal policy is given by ut = −Ftx̂t, where Ft satisfies (7). Substituting this

policy back into the preceding objective function, we find that the resulting objective function

equals

E
[
x′tPtxt|s

t
]
+ βtr (WtPt+1) + tr (ΩtΣt)

+
T∑

τ=t+1

βτ−t+1tr (WτPτ+1) +
T∑

τ=t+1

βτ−ttr (ΩτΣτ ) ,

where Pt satisfies (5). Thus v̂t takes the form in (A.1), completing the induction proof. Finally,

letting t = 0 and taking unconditional expectations, we obtain the desired result. Q.E.D.

Proof of Proposition 1: For simplicity we omit the time t subscript for all variables in the

proof. By the singular-value decomposition of a positive semidefinite matrix, there exists an nx×nx

orthogonal matrix U and a diagonal matrix Ψ such that Φ = UΨU ′. Let

Ψ =

[
Ψ̂ 0
0 0

]
,

where Ψ̂ = diag(ϕ1, ..., ϕm) is an m×m diagonal matrix and {ϕi}
m
i=1 are the positive eigenvalues

of Φ. Clearly, rank(Φ) = m ≤ nx. The matrix Φ can be factored into Ψ = ∆′Ψ̂∆, where ∆ =
[
Im 0m×(nx−m)

]
. Let C = ∆U ′ and V = Ψ̂−1, completing the proof. Q.E.D.

Proof of Proposition 2: We first prove the following lemma:

Lemma 2 Suppose that Wt ≻ 0, Σt ≻ 0, and β ∈ (0, 1]. Then

β log det
(
AtΣtA

′
t +Wt

)
− log det (Σt)

is a strictly convex function of Σt.

Proof: We can write

β log det
(
AtΣtA

′
t +Wt

)
− log det (Σt)

= β
[
log det

(
AtΣtA

′
t +Wt

)
− log det (Σt)

]
− (1− β) log det (Σt) .

33



Since the log-determinant function is strictly concave, it suffice to prove that the expression in the

square bracket is convex in Σt. The matrix determinant lemma (Theorem 18.1.1 in Harville (1997))

implies that

log det
(
AtΣtA

′
t +Wt

)
− log det (Σt) = log detWt + log det

(
Σ−1
t +A′

tW
−1
t At

)
. (A.3)

By Diggavi and Cover (2001), the last expression is convex in Σt as desired. Notice that Sims

(2003, page 678) proves the convexity by direct differentiation assuming At is invertible. Q.E.D.

�

Now we prove that Jt (Σt−1) is strictly convex in Σt−1 for t = 0, 1, ..., T by backward induction.

In the last period, it follows from (18) that JT (ΣT−1) is strictly convex in ΣT−1. Suppose that

Jt+1 (Σt) is strictly convex in Σt for any t ≤ T − 1. Then, by Lemma 2, the objective function in

(19) is strictly convex. Since the constraint set is convex, we can verify that Jt (Σt−1) is strictly

convex.

Finally we transform the dynamic programming problem (19) into a semidefinite program rep-

resentation. The matrix determinant lemma (Theorem 18.1.1 in Harville (1997)) implies that the

preceding expression is equal to

log det
(
AtΣtA

′
t +Wt

)
− log det (Σt) = log detWt − log det

(
Σ−1
t +A′

tW
−1
t At

)−1
. (A.4)

Due to the monotonicity of the determinant function, we have

− log det
(
Σ−1
t +A′

tW
−1
t At

)−1
= min

Πt≻0
− log detΠt

subject to

Πt �
(
Σ−1
t +A′

tW
−1
t At

)−1
. (A.5)

Apply the matrix inversion formula to rewrite (A.5) as

Πt � Σt − ΣtA
′
t

(
Wt +AtΣtA

′
t

)−1
AtΣt,

which is equivalent to [
Σt −Πt ΣtA

′
t

AtΣt Wt +AtΣtA
′
t

]
� 0, (A.6)

by the Schur complement property. By (A.4) and the preceding derivations, we have

log det
(
AtΣtA

′
t +Wt

)
= min

Πt≻0
− log detΠt + log detWt + log det (Σt)

subject to (A.6). Replacing log det (AtΣtA
′
t +Wt) in (19) with the preceding minimized value, we

obtain the representation in the proposition. Q.E.D.
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Proof of Proposition 3: Using a similar transformation in the proof of Proposition 2, we can

derive the desired semidefinite program representation. We will not repeat the detailed derivation.

Q.E.D.

Proof of Proposition 4: The matrix determinant lemma implies that

log det(AΣA′ +W )− log det Σ = log detW − log det
(
Σ−1 +A′W−1A

)−1
.

Thus Problem 4 becomes

min
Π,Σ≻0

tr
(
Ω̄Σ
)
+

λ

2
[log detW − log detΠ] (A.7)

subject to

Π =
(
Σ−1 +A′W−1A

)−1
, (A.8)

AΣA′ +W � Σ. (A.9)

Recall the positive semidefinite matrix W
1

2 Ω̄W
1

2 admits an eigendecomposition W
1

2 Ω̄W
1

2 =

UΩdU
′. Define matrices

Π̂ = U ′W− 1

2ΠW− 1

2U, Σ̂ = U ′W− 1

2ΣW− 1

2U.

Then we can derive that

Π = W
1

2UΠ̂U ′W
1

2 , Σ = W
1

2U Σ̂U ′W
1

2 , tr
(
Ω̄Σ
)
= tr

(
ΩdΣ̂

)
,

log detW − log detΠ = − log det Π̂.

Given A = ρI, we can also show that equations (A.8) and (A.9) are equivalent to

Π̂−1 = Σ̂−1 + ρ2I, (A.10)

I �
(
1− ρ2

)
Σ̂. (A.11)

Now the problem in (A.7) is equivalent to

min
Π̂,Σ̂

tr
(
ΩdΣ̂

)
−

λ

2
log det Π̂

subject to (A.10) and (A.11). By the Hadamard inequality for positive definite matrices (Cover

and Thomas, 2006, Theorem 17.9.2),

det Π̂ ≤

nx∏

i=1

Π̂i,

where Π̂i is the diagonal element of Π̂. The equality holds if and only if Π̂ is diagonal. Thus, if

diagonal elements of Π̂ are fixed, det Π̂ is maximized by setting all off-diagonal entries to zero. As
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a result the optimal solution for Π̂ must be diagonal. Let Π̂ = diag
(
Π̂i

)nx

i=1
. By (A.10), Σ̂ is also

diagonal and its diagonal elements are given by

Σ̂i =
(
Π̂−1

i − ρ2
)−1

, i = 1, 2, ..., nx. (A.12)

Thus the problem is equivalent to

min
Π̂i

tr
(
ΩdΣ̂

)
−

λ

2

nx∑

i=1

log Π̂i

subject to (A.12) and
(
1− ρ2

)
Σ̂i ≤ 1, i = 1, .., nx.

Equivalently rewriting this problem in terms of Σ̂i using (A.12) yields

min
Σ̂i

nx∑

i=1

diΣ̂i +
λ

2

nx∑

i=1

log

(
ρ2 +

1

Σ̂i

)
(A.13)

subject to

0 < Σ̂i ≤
1

1− ρ2
, i = 1, ..., nx. (A.14)

If di = 0, then Π̂i = 1 or Σ̂i = 1/
(
1− ρ2

)
. If di > 0, then we use the Kuhn-Tucker condition to

show that

Σ̂i = min

(
1

1− ρ2
, Σ̂∗

i

)
, (A.15)

where

Σ̂∗
i =

1

2ρ2



√

1 +
2ρ2λ

di
− 1


 . (A.16)

The proof is completed. Q.E.D.

Proof of Proposition 5: The optimal signal-to-noise ratio is given by

Φ = Σ−1 −
(
ρ2Σ+W

)−1

= W− 1

2U Σ̂−1U ′W− 1

2 −
[
ρ2W

1

2U Σ̂U ′W
1

2 +W
]−1

= W− 1

2U Σ̂−1U ′W− 1

2 −W− 1

2U
[
ρ2Σ̂ + I

]−1
U ′W− 1

2

= W− 1

2U

(
Σ̂−1 −

[
ρ2Σ̂ + I

]−1
)
U ′W− 1

2

= W− 1

2U diag

{
max

(
0,

2di
λ

[
1−

(
1− ρ2

)
Σ̂∗
i

])nx

i=1

}
U ′W− 1

2 ,

where the last equality follows from (A.15) and (A.16). The dimension of the signal is determined

by the rank of the inside diagonal matrix, which is determined by the number of di such that

2di
λ

[
1−

(
1− ρ2

)
Σ̂∗
i

]
> 0.

Using equation (A.16) we obtain the desired result. Q.E.D.

36



Proof of Proposition 6: Since rank (Ω) = 1, we have rank
(
W

1

2ΩW
1

2

)
= 1. We claim that ma-

trix W
1

2ΩW
1

2 has a unique positive eigenvalue d1 ≡
∥∥W 1/2G′

∥∥2 and an associated unit eigenvector

W
1

2G′/
∥∥W 1/2G′

∥∥ where ‖·‖ denotes the Euclidean norm. To prove this claim we verify that

W
1

2ΩW
1

2
W

1

2G′

∥∥W 1/2G′
∥∥ =

(
W

1

2G′
)(

W
1

2G′
)′ W

1

2G′

∥∥W 1/2a
∥∥ =

(
W

1

2G′
)
GW

1

2
W

1

2G′

∥∥W 1/2G′
∥∥

=
(
W

1

2G′
) ∥∥W 1/2G′

∥∥2
∥∥W 1/2G′

∥∥ =
∥∥∥W 1/2G′

∥∥∥
2 W

1

2G′

∥∥W 1/2G′
∥∥ .

Thus Ωd has only one positive element d1 =
∥∥W 1/2G′

∥∥2 and other diagonal elements di = 0 for

i = 2, ..., nx. Moreover, the optimal signal dimension is at most one.

By Propositions 4 and 5, we have

Σ̂1 = min

(
1

1− ρ2
, Σ̂∗

1

)
,

Σ̂i =
1

1− ρ2
, i = 2, ..., nx,

where

Σ̂∗
1 =

1

2ρ2



√

1 +
2ρ2λ

d1
− 1


 .

The optimal information structure {C, V } satisfies

C ′V −1C = W− 1

2U diag

{
max

(
0,

2di
λ

[
1−

(
1− ρ2

)
Σ̂∗
i

])nx

i=1

}
U ′W− 1

2 .

If λ ≥ 2d1/
(
1− ρ2

)2
, we can check that Σ̂i = 1/

(
1− ρ2

)
for all i so that Σ = W/

(
1− ρ2

)
and no

information is collected. There is only one positive element in the above inside diagonal matrix if

0 < λ < 2d1/
(
1− ρ2

)2
, which is

2d1
λ

[
1−

(
1− ρ2

)
Σ̂∗
1

]
=

d1
λρ2


1 + ρ2 −

(
1− ρ2

)
√

1 +
2ρ2λ

d1


 > 0,

The optimal information structure corresponds to the positive eigenvalue’s eigenvector and is given

by

C ′ = W− 1

2
W

1

2G′

∥∥W 1/2G′
∥∥ =⇒ C =

G∥∥W 1/2G′
∥∥ ,

V −1 =
d1
λρ2


1 + ρ2 −

(
1− ρ2

)
√

1 +
2ρ2λ

d1


 > 0.

The optimal conditional covariance in the proposition follows from Proposition 4. In particular,

Σ = W
1

2U

[
Σ̂∗
1 0
0 1

1−ρ2 I

]
U ′W

1

2 .
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Partition U = [U1, U2] conformably, where U1 = W
1

2G′/
∥∥W 1/2G′

∥∥. Then we have U1U
′
1+U2U

′
2 = I.

Thus

Σ = W
1

2

[
I

1− ρ2
− U1U

′
1

(
1

1− ρ2
− Σ∗

1

)]
W

1

2 .

Simplifying yields the expression in the proposition.

We can normalize C as C = G so that the normalized optimal signal is given by

st = Gxt +
∥∥∥W 1/2G′

∥∥∥ vt.

We then obtain (37). Q.E.D.

B RI Problems with Period-by-Period Capacity Constraints

In this appendix we study Problem 1 with period-by-period capacity constraints. As in the analysis

of Section 2, we can show that the optimal information structure is determined by the following

problem:

Problem 6 (Optimal information structure for Problem 1)

min
{Σt}

T
t=0

T∑

t=0

βttr (ΩtΣt)

subject to

log det
(
At−1Σt−1A

′
t−1 +Wt−1

)
− log det (Σt) ≤ 2κ, (B.1)

log det (Σ−1)− log det (Σ0) ≤ 2κ, (B.2)

Σt � At−1Σt−1A
′
t−1 +Wt−1, (B.3)

Σ0 � Σ−1, (B.4)

for t = 1, 2, ..., T.

Since the log-determinant function is concave, the constraint set may not be convex in {Σt}
T
t=0.

Thus the Kuhn-Tucker conditions may not be optimal. By dynamic programming, the value func-

tion satisfies the Bellman equation

Jt (Σt−1) = min
Σt≻0

tr (ΩtΣt) + βJt+1 (Σt)

subject to (B.1) and (B.3) for t ≥ 1. In the last period T , JT+1 (ΣT ) ≡ 0. In the initial period, we

have

J0 (Σ−1) = min
Σ0≻0

tr (Ω0Σ0) + βJ1 (Σ0)

subject to (B.2) and (B.4). Since the log-determinant function is concave, the value function

Jt (Σt−1) may not be convex for t = 0, 1, ..., T . This can be easily seen for JT (ΣT−1) in the last
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period using the envelope theorem. For a univariate problem with nx = 1, Σt is a scalar and we

can rewrite (B.1) and (B.2) as linear scalar constraints so that Jt (Σt−1) is convex.

Nonconvexity poses substantial difficulty when solving the above dynamic programming prob-

lem. This issue does not arise when solving for the long-run golden rule of information structure.

Problem 7 (Golden rule of information structure for Problem 6)

min
Σ≻0

(1− β) tr
(
A′PAΣ

)
+ tr (ΩΣ) (B.5)

subject to (26) and

log det
(
AΣA′ +W

)
− log det (Σ) ≤ 2κ.

By Lemma 2, log det (AΣA′ +W ) − log det (Σ) is a convex function of Σ. Thus the above

problem is a convex program. This problem is the same as that in Sims (2003) except that there

is a new term in (B.5) as discussed in Section 3.3. Notice that software CVX does not recognize

that log det (AΣA′ +W )− log det (Σ) is convex in Σ by its ruleset.

To apply CVX, we need to transform Problem 7 into a DCP. As in the proof of Proposition 2,

we can show that log det (AΣA′ +W ) − log det (Σ) = c (Σ), where c (Σ) is a new function defined

as

c (Σ) ≡ min
Π≻0

− log detΠ + log detW

subject to [
Σ−Π ΣA′

AΣ W +AΣA′

]
� 0. (B.6)

Since the objective function is convex and the constraint is a linear matrix inequality, c (Σ) is convex

in Σ and can be added to the CVX atom library. We then transform Problem 7 into the following

DCP:

min
Σ≻0

(1− β) tr
(
A′PAΣ

)
+ tr (ΩΣ) (B.7)

subject to (26) and

c (Σ) ≤ 2κ.

For tracking problems, the term (1− β) tr (A′PAΣ) does not appear in (B.7). We have used this

method to numerically solve the pricing example in Section 4.

In an earlier version of our paper, we solve the following inverse problem as in the rate-distortion

theory in the engineering literature:

R (D) ≡ min
Σ≻0

1

2
log det

(
AΣA′ +W

)
−

1

2
log det (Σ) (B.8)

subject to (26) and

(1− β) tr
(
A′PAΣ

)
+ tr (ΩΣ) ≤ D.
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The function R (D) is decreasing and convex in D. Given any capacity κ > 0, we can find D using

this function and then solve the corresponding Σ. The earlier version of our paper also derives

results similar to Propositions 4 and 5. We omit the details here.

C The Case of W � 0

When W � 0, we cannot apply the semidefinite program representation in Proposition 2 to solve

the dynamic programming problem in (19) for the finite-horizon RI problem. We can impose a new

assumption (the state transition matrix is invertible) and use a different representation.

Proposition 7 Suppose that Wt � 0 is singular for some t, Ωt � 0, and rank(At) = nx for

t = 0, 1, ..., T. Then the value function Jt (Σt−1) is convex in Σt−1 for t = 0, 1, ..., T and satisfies

the dynamic semidefinite program:

Jt (Σt−1) = min
Ψt≻0,Σt≻0

tr (ΩtΣt)−
λ

2
(1− β) log det (Σt) (C.1)

+
λβ

2
(2 log |detAt| − log detΨt) + βJt+1 (Σt)

subject to (16) for t ≥ 1 and (17) for t = 0, and

[
I −Ψt M ′

t

Mt AtΣtA
′
t +Wt

]
� 0, (C.2)

where Wt = MtM
′
t with Mt � 0. Moreover, JT (ΣT−1) satisfies (18).

Proof: We can apply the same proof for Proposition 2 to show that Jt (Σt−1) is convex using

the Bellman equation (19). Now we derive a different semidefinite program representation. Since

Wt � 0, we have the decomposition Wt = MtM
′
t with Mt � 0. Since At is invertible, AtΣtA

′
t is also

invertible. Applying the matrix determinant lemma yields

det
(
AtΣtA

′
t +Wt

)
= det

(
I +M ′

t

(
AtΣtA

′
t

)−1
Mt

)
det
(
AtΣtA

′
t

)
.

Thus we have

log det
(
AtΣtA

′
t +Wt

)
− log det (Σt)

= − log det
(
I +M ′

t

(
AtΣtA

′
t

)−1
Mt

)−1
+ log det

(
AtΣtA

′
t

)
− log det (Σt)

= − log det
(
I +M ′

t

(
AtΣtA

′
t

)−1
Mt

)−1
+ 2 log |detAt| .

Due to the monotonicity of the determinant function, the last expression is equal to the optimal

value of

min
Ψt

2 log |detAt| − log detΨt
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subject to

0 ≺ Ψt �
(
I +M ′

t

(
AtΣtA

′
t

)−1
Mt

)−1
. (C.3)

Now use the matrix inversion lemma to get

(
I +M ′

t

(
AtΣtA

′
t

)−1
Mt

)−1
= I −M ′

t

(
AtΣtA

′
t +MtM

′
t

)
Mt.

By the Schur complement property, (C.3) is equivalent to

[
I −Ψt M ′

t

Mt AtΣtA
′
t +Wt

]
� 0. (C.4)

In sum, we have shown that

log det
(
AtΣtA

′
t +Wt

)
= min

Ψt≻0
2 log |detAt| − log detΨt + log det (Σt)

subject to (C.4). Substituting this equation into (19) yields the desired result. Q.E.D. �

To illustrate the application of this proposition, we consider the LQG control problem with

VAR(p) state dynamics

xt = A1xt−1 +A2xt−2 + ...+Apxt−p +B0ut + ǫt,

where A1, ..., and Ap are n × n matrices and ǫt is Gaussian white noise with covariance matrix

W0 ≻ 0. We transform the state dynamics into VAR(1) form:

xt = Ax̄t−1 +But + ǭt,

where x̄t =
[
x′t, x

′
t−1, ...x

′
t−p+1

]′
, ǭt is a Gaussian white noise with covariance matrix W, and

A =




A1 A2 ... Ap−1 Ap

In 0 .... 0 0
0 In .... 0 0
...

...
. . . 0 0

0 0 0 In 0



, B =




B0

0
0
0
0



, W =




In
0
0
0
0



W0

[
In 0′ 0′ 0′ 0′

]
.

Now the problem fits in our general LQG RI framework. Notice that the covariance matrix of ǭt

satisfies W � 0 and it is singular. So Proposition 2 does not apply. As long as Ap is invertible so

that A is invertible, we can apply Proposition 7 to solve the model numerically.

For the infinite-horizon RI problem, we can take limits in Proposition 7 as T → ∞ to obtain the

infinite-horizon semidefinite program representation. We can then derive the steady-state solution

for Σt as t → ∞.

We can also modify Proposition 3 to derive the golden-rule solution for Problem 4.
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Proposition 8 Suppose that A is invertible, Ω � 0, and W � 0. Then the golden-rule solution Σ

for Problem 4 is the solution to the following semidefinite program:

min
Ψ,Σ≻0

(1− β) tr
(
A′PAΣ

)
+ tr (ΩΣ)−

λ

2
log detΨ (C.5)

subject to (26) and [
I −Ψ M ′

M AΣA′ +W

]
� 0, (C.6)

where W = MM ′ with M � 0.

Proof: Use the method in the proof of Proposition 7 to derive

log det
(
AΣA′ +W

)
= min

Ψ≻0
2 log |detA| − log detΨ + log det (Σ)

subject to (C.6). Substituting above equation into (27) and eliminating the constant term 2log |detA| ,

we obtain the desired result. �

Finally, we can apply Proposition 8 by removing the term (1− β) tr (A′PAΣ) to derive the

golden rule Σ for the infinite-horizon tracking problem under RI in Section 4.

Notice that the above two propositions can be applied to solve models with ARMA(p,q) pro-

cesses as shown in Section 5.1.2 as long as we can derive a state space representation.

D Infinite-Horizon Case

We study the following infinite-horizon problem with discounted information costs at time 1:

min
{Σt}

∞
t=1

∞∑

t=1

βt−1

[
tr (ΩΣt) +

λ

2

(
log det

(
AΣt−1A

′ +W
)
− log detΣt

)]
(D.1)

subject to

Σt � AΣt−1A
′ +W, t = 1, 2, ..., Σ0 given. (D.2)

Define the value function as V (Σ0) . By the dynamic programming principle (Stokey and Lucas

with Prescott (1989) and Miao (2014)), it satisfies the Bellman equation

V (Σ0) = min
Σ∈Γ(Σ0)

tr (ΩΣ) +
λ

2

[
log det

(
AΣ0A

′ +W
)
− log det Σ

]
+ βV (Σ) ,

where

Γ (Σ0) ≡
{
Σ ≻ 0 : Σ � AΣ0A

′ +W
}
. (D.3)

To convert this problem into a DCP, we study an auxiliary problem. Define

J (Σ0) ≡ V (Σ0)−
λ

2
log det

(
AΣ0A

′ +W
)
.
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Then it satisfies the Bellman equation:

J (Σ0) = min
Σ∈Γ(Σ0)

tr (ΩΣ) +
λ

2

[
β log det

(
AΣA′ +W

)
− log det (Σ)

]
+ βJ (Σ) . (D.4)

Let Σ = h (Σ0) be the associated optimal policy function. The policy function h generates a

sequence of optimal covariance matrices {Σt}
∞
t=1 through Σt = h (Σt−1) , t ≥ 1. Notice that the

above problem is not a bounded discounted dynamic programming problem. We use the method

of successive approximations (value function iteration) to analyze it.

Define the value function

f0 (Σ0) ≡ min
Σ∈Γ(Σ0)

tr (ΩΣ)−
λ

2
log det (Σ) . (D.5)

Because the constraint set in (D.3) is convex and the log-determinant function is strictly concave,

the problem in (D.5) is a convex program and hence f0 (Σ0) is also strictly convex.

Define the Bellman operator B on the set of functions of positive semidefinite matrices:

B (f) (Σ0) ≡ min
Σ∈Γ(Σ0)

tr (ΩΣ) +
λ

2

[
β log det

(
AΣA′ +W

)
− log det (Σ)

]
+ βf (Σ) . (D.6)

Iterating this operator, we can construct a sequence of functions:

fk (Σ0) = Bk (f0) (Σ0) , k ≥ 1.

By induction and Lemma 2, each function fk (·) is strictly convex and is obtained by solving a DCP

problem. Let the corresponding optimal policy function be Σ = hk (Σ0) .

Say a sequence of matrices {Σt}
∞
t=1 is feasible if Σt ∈ Γ (Σt−1) for each t ≥ 1.

Proposition 9 Suppose that Ω � 0. For any Σ0 ≻ 0, if there is a feasible sequence of matrices

{Σt}
∞
t=1 such that the objective in (D.1) is finite, then fk (Σ0) increases monotonically to a finite

limit function J (Σ0) as k → ∞, which satisfies (D.4). Moreover, hk (Σ0) converges to h (Σ0)

pointwise on any compact set as k → ∞.

Proof: We first show that f1 (Σ0) ≥ f0 (Σ0) . For any Σ ∈ Γ (Σ0), let Σ
∗ ∈ Γ (Σ) be the optimal

solution that attains the value f0 (Σ). Then since Σ∗ � AΣA′ +W, we have

log det
(
AΣA′ +W

)
≥ log det (Σ∗) .

It follows that

tr (ΩΣ) +
λ

2

[
β log det

(
AΣA′ +W

)
− log det (Σ)

]
+ βf0 (Σ) (D.7)

= tr (ΩΣ) +
λ

2

[
β log det

(
AΣA′ +W

)
− log det (Σ)

]

+β

[
tr (ΩΣ∗)−

λ

2
log det (Σ∗)

]

≥ tr (ΩΣ)−
λ

2
log det (Σ) ≥ f0 (Σ0) ,
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where we have used the fact that tr (ΩΣ∗) ≥ 0 as Ω � 0 and Σ∗ ≻ 0. Minimizing the expression on

the first line of (D.7) over Σ ∈ Γ (Σ0) yields f1 (Σ0) ≥ f0 (Σ0) .

It is easy to see that B (f) ≥ B (g) , if f ≥ g. Thus we can show that fk+1 (Σ0) ≥ fk (Σ0) by

induction. By assumption, for any Σ0 ≻ 0, there is a feasible sequence of matrices {Σt}
∞
t=1 such

that the objective in (D.1) is finite. Thus the increasing sequence {fk (Σ0)} is bounded above and

has a finite limit. Let the limit function be J (Σ0) . To show J satisfies (D.4), notice that

fk (Σ0) = B (fk−1) (Σ0) ≤ B (J) (Σ0) .

On the other hand,

J (Σ0) ≥ fk (Σ0) = B (fk−1) (Σ0) .

Taking limits on the above two inequalities yields J (Σ0) = B (J) (Σ0) .

By induction, each function fk (Σ0) is strictly convex and hence the policy function hk is unique.

The limit function J is convex. Since J = B (J) and the objective function in (D.4) is strictly

convex, J is also strictly convex. Thus the policy function h is also unique. Since fk is continuous,

fk (Σ0) converges to J (Σ0) uniformly on any compact set. By Theorem 3.8 of Stokey and Lucas

with Prescott (1989), hk (Σ0) converges to h (Σ0) pointwise. �

Sims (2011) suggests to use the first-order conditions to solve (D.1). If the no-forgetting con-

straints (D.2) do not bind, it is straightforward to derive the first-order conditions. He mentioned

to use dynamic programming and Cholesky decomposition when the no-forgetting constraints bind,

but he does not provide a detailed formal analysis. We now present the first-order conditions for

(D.1) by taking into account of binding constraints from convex analysis.

Notice that the choice variable Σt is in the set of nx×nx positive semidefinite matrices, denoted

by Snx

+ . Define the inner product • for any two elements X and Y in this set as X •Y = tr (X ′Y ) .

The dual cone of Snx

+ is itself. Introduce a slack variable Zt � 0 such that AΣt−1A
′+W = Zt+Σt.

Following Vandenberghe and Boyd (1996) and Vandenberghe, Boyd, and Wu (1998), we define the

Lagrangian for (D.1) as

L = max
{Λt}

min
{Σt},{Zt}

∞∑

t=1

βt−1

[
tr (ΩΣt) +

λ

2

(
log det

(
AΣt−1A

′ +W
)
− log det Σt

)]

+

∞∑

t=1

βt−1Λt •
(
Zt +Σt −AΣt−1A

′ −W
)
,

where the dual variable Λt ∈ Snx

+ is the Lagrange multiplier associated with (D.2).

We can write the Kuhn-Tucker conditions as follows:

0 = Ω−
λ

2
Σ−1
t +

βλ

2
A
(
AΣtA

′ +W
)−1

A′ + Λt − βA′Λt+1A, (D.8)

Λt • Zt = 0, (D.9)
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Λt � 0, Zt � 0, (D.10)

for all t ≥ 1. Equation (D.8) is the first-order condition for Σt. Equation (D.9) is the complementary

slackness condition. Condition (D.10) requires Λt, Zt ∈ Snx

+ . The system of an infinite sequence

of these conditions is difficult to solve numerically. The key difficulty is that we need to ensure

positive semidefiniteness of Λt and Zt.

The mathematics and engineering literature has developed rigorous theories to study semidef-

inite programs. Efficient and robust software to numerically solve such problems is also publicly

available on the internet. Most software uses the primal-dual interior point method. Here we in-

troduce the basic idea of this method. The key step is to add a parametrized barrier function to

the objective function in (D.1):

−ν

∞∑

t=1

βt−1 log detZt, ν > 0.

This function ensures that Zt is invertible. Introduce a similar barrier function to (D.1) for the

dual variable Λt. Use the Newton method to solve the first-order conditions associated with the

modified (D.1) for any ν > 0. Taking limits as ν → 0, we obtain the solution for (D.1). Notice that

the mathematics and engineering literature typically focuses on static semidefinite programs. Our

approach is to transform problem (D.1) into a dynamic semidefinite programming form. At each

time we solve a semidefinite program using CVX and iterate the Bellman operator until the value

function converges.

E Equilibrium Sticky Prices

In this appendix we derive the equilibrium solution for the model in Section 5.1.2 and provide a

numerical algorithm to solve the equilibrium. We focus on the long-run stationary equilibrium.

Suppose that the equilibrium aggregate price level can be approximated by a stationary ARMA

process: pt = Ψ(L) ǫat, where Ψ is given by

Ψ(z) =
b0 + b1z + b2z

2 + · · · + bmzm

1− a1z − a2z2 − · · · − arzr
. (E.1)

We will solve for an equilibrium with r ≥ m+ 1.

As discussed in Section 5.1.2, we can construct a state space representation for firm j :

xjt = Axj,t−1 + ηjt, (E.2)

p∗jt = Gxjt, sjt = Cjxjt + vjt, (E.3)

where A and G are given in (44) and (45), and ηjt = [ǫjt, ǫat, ǫat, 0, ..., 0]
′ and vjt are indepen-

dent Gaussian white noise processes with covariance matrices W and Vj . Assume that vjt satisfies
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∫ 1
0 vjtdj = 0. Notice that W � 0 and Vjt ≻ 0 by our construction. In particular, the (1, 1) entry of

W is σ2
i , the (2, 2), (2, 3) , (3, 2) , and (3, 3) entries are σ2

a, and all other entries are zero. We can

easily check that W is singular and A is nonsingular.

We use the results in Appendix C to solve for the golden rule of information structure under

RI. We then obtain the posterior covariance matrix Σ for xjt and (Cj , Vj) . Notice that Σ is the

same for all firms j, but (Cj , Vj) may not be the same across firms because this pair is not uniquely

determined. We focus only on symmetric equilibrium in which (Cj , Vj) is the same for all j. Thus

we remove the subscript j.

The optimal price under RI for firm j is given by

pjt = E
[
p∗jt|s

t
j

]
= GE

[
xjt|s

t
j

]
= Gx̂jt, (E.4)

The Kalman filter gives

x̂jt = (I −KC)Ax̂j,t−1 +Ksjt, (E.5)

where the Kalman gain is given by

K =
(
AΣA′ +W

)
C ′
[
C
(
AΣA′ +W

)
C ′ + V

]−1
.

Using the matrix inversion lemma, we can show that

KC =
(
AΣA′ +W

)
C ′
[
C
(
AΣA′ +W

)
C ′ + V

]−1
C = I − Σ

(
AΣA′ +W

)−1
, (E.6)

which is independent of C and V.

Assume that all eigenvalues of (I −KC)A lie in the unit circle. Using the lag operator L, we

can rewrite (E.5) as

x̂jt = X (L) sjt, (E.7)

where

X(z) ≡ [I − (I −KC)Az]−1 K,

and z is in the unit circle on the complex space. It follows from (E.3) and (E.7) that

x̂jt = X(L)Cxjt +X(L)vjt.

Assuming that all eigenvalues of A are in the unit circle, we can rewrite (E.2) as

xjt = (I −AL)−1ηjt.

It follows from the preceding two equations that

x̂jt = X(L)C(I −AL)−1ηjt +X(L)vjt.

46



Aggregating across j yields

∫ 1

0
x̂jtdj = X(L)C(I −AL)−1Mǫa, (E.8)

where M ≡ [0, 1, 1, 0, ..., 0] ′ is a (r + 2)-dimensional vector and we have used the assumptions

∫ 1

0
vjtdj = 0,

∫ 1

0
ǫjtdj = 0.

It follows from (E.4) and (E.8) that the aggregate price level satisfies

pt =

∫ 1

0
pjtdt = G

∫ 1

0
x̂jtdj = GX(L)C(I −AL)−1Mǫa.

Given the conjectured form of the equilibrium aggregate price pt = Ψ(L) ǫat, we obtain the equi-

librium condition:

Ψ(z) = GX(z)C(I −Az)−1M, (E.9)

where

X(z)C = [I − (I −KC)Az]−1 KC,

is independent of (C, V ) by (E.6). Equation (E.9) is a functional equation for the coefficients

(a1, a2, ..., ar, b0, b1, ..., bm) . The solution determines the equilibrium pricing function Ψ.

We use the following algorithm to solve for these coefficients.25

Step 0. Initialize k ≥ 2. Let {z1, ..., zN} be an evenly spaced grid on (−1, 1) for some integer N.

Step 1. Given a positive integer k, set r = k and m = k−1. Initialize the polynomial coefficients

c ≡ (a1, a2, ..., ar , b0, b1, ..., bm).

Step 2. Given r, m, and c, compute the values {Ψ(zi)}
N
i=1, where Ψ(z) is given by (E.1).

Step 3. Derive the state space representation in (E.2) and (E.3). Use Proposition 8 to derive

the golden-rule solution to the RI problem to obtain (C, V ) and Σ. This step can be implemented

in CVX.

Step 4. Compute the updated pricing function values

Ψ+(zi) ≡ GX(zi)C(I −Azi)
−1M, i = 1, 2, ....N.

Find the updated polynomial coefficients c+ ≡
(
a+1 , a

+
2 , ..., a

+
r+

, b+0 , b
+
1 , ..., b

+
m+

)
such that the implied

rational function Ψ+(z) fits the set of values {Ψ+(zi)}
N
i=1. Here r

+ andm+ are the maximal integers

such that a+
r+

6= 0, b+
m+ 6= 0, r+ ≤ k, and r+ ≥ m+ + 1.

Step 5. Set c := c+, r := r+, and m := m+. Repeat Steps 2-4 until
√∑N

i=1 [Ψ
+(zi)−Ψ(zi)]

2

√∑N
i=1 [Ψ(zi)]

2
< ǫ1.

25We have applied the toolbox, Ztran, developed by Han, Tan, and Wu (2019).
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for some prespecified tolerance level ǫ1 > 0.

Step 6. If there is no convergence in Step 5, set k := k+1 and go to Step 1. Otherwise, let the

solution obtained in Step 5 be Ψ∗(z). Find a rational function Ψ̂(z) for an ARMA(r,m) process

that fits the values {Ψ∗(zi)}
N
i=1 without the upper bound k restriction on the orders r and m. Check

whether the distance between the MA(∞) representations (or the impulse response functions) for

the ARMA processes implied by Ψ̂(z) and Ψ∗(z) is within some prespecified tolerance level ǫ2 > 0.

If so, then stop; otherwise, set k := k + 1 and go to Step 1.
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Steiner, Jakub, Colin Stewart, and Filip Matějka, 2017, Rational Inattention Dynamics: Inertia
and Delay in Decision-Making, Econometrica 85, 521-553.

Sturm, Jos F., 1999, Using SeDuMi 1.02, A MATLAB Toolbox for Optimization over Symmetric
Cones. In Optimization Methods and Software, 11-12: 625-633. Special issue on Interior Point
Methods (CD supplement with software).

Tanaka, T., K.K. Kim, P.A. Parrio, and S.K. Mitter, 2017, Semidefinite Programming Approach
to Gaussian Sequential Rate-Distortion Trade-Offs, IEEE Transactions on Automatic Control
62, 1896-1910.

Toh, Kim-Chuan, Michael J. Todd, and R.H. Tutuncu, 1999, SDPT3 — A Matlab Software
Package for Semidefinite Programming, Optimization Methods and Software 11, 545–581.

Tutuncu, R.H., Kim-Chuan Toh, and Michael J. Todd, 2003, Solving Semidefinite-quadratic-linear
Programs Using SDPT3, Mathematical Programming Series B, 95, 189–217.

Van Nieuwerburgh, Stijn, and Laura Veldkamp, 2010, Information Acquisition and Under-diversification,
Review of Economic Studies 77, 571-626.

Vandenberghe and Boyd, 1996, Semidefinite Programming, SIAM Review 38, 49-95.

Vandenberghe, Lieven, Stephen Boyd, and Shao-Po Wu, 1998, Determinant Maximization with
Linear Matrix Inequality Constraints, SIAM Journal on Matrix Analysis and Applications,
vol. 19, no. 2, pp. 499–533.

Woodford, Michael, 2003, Imperfect Common Knowledge and the Effects of Monetary Policy, In
Knowledge, Information, and Expectations in Modern Macroeconomics: In Honor of Edmund
S. Phelps, ed. Philippe Aghion, Roman Frydman, Joseph Stiglitz, and Michael Woodford,
25–58. Princeton, NJ: Princeton University Press.

Woodford, Michael, 2009, Information-Constrained State-Dependent Pricing, Journal of Monetary
Economics 56, S100-S124.

Zhong, Weijie, 2019, Optimal Dynamic Information Acquisition, working paper, Columbia Uni-
versity.

Zorn Peter, 2018, Investment under Rational Inattention: Evidence from US Sectoral Data, work-
ing paper, University of Munich.

51



0 5 10 15 20

Periods

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Full Infor

 = 0.002

 = 0.004

 = 0.006

0 5 10 15 20

Periods

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Full infor

2
 = 0.15

2
 = 0.3

2
 = 1

Figure 1: Impulse responses of the aggregate price to a one-standard-deviation innovation in nom-
inal aggregate demand.
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Figure 2: Impulse responses of the individual price to a one-standard-deviation innovation in nom-
inal aggregate demand and idiosyncratic productivity for different innovation variances.
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Figure 3: Impulse responses of the individual price to a one-standard-deviation innovation in nom-
inal aggregate demand and idiosyncratic productivity for different persistence of shocks.
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Figure 4: Impulse responses of consumption to a one-standard-deviation innovation in various
shocks for different information cost parameter values.
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Figure 5: Impulse responses of tangible and intangible investment to a one-standard-deviation
persistent TFP shock for different information costs.
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