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Abstract. In the U.S. economy over the past twenty five years, house prices exhibit fluc-

tuations considerably larger than house rents. These price-rent dynamics tend to move

together with business cycles and have a predictive power for house returns over the long

horizon. We develop and estimate a dynamic general equilibrium model to account for these

facts and offer structural interpretations. The model’s transmission mechanism transforms

a very small persistent shock to the stochastic discount factor into a large price-rent ratio

fluctuation. The same shock generates the comovement between the price-rent ratio and

output. Moreover, the rent-price ratio predicts the house return over the long horizon.
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I. Introduction

The rise and fall of house prices in the past decades have generated a great deal of research

on asset-pricing implications of real estate prices as well as their linkage to the macroeconomy.

We develop and estimate a tractable dynamic stochastic general equilibrium (DSGE) model

to account for the three key facts:

(1) House prices fluctuate much more than house rents and output do. Over the past

twenty five years, while the volatility (measured by the standard deviation of quar-

terly changes) is 0.736% for output and 0.278% for house rent, the volatility of house

price is 2.759%.

(2) The rent-price ratio predicts the long-horizon house return. Simple OLS regressions

of house returns at different horizons on the log rent-price ratio show that the slope

coefficients are significantly positive and increase with the horizon and that the fit

measure, R2, also increases with the horizon.

(3) The price-rent ratio series tends to move with output (a sum of consumption and

investment) as illustrated in Figure 1. The correlation between detrended output

and the price-rent ratio (in log value) is as high as 0.528.

How to account for all these salient facts in one single structural framework has been

a central but challenging issue in finance and macroeconomics. In particular, the existing

DSGE models with production have difficulty in generating more volatile house price than

house rent while maintaining the rent-price predictability of house returns over the long

horizon. As in much of the asset-pricing literature, these DSGE models imply that the

house price is the discounted present value of future rents and thus both price and rent move

in comparable magnitude (Iacoviello, 2005; Iacoviello and Neri, 2010; Liu, Wang, and Zha,

2013).

Our structural model links the housing market and the production economy and identifies

a transmission mechanism that explains the preceding facts. The challenge is to make such a

model simple enough to gain economic intuition but at the same time sophisticated enough

to fit to the U.S. time-series data. To balance these two objectives, we begin with a simple

and revealing model without capital in which there is a continuum of heterogeneous firms

with idiosyncratic productivity shocks. Firms trade housing units; their assets are in the

form of real estate. A productive firm borrows from households to finance its working capital

in the form of trade credit with a promise to repay the loan after production takes place.

Because the firm may choose to renege on its payment promise, an incentive compatibility

constraint is imposed to resolve the limited enforcement problem. The optimal contract

results in a liquidity constraint on how much of working capital the firm is able to finance.

We show that this endogenously-derived constraint is directly influenced by the difference
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between the house price and the discounted present value of house rents. We call this gap

the “liquidity premium.”

We view our endogenously-derived borrowing constraint as a valuable addition to the

literature that focuses on collateral constraints. As pointed out by Petersen and Rajan

(1997), trade credit is the single most important source of short-term external finance for

firms in the U.S. Cunat (2007) finds that trade credit accounts for 50% of short term debt

and 35% of total debt for the U.S. firms and that trade credit is typically an unsecured debt.

The enforcement largely relies on some informal firm-specific relationship or reputation with

no collateral. Defaulting would result in termination of the future credit supply. These

features are well captured by our endogenously-derived borrowing constraint.

A rise in the liquidity premium relaxes the firm’s liquidity constraint and thus facilitates

the firm’s production. The liquidity constraint is not always binding. A novel feature of our

model is: whether a particular firm’s liquidity constraint binds depends on both the nature

of the shock and the realization of the firm’s individual productivity. A shock that raises the

liquidity premium simultaneously raises the threshold of the productivity level above which

firms choose to produce until their liquidity constraint binds. A rise in such a cutoff level,

in turn, weeds out unproductive firms and induces highly productive firms to operate. In

aggregate it raises the total factor productivity (TFP). In Section IV we derive a closed-

form log-linearized approximate solution to this model and illustrate that such a dynamic

interaction between the liquidity premium and endogenous TFP holds the key to generating

large fluctuations of the price-rent ratio, the rent-price predictability of house returns, and

the comovement between the price-rent ratio and output.

Fitting such a general equilibrium model to both house price and house rent, as well as the

key macroeconomic variables, is a challenging task. To this end, we extend the simple model

to a dynamic general equilibrium model with investment. The fit is remarkably competitive

with the Minnesota-prior BVAR model. We find that traditional business-cycle shocks,

such as shocks to technology, housing demand, and labor supply, cannot explain price-rent

fluctuations in magnitude comparable to the observed time series. A shock to the stochastic

discount factor (SDF), by contrast, accounts for all the three observed facts delineated at

the beginning of this section.

Our estimated SDF shock itself exhibits very small volatility (0.016%) but this small

and persistent shock contributes to not only most of the large price-rent fluctuation but

also 58% of the output volatility. Since the SDF shock directly influences the stochastic

discount factor, we compute how much the SDF fluctuation contributes to the price-rent

volatility. We decompose the price-rent volatility into two components, one attributed to

the SDF fluctuation and the other attributed to financial frictions. We find that a third

of the price-rent volatility is attributed to the SDF fluctuation while the rest is due to the
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financial friction introduced to our model. The model’s transmission mechanism amplifies

this small persistent shock into the large price-rent fluctuation. We show that the rent-price

data generated by a sequence of SDF shocks can predict house returns over the long horizon,

matching what is observed in the U.S. economy.

The paper is organized as follows. In Section II we reviews the related literature. In

Section III we construct a simple theoretical framework that can be easily understood. This

framework lays a foundation for our medium-scale empirical model. In Section IV we develop

key intuition for the link between price-rent dynamics and aggregate fluctuations. In Sec-

tion V we extends the simple model to a medium-scale dynamic general equilibrium model

that is confronted with the U.S. time series. In Section VI we discuss the empirical results

from the estimated model. In Section VII we discuss the transmission mechanism that is

present in the medium-scale model but lacking in the simple model. In Section VIII we

discuss how the model’s results match the volatility and predictability observed in the data.

Section IX concludes the paper.

II. Related Literature

Our paper is related to three strands of literature. The first strand studies the house return

predictability and the rise and fall of house prices relative to house rents (Campbell, Davis,

Gallin, and Martin, 2009; Piazzesi and Schneider, 2009; Caplin and Leahy, 2011; Burnside,

Eichenbaum, and Rebelo, 2011; Pintus and Wen, 2013; Head, Lloyd-Ellis, and Sun, 2014).1

This literature focuses on facts 1 and 2 but does not provide a structural model that links

the housing market and the macroeconomy (fact 3).

The second strand of literature studies DSGE models of the housing market. In addi-

tion to the papers cited earlier, other related papers include Kiyotaki, Michaelides, and

Nikolov (2011) and Justiniano, Primiceri, and Tambalotti (2014). This literature typically

focuses on fact 3 but does not study the house return predictability and the volatility of

the price-rent ratio (facts 1 and 2). One exception is the paper by Favilukis, Ludvigson,

and Nieuwerburgh (2013), who build a two-sector overlapping-generations model of housing

and non-housing production where heterogeneous households face limited opportunities to

insure against aggregate and idiosyncratic risks. Their empirical strategy is based on calibra-

tion and complicated numerical methods to approximate wealth distributions. Our model is

tractably formulated to be estimated against the data by Bayesian methods.

The third strand of literature analyzes the impact of financial frictions on the measured

TFP (Jermann and Quadrini, 2007; Miao and Wang, 2012; Gilchrist, Sim, and Zakraj̆sek,

2013; Liu and Wang, 2014; Midrigan and Xu, 2014). This strand of literature is too large

for us to list every relevant paper. Restuccia and Rogerson (2013) have an excellent review

1See Ghysels, Plazzi, Torous, and Valkanov (2012) for a survey of this literature.
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of the literature.2 A general view is that financial frictions can cause resource misallocation

and therefore TFP losses. Many important papers in this literature focus on a steady state

analysis and on the implications for growth and development.

One exception is the paper by Buera and Moll (2013), who study the role of shocks to

collateral constraints (or credit crunch) in business cycles (Jermann and Quadrini (2012) also

study the impact of this shock on business cycles). They show that a credit crunch results in

a decrease of the cutoff productivity level above which firms are active. The implication of

this result is that there is an entry of unproductive firms, causing a drop in TFP in recessions.

This result is consistent with the evidence provided by Kehrig (2011), who documents that

the dispersion of productivity in U.S. durable manufacturing firms is greater in recessions

than in booms, implying a relatively higher share of unproductive firms in recessions.

Our model places a different emphasis on the role of firm heterogeneity and endogenous

TFP dynamics. We focus on understanding how the endogenous TFP mechanism, in com-

bination with optimal contracts on working capital, helps transform a small persistent SDF

shock into a large output fluctuation and even a larger price-rent ratio fluctuation, how

the price-rent ratio comoves with output over the business cycle, and how the price-rent

dynamics help predict house returns in the future.

Our modeling of the SDF shock follows Smets and Wouters (2007), Primiceri, Schaum-

burg, and Tambalotti (2006), and Albuquerque, Eichenbaum, and Rebelo (2014) to capture

demand shifts. Albuquerque, Eichenbaum, and Rebelo (2014) argue that the SDF shock is

important to explain the equity premium puzzle and the correlation puzzle in an endow-

ment economy. This shock is a parsimonious way of modeling the variation in discount rates

stressed by Hansen and Jagannathan (1991), Campbell and Ammer (1993) and Cochrane

(2011) and can be interpreted also as a sentiment shock as in Barberis, Shleifer, and Vishny

(1998) and Dumas, Kurshev, and Uppal (2009).

III. A Simple Model Without Capital

In this section we present a simple model without capital to obtain a closed-form solution

up to first-order approximation. The closed-form results, discussed in Section IV, enable us

to illustrate the transmission mechanism that accounts for the three key facts discussed in

the Introduction. Proofs of all the propositions in this section are provided in Appendix A.

III.1. The Economy. The economy is populated by the representative household and a

continuum of firms.

2See other papers in the special issue of the Review of Economic Dynamics, volume 16, issue 1, 2013.
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Households. The representative household maximizes the lifetime utility function

E0

∞
∑

t=0

βtΘt

(

logCt + ξt (hrt + hot)−
N1+ν
t

1 + ν

)

,

where Ct represents consumption, Nt represents labor supply, hrt represents rented housing

units, and hot represents purchased housing units. The parameters β ∈ (0, 1) and 1/ν > 0

represent the subjective discount factor and the Frisch elasticity of labor supply, respectively.

We introduce an intertemporal preference shock, Θt, that directly influences the stochastic

discount factor. We call θt = Θt/Θt−1 a shock to the SDF or an SDF shock. We follow

Iacoviello and Neri (2010) and Liu, Wang, and Zha (2013) and introduce an intratemporal

shock, ξt, that influences the demand for housing. Both θt and ξt are assumed to follow an

AR(1) process with

log θt+1 = ρθ log θt + σθεθt+1, (1)

where σθ > 0, |ρθ| < 1, and εθt+1 is an i.i.d. normal random variable, and

log ξt+1 = (1− ρξ) log ξ̄ + ρξ log ξt + σξεξt+1, (2)

where σξ > 0,
∣

∣ρξ
∣

∣ < 1, and εξt+1 is an i.i.d. normal random variable.

The household’s intertemporal budget constraint is given by

Ct + rhthrt + pt (hot+1 − hot) = wtNt +Dt, t ≥ 0,

where rht represents the house rent, pt is the house price, wt is the wage rate, and Dt is the

dividend income. We assume that the household does not initially own any housing unit

(i.e., hot = 0 when t = 0) and faces the short-sales constraint hot+1 ≥ 0 for all t. Assume

that houses do not depreciate.

We obtain the following first-order conditions:

rht =
Θtξt
Λt

, (3)

ΘtN
ν
t

Λt
= wt, (4)

and

pt = βEt
Λt+1

Λt
(pt+1 + rht+1) +

πt
Λt
, (5)

where

Λt =
Θt

Ct
(6)

is the marginal utility of consumption, and πt ≥ 0 is the Lagrange multiplier associated with

the short-sales constraint hot+1 ≥ 0 with the complementary slackness condition πthot+1 = 0.

Equation (3) indicates that the house rent is equal to the marginal rate of substitution

between housing services and consumption. Equation (4) states that the wage rate is equal
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to the marginal rate of substitution between leisure and consumption. Equation (5) is the

asset-pricing equation for housing.

Firms. Each firm i ∈ [0, 1] owns a constant-returns-to-scale technology that produces

output yit using labor input nit according to

yit = aitAtn
i
t,

where ait represents an idiosyncratic productivity shock drawn independently and identically

from a fixed distribution with pdf f and cdf F on (0,∞), and At represents an aggregate

technology shock that follows the AR(1) process

logAt+1 = ρa lnAt + σaεat+1,

where σa > 0, |ρa| < 1, and εat+1 is an i.i.d. normal random variable. Firm i maximizes its

expected discounted present value of dividends

maxE0

∞
∑

t=0

βtΛt
Λ0

dit, (7)

where dit denotes dividends and β
tΛt/Λ0 is the household’s stochastic discount factor.

Firm i hires labor, trades and leases housing units. In each period t, prior to the sales

of output and housing units, firm i must borrow to finance working capital of wage bills.

Households extend trade credit to the firm in the beginning of period t and allows it to pay

wage bills at the end of the period using revenues from sales of output and housing units.

The firm’s flow-of-funds constraint is given by

dit + pt(h
i
t+1 − hit) = aitAtn

i
t − wtn

i
t + rhth

i
t, t ≥ 0, with hi0 given. (8)

Firms are not allowed to short-sell houses so that hit+1 ≥ 0 for all t.

We follow Kehoe and Levine (1993), Alvarez and Jermann (2000), Albuquerque and

Hopenhayn (2004), and Krueger and Uhlig (2006) and assume that contract enforcement

is imperfect. The firm has limited commitment and may choose not to pay wage bills. In

such a default state, the firm would retain its production revenues aitAtn
i
t as well as its house

holdings hit. But the firm would be denied access to financial markets in the future. In

particular, it would be barred from selling any asset holdings for profit and from obtaining

loans for working capital.3

We assume that firms cannot use housing units as collateral. This assumption is reasonable

for our full model studied in Section V in which there is a continuum of creditors, who are

input suppliers as intermediate goods producers. Upon default, it is difficult for a large

number of creditors to split a single firm’s collateral value. Our limited-commitment contract

3To focus on the role of working capital and make our economic mechanism transparent, we abstract

from intertemporal loan markets. An introduction of such intertemporal elements would compromise the

economic intuition and complicate the model a great deal without changing the key results in this paper.
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is consistent with the use of trade credit for production in the U.S. economy (Petersen and

Rajan, 1997; Cunat, 2007). Unlike bank debt, trade credit is enforced by relational contracts

based on reputation.

In the default state, since the firm would have no access to working capital, it would

be unable to produce. In short, the firm would be in autarky. Let V a
t+1(h

i
t) denote the

continuation value for firm i that chooses to default in period t with house holdings hit. Let

Vt(h
i
t, a

i
t) denote firm i’s value function.4 The firm has no incentive to default on the trade

credit if and only if the following incentive compatibility constraint holds:

Vt
(

hit, a
i
t

)

≥ aitAtn
i
t + rhth

i
t + βEt

Λt+1

Λt
V a
t+1(h

i
t), (9)

where the left-hand side of the inequality is the no-default value and the right-hand side

gives the default value. Since V a
t+1(h

i
t) is equal to the sum of the rental value in period t+ 1

and the expected discounted present value of future rents, we have

βEt
Λt+1

Λt
V a
t+1(h

i
t) = path

i
t, (10)

where pat denotes the expected discounted present value of future rents (per housing unit)

pat ≡ Et

∞
∑

τ=1

βτ
Λt+τ
Λt

rht+τ = βEt
Λt+1

Λt

(

pat+1 + rht+1

)

. (11)

Firm i’s problem is to solve the Bellman equation

Vt(h
i
t, a

i
t) = max

ni
t,h

i
t+1

≥0
dit + βEt

Λt+1

Λt
Vt+1(h

i
t+1, a

i
t+1), (12)

subject to (8) and (9).

III.2. Liquidity Constraint and Asset Pricing. One significant feature of our model is

that the incentive constraint (9) gives rise to an endogenous liquidity constraint that depends

on the liquidity premium for housing, as stated as follows.

Proposition 1. The value function takes the form Vt(h
i
t, a

i
t) = vt(a

i
t)h

i
t, where vt(a

i
t) satisfies

pt = βEt
Λt+1

Λt
vt+1

(

ait+1

)

. (13)

The incentive compatibility constraint (9) is equivalent to

wtn
i
t ≤ (pt − pat )h

i
t ≡ bth

i
t, (14)

where we define the liquidity premium bt as

bt ≡ pt − pat ≥ 0.

4The value function depends on aggregate state variables as well. We omit these state variables to keep

notation simple.
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The linear form of the value function in Proposition 1 follows directly from the constant-

returns-to-scale technology. Equation (13) is an equilibrium restriction on the house price.

If pt > βEt
[

vt+1

(

ait+1

)

Λt+1/Λt
]

, firm i would prefer to sell all housing units, hit+1 = 0. All

other firms would not hold housing units because the preceding inequality holds for any i

as ait is i.i.d. This would violate the market-clearing condition for the housing market. If

pt < βEt
[

vt+1

(

ait+1

)

Λt+1/Λt
]

, all firms would prefer to own housing as much as possible,

which again violates the market-clearing condition.

The pricing restriction (13) is essential to achieving the interpretive form (14) of the

liquidity constraint. Using the Bellman equation (12), we can rewrite the incentive constraint

(9) as

dit + βEt
Λt+1

Λt
Vt+1(h

i
t+1, a

i
t+1) ≥ aitAtn

i
t + rhth

i
t + βEt

Λt+1

Λt
V a
t+1(h

i
t).

Given the value function and equations (8), (10), and (13), we can rewrite this constraint as

aitAtn
i
t − wtn

i
t + rhth

i
t + pth

i
t ≥ aitAtn

i
t + (rht + pat )h

i
t.

Simplifying the proceeding inequality yields the constraint (14).5 The left-hand side of

(14) is the cost of working capital (wage bills); the right-hand side is the liquidity value.

Housing provides liquidity for firms to finance working capital and thus commands a liquidity

premium.

The key idea of this paper is that the liquidity premium provided by housing facilitates

production.6 The higher the premium, the more relaxed the liquidity constraint. A credit

expansion allows firms to finance more working capital, hire more workers, and produce

higher output. Relevant questions are: what factors influence the liquidity premium? And

how does such a premium influences the price-rent ratio over the business cycle? As will

be discussed in Section IV, the shock process governing θt is not only a principal force that

drives the large fluctuation of liquidity premium but also a main source for the predictive

power of the rent-price ratio on future house returns.

Proposition 1 enables us to solve the firm’s decision problem and obtain asset-pricing

equations for determining house prices.

Proposition 2. Firm i’s optimal labor choice is given by

nit =

{

bthit
wt

if ait ≥ a∗t

0 otherwise
, (15)

5The constraint (14) can be interpreted as an endogenous credit constraint of the Kiyotaki and Moore

(1997) type, such that wtn
i

t
≤ λtpth

i

t
where λt = bt/pt is endogenously determined.

6He, Wright, and Zhu (2013) and Miao, Wang, and Zhou (2014) study the role of the liquidity premium

in the house price in theoretical models with multiple equilibria. This is not the focus of our paper.
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where a∗t ≡ wt/At. The house price is determined by the two asset-pricing equations

pt = βEt
Λt+1

Λt

[

rht+1 + pt+1 + bt+1

∫ ∞

a∗t+1

a− a∗t+1

a∗t+1

f(a)da

]

, (16)

and

bt = βEtbt+1
Λt+1

Λt

[

1 +

∫ ∞

a∗t+1

a− a∗t+1

a∗t+1

f(a)da

]

. (17)

Due to constant-returns-to-scale technology, only firms with ait ≥ a∗t employ labor and

produce output. This property implies that the liquidity constraint (14) is not always bind-

ing. It binds for only productive firms that borrow to finance their wage bills. The cutoff

productivity level a∗t for determining the binding liquidity constraint varies with the house

price, delivering an essential role of liquidity premia in business cycles.

Equations (16) and (17) show that the house price is positively influenced by not only the

expected discounted present value of rents but also the liquidity premium. This premium in

turn depends on the next-period credit yield for all productive firms:
∫ ∞

a∗
t+1

a− a∗t+1

a∗t+1

f(a)da. (18)

It follows from (15) that one-dollar liquidity provided by one housing unit in the next period

allows firm i to hire 1/wt+1 units of labor when ait+1 ≥ a∗t+1. This generates the average

profit of
(

ait+1At+1/wt+1 − 1
)

=
(

ait+1/a
∗
t+1 − 1

)

dollars when ait+1 ≥ a∗t+1. The credit yield

in (18) reflects the average profit generated by one-dollar liquidity.

III.3. Equilibrium. We consider the interior equilibrium in which production takes place,

labor supply Nt is positive, and the house price premium bt is positive.
7

Proposition 3. For the interior equilibrium, the household’s optimal choice is not to own

housing units, i.e., hot+1 = 0 for all t.

It follows from equations (5) and (16) that the Lagrange multiplier πt is positive and re-

flects the liquidity premium when bt > 0 for all t. By the complementary slackness condition,

we deduce that hot+1 = 0 for all t. We normalize the house supply to unity. In equilibrium,

all markets clear such that
∫

nitdi = Nt, hot = 0,

∫

hitdi = hrt = 1,

∫

yitdi = Yt = Ct.

The household’ dividend income is Dt =
∫ 1

0
ditdi. The following proposition summarizes the

equilibrium dynamics of our model.

7There is a trivial equilibrium such that bt = 0 for all t. In this trivial case, no production would take

place. The equilibrium with bt > 0 for all t is unique.
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Proposition 4. The equilibrium system is given by nine equations (3), (4), (11), (16), (17),

a∗t = wt/At, Yt = Ct,

Yt = AtNt

∫∞

a∗t
af(a)da

1− F (a∗t )
, (19)

wtNt = (1− F (a∗t ))bt, (20)

for nine variables {rht} , {wt} , {Nt} , {Yt} , {Ct} , {a
∗
t} , {p

a
t } , {pt} , and {bt} .

We need only to show how to derive (19) and (20). Using a law of large numbers, we

obtain (20) by aggregating (15). To derive (19), we first aggregate individual firm production

functions by using (15) in Proposition 2. By a law of large numbers we have

Yt = At

∫ 1

0

aitn
i
tdi =

Atbt
wt

∫ ∞

a∗t

af(a)da.

We obtain equation (19) by using equation (20) to eliminate wt from the preceding equation.

IV. Economic Mechanism: An Illustration

We provide an economic mechanism that transmits a small structural shock into a large

fluctuation in the price-rent ratio relative to output without relying on a large fluctuation

in the stochastic discount factor. In Section IV.1 we show that the cutoff productivity

level a∗t plays a crucial role in this transmission mechanism. In Section IV.2 we derive a

closed-form first-order solution and identify an SDF shock as a driving force of large price-

rent fluctuations in the housing market. In Section IV.3 we quantify the volatility and the

predictability based on the price-rent dynamics generated by SDF shocks.

IV.1. Intuition. A novel feature of our model, relative to the empirical DSGE literature,

is that the cutoff productivity level a∗t is endogenous and plays a crucial role in accounting

for the dynamic links between the house price, the house rent, and aggregate real variables.

We first demonstrate that a∗t affects the real sector through TFP and labor reallocation.

Equation (19) shows that our model generates endogenous TFP defined as

TFPt =

∫∞

a∗t
af(a)da

1− F (a∗t )
. (21)

A rise in a∗t discourages less efficient firms from production and induces more efficient firms

to produce. As a result, the TFP increases with the cutoff productivity level a∗t .

Dividing by wtNt on the two sides of equation (19) and using a∗t = At/wt, we derive

Yt =

∫∞

a∗t

a
a∗t
f(a)da

1− F (a∗t )
wtNt. (22)
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This equation shows that aggregate output exceeds the factor income because firms make

positive profits due to financial frictions. Labor is reallocated to more productive firms and

the marginal product of labor for each firm is not equal to the wage rate.

Eliminating wt from equations (4) and (22) with Ct = Yt and using (6), we derive the

labor-market equilibrium condition

N1+ν
t =

1− F (a∗t )
∫∞

a∗t

a
a∗t
f(a)da

. (23)

An increase in a∗t has three effects on Nt. First, it raises endogenous TFP, which increases the

profit markup over the labor cost as one can see from (22). Firms demand less labor, ceteris

paribus. Second, if we hold endogenous TFP fixed, it follows from (22) that the higher the

cutoff productivity level, the less the profit markup. This selection effect increases demand

for labor. Third, labor supply is reduced due to the wealth effect, as in the standard RBC

model. The net effect on equilibrium labor hours Nt is ambiguous. When we use the

estimated parameter values from our medium-scale empirical model developed in Section V,

labor hours decrease for the simple model but increase for the medium-scale model.

We use the top panel of Figure 2 to illustrate how a rise of the cutoff productivity level

a∗t affects output and hours in equilibrium. The production line, representing the aggregate

production function (19), is positively sloped on the Nt-Yt plane. The vertical line on the

plane represents equation (23). These two lines determine equilibrium output and hours for a

given cutoff productivity level a∗t . In plotting these labor-output lines, we treat other factors,

such as a∗t and an SDF shock, as potential shifters. We assume that the initial equilibrium

(Point A) is at the steady state.

Consider an SDF shock that raises the cutoff productivity level a∗t . A rise in a∗t induces

firms whose productivity is higher than a∗t to produce. As a consequence, endogenous TFP

increases and the production line shifts upward. At the same time, the labor-market line

also shifts. In Figure 2 we assume that the labor-market line shifts to the left (we show how

this can happen in Section IV.2). We can show that the effect of endogenous TFP is always

stronger so that the shift in the production line dominates the shift in the labor-market line.

As a result, output rises while hours fall (from Point A to Point B in Figure 2).

The mechanism illustrated in the top panel of Figure 2 for the real sector is only one side

of the story in our model. The other is the essential role of liquidity premia in facilitating

production. Firms would be unable to produce if they failed to acquire liquidity for financing

working capital. It is clear from the liquidity constraint (14) that the finance of working

capital depends on the liquidity premium bt (the gap between the market price of house and

the discounted present value of rents, i.e., bt = pt − pat ).

Next we study how an SDF shock drives the movements of the cutoff productivity level

a∗t and the liquidity premium bt. The bottom panel of Figure 2 illustrates the mechanism.
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The asset-pricing curve on the a∗t -bt plane represents the asset-pricing equation (17) for the

liquidity premium holding other variables fixed. In Section IV.2 below, we show that an

increase in the current cutoff productivity level a∗t also raises the future cutoff productivity

level a∗t+1. According to (18), the future credit yield falls as a∗t+1 rises. Thus the asset-pricing

curve describing (17) is downward sloping.

Eliminating Nt from (19) and (20) and using a∗t = wt/At, we can derive

bt

∫

a∗t

a

a∗t
f(a)da = Yt. (24)

The curve that describes the relationship between a∗t and bt in (24) is upward sloping. Since

equation (24) is derived from the liquidity constraints, we call this upward-sloping curve the

“liquidity-constraint curve.” The two curves in the bottom panel of Figure 2 determine a∗t

and bt jointly. Assume that Point A is at the steady state.

Now consider the impact of a positive SDF shock. The shock shifts the asset-pricing curve

outward. A rise in a∗t raises the TFP and consequently aggregate output (the top panel of

Figure 2). An increase in aggregate output shifts the liquidity-constraint curve upward. The

equilibrium moves from Point A to Point B (the bottom panel of Figure 2) with the resultant

increase of the liquidity premium bt higher than the increase of a∗t . The large increase of

bt relaxes the liquidity constraint that is necessary to facilitate the output increase from

productive firms.

In summary, our theoretical framework is capable of generating not only the comovement

of asset prices and output but also the stronger response of asset prices than the response of

output.

IV.2. Understanding the Impact of an SDF Shock. There are three shocks in this

simple economy: θt, At, and ξt. The key to understanding how these shocks influence price-

rent dynamics and their impact on the aggregate economy is to analyze how these shocks

affect the cutoff productivity level a∗t . For this model we are able to obtain a closed-form

solution to the log-linearized equilibrium system around the deterministic steady state. We

use the closed-form solution to show that 1) an SDF shock, θt, is the only shock that drives

the fluctuation of cutoff productivity a∗t and 2) the other two shocks cannot generate the

magnitude of price-rent dynamics as observed in the data. We then use the closed-form

solution to verify the intuition developed in the preceding section.

Denote x̂t = log (xt)− log(x), where xt is any variable of study and x is the corresponding

deterministic steady state of xt. The log-linearized expression for (21) is

T̂ FP t =
ηµ

1 + µ
â∗t , (25)
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where

η ≡
a∗f(a∗)

1− F (a∗)
> 0

denotes the steady-state elasticity of the survival function and

µ =

∫∞

a∗
a
a∗
f(a) da

1− F (a∗)
− 1 > 0.

Hence the log-linearized equations for (19) and (23) are

Ŷt = N̂t + Ât + T̂ FP t, (26)

N̂t = −
1

1 + ν

µη − (1 + µ)

1 + µ
â∗t . (27)

These two equations give the log-linearized version of the production line and the labor-

market line in Figure 2. Whenever µη > (1 + µ),8 an increase in a∗t shifts the labor-market

line to the left up to the first-order approximation.

From (24) we derive the log-linearized equation

b̂t = Ŷt +
η + 1 + µ

1 + µ
â∗t . (28)

The log-linearized equation for (17) is

b̂t − Ŷt = Et

(

b̂t+1 − Ŷt+1 + θ̂t+1

)

−
(1− β) (1 + µ)

µ
Etâ

∗
t+1. (29)

The preceding two equations give the log-linearized version of the liquidity-constraint curve

and the asset-pricing curve in Figure 2. Using (28) and (29) to eliminate b̂t−Ŷt and b̂t+1−Ŷt+1,

we obtain

â∗t = ρθ
1 + µ

η + 1 + µ
θ̂t +

[

1− (1− β)
1 + µ

µ

1 + µ

η + 1 + µ

]

Etâ
∗
t+1.

Solving this equation leads to

â∗t = ρθ
1 + µ

η + 1 + µ

1

1− ρθκ
θ̂t, (30)

where

κ = 1− (1− β)
1 + µ

µ

1 + µ

η + 1 + µ
< 1.

From equations (25), (26), and (27) we deduce

Ŷt = Ât +
1

1 + ν

(

1 +
νηµ

1 + µ

)

â∗t . (31)

This equation indicates that, even though hours Nt may decrease with a∗t , output Yt always

increases with a∗t up to the first-order approximation because the upward shift of the pro-

duction line dominates the leftward shift of the labor-market line due to a large increase in

endogenous TFP.

8This condition is implied by the estimated values for our medium-scale model in Section VI.
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One can see from equation (30) that both the aggregate technology shock At and the

housing demand shock ξt play no role in influencing the cutoff productivity level a∗t . To

gauge the magnitude of how these shocks are transmitted to asset prices and real aggregate

variables, we log-linearize equations (3), (11), and pt = pat + bt as

r̂ht = Ŷt + ξ̂t, (32)

p̂at = Et

[

θ̂t+1 + Ŷt − Ŷt+1 + (1− β)r̂ht+1 + βp̂at+1

]

, (33)

p̂t =
pa

p
p̂at +

(

1−
pa

p

)

b̂t, (34)

where we use the steady-state equilibrium conditions to derive

pa

p
=

ξ̄(1 + µ)

ξ̄(1 + µ) + µ
.

Substituting (32) into (33) and solving p̂at − Ŷt forward, we obtain

p̂at = Ŷt +
ρθ

1− βρθ
θ̂t +

(1− β)ρξ
1− βρξ

ξ̂t. (35)

From equations (25), (27), and (30), one can see that the aggregate technology shock At

does not exert any influence on T̂ FP t, â
∗
t , and N̂t. Thus the At shock would have the same

one-for-one effect on output Yt [equation (31)], the liquidity premium bt [equation (28)], the

house rent rht [equation (32)], the expected discounted present value of rents p̂at [equation

(35)], and the house price p̂t [equation (34)]. Because the house price is much more volatile

than the house rent and output in the data, the aggregate technology shock in our model

cannot be the main source for generating the link between price-rent dynamics and output

fluctuations.

As in Liu, Wang, and Zha (2013), the housing demand shock ξt influences the house rent

through equation (32) and in turn the house price through equation (34). But Liu, Wang,

and Zha (2013) abstract from the central and challenging issue addressed in this paper: the

fluctuations of house prices relative to those of house rents over business cycles. In our model,

since the housing demand shock does not affect the liquidity premium, it has no influence on

hours and output. Moreover, a one percent increase in the housing demand shock ξt raises

the house rent by one percent, but raises the house price by less than one percent because

(1− β)ρξ
1− βρξ

pa

p
< 1.

Thus the housing demand shock is unable to generate price-rent dynamics observed in the

data (Figure 1).

By contrast, it follows from equation (30) that the SDF shock θ̂t is the only shock that

influences cutoff productivity and therefore the TFP. A positive SDF shock raises the cutoff

productivity level â∗t . The increase of the cutoff productivity level â∗t raises endogenous
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TFP, causing aggregate output to rise (see equation (26)). In equilibrium, the increase of

the liquidity premium b̂t is greater than the increase of both output and cutoff productivity,

as shown in equation (28).

IV.3. Volatility and Predictability. Figure 3 illustrates the quantitative importance of

financial and real dynamic responses to an SDF shock with the following parameterization:

ν = 1.023, η = 9.313, µ = 0.148, ξ̄ = 0.135, β = 0.994, ρθ = 0.95, σθ = 0.001.

Except for the values of ρθ and σθ, all other parameter values are taken from the estimates

obtained in Section VI. The values of ρθ and σθ are selected for the best visual effect without

altering the model’s implications. The top panel of Figure 3 shows that, in log value, the

response of the house price (the star line) is about ten times the response of the house

rent (the circle line) as well as the response of cutoff productivity (the dashed line). The

movement in the house price is mostly driven by the liquidity premium (the solid line). The

bottom panel of Figure 3 shows that the responses of output (the circle line) is mostly driven

by the response of endogenous TFP (the solid line).

The simple model is revealing because it helps explain the volatility and predictability

pattern observed in the data. We discuss volatility first. The impulse responses displayed in

Figure 3 indicate that a small persistent SDF shock generates a large volatility of the price-

rent ratio. The structural model, moreover, allows us to decompose the price-rent ratio

volatility into two components: one attributed to the SDF fluctuation itself and the other

attributed to the liquidity premium. To see how to perform this structural decomposition,

we use equations (28), (30), (34), and (35) to derive

p̂t − r̂ht =
pa
p

ρθ
1− βρθ

θ̂t +
b

p

ρθ
1− κρθ

θ̂t +

[

pa

p

(1− β)ρξ
1− βρξ

− 1

]

ξ̂t. (36)

The first two terms on the right-hand side of equation (36) reflect the impact of the stochastic

discount factor and the liquidity premium triggered by the SDF shock θ̂t. The volatility

of this shock reflects its direct effect. Using the above parameterization we calculate the

(unconditional) volatility of θ̂t as 3. 202 6× 10−3, which is very small. But the volatility of

the price-rent ratio is 5. 503 4× 10−2, which is much larger than the volatility of θ̂t itself.

Where does this high volatility come from? We use equation (36) to calculate the volatil-

ity of the SDF as 0.027 94 and the volatility of the liquidity premium as 2. 709 3 × 10−2,

accounting for 50.769% and 49.23% of the volatility of the price-rent ratio. The remaining

0.001% volatility is due to the correlation between SDF and the liquidity premium. This

simple calculation shows that the liquidity premium generated from the model’s mechanism

contributes to about a half of the volatility of the price-rent ratio. In the estimated model

presented in Section VIII, the contribution from the SDF fluctuation is even smaller.



LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES 16

We now discuss the predictability pattern. Using equations (26), (30), (32), and (36), we

derive

rt→t+1 ≡ p̂t+1 − p̂t =
pa
p

ρθ
1− βρθ

∆θ̂t+1 +
b

p

ρθ
1− κρθ

∆θ̂t+1 +
pa

p

(1− β)ρξ
1− βρξ

∆ξ̂t+1

+∆Ât+1 +
1

1 + ν

1 + µ+ νηµ

η + 1 + µ

ρθ
1− ρθκ

∆θ̂t+1, (37)

where ∆θ̂t+1 ≡ (1− ρθ)θ̂t+ σθεθt+1 and similar notations apply to other variables. Equation

(36) indicates that an increase in the SDF shock θ̂t raises the price-rent ratio p̂t− r̂ht. Given

the AR(1) specification of this shock, equation (37) shows that an increase of θ̂t lowers

the house return in the future. Thus an increase in the price-rent ratio induced by an

increase in the SDF shock predicts a negative house return in the future. In other words,

an increase in the rent-price ratio predict a positive house return in the future. By contrast,

other shocks such as the housing demand shock and the technology shock cannot generate

such a predictability pattern. In Section VIII we use the estimated model to show that

the predictive power of the rent-price ratio for the house return increases with the forecast

horizon, as in the observed data.

V. A Tractable Medium-Scale Structural Model

In this section we build up a medium-scale dynamic general equilibrium model that aims

to fit the house price-rent data and other macroeconomic data in the U.S. economy. By

introducing capital, this medium-scale model is an expansion of the basic model developed in

Section III. Although the dynamics and equilibrium conditions are much more complicated,

all the intuition and insights discussed in Section III carry over to this medium-scale model.

We consider an economy populated by a continuum of identical households, a continuum

of competitive intermediate goods producers of measure unity, and a continuum of hetero-

geneous competitive firms of measure unity. The representative household rents out capital

and supplies labor to intermediate-goods producers. Firms use intermediate goods as input

to produce final consumption good. Financial frictions occur in the final-good sector.

V.1. Households. The representative household maximizes the expected lifetime utility

E0

∞
∑

t=0

Θtβ
t

[

log (Ct − γCt−1) + ξt logHt − ψt
N1+ν
t

1 + ν

]

, (38)

where Ct represents aggregate consumption, Nt is the household’s total labor supply, and Ht

denotes housing services. The parameters β ∈ (0, 1) and γ ∈ (0, 1) represent the subjective

discount factor and habit formation. The variables θt ≡ Θt/Θt−1, ξt, and ψt are exogenous

shocks to SDF, housing demand, and labor supply that follow AR(1) processes (1), (2), and

logψt = (1− ρψ) log ψ̄ + ρψ logψt−1 + σψεψ,t,



LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES 17

where σψ > 0,
∣

∣ρψ
∣

∣ < 1, and εψ,t is an i.i.d. standard normal random variable.

The household chooses consumption Ct, investment It, housing services Ht, capital uti-

lization rate ut, and bonds Bt+1, subject to the intertemporal budget constraint

Ct +
It
Zt

+
Bt+1

Rft
+ rhtHt ≤ wtNt + utrktKt +Dt +Bt, (39)

where Kt, wt, Dt, rkt, rht, and Rft represent capital, wage, dividend income, the rental

rate of capital, the house rent, and the risk-free interest rate.9 The variable Zt represents

an aggregate investment-specific technology shock that has both permanent and transitory

components (Greenwood, Hercowitz, and Krusell, 1997; Krusell, Ohanian, Rı́os-Rull, and

Violante, 2000; Justiniano and Primiceri, 2008):

Zt = Zp
t vzt, Z

p
t = Zp

t−1gzt,

log gzt = (1− ρz) log ḡz + ρz log(gz,t−1) + σzεzt, (40)

log vzt = ρ
vz
log vz,t−1 + σvzεvz ,t, (41)

where |ρz| < 1,
∣

∣ρva
∣

∣ < 1, σz > 0, σva > 0, and εz,t and εvz ,t are i.i.d. standard normal

random variables.

Investment is subject to quadratic adjustment costs (Christiano, Eichenbaum, and Evans,

2005). Capital evolves according to the law of motion

Kt+1 = (1− δ(ut))Kt +

[

1−
Ω

2

(

It
It−1

− ḡI

)2
]

It, (42)

where δt ≡ δ(ut) is the capital deprecation rate in period t, ḡI denotes the long-run growth

rate of investment, and Ω is the investment adjustment cost parameter.

V.2. Intermediate-Goods Producers. There is a continuum of intermediate goods. Each

intermediate good j ∈ [0, 1] is produced by a continuum of identical competitive producers

of measure unity. The representative producer owns a constant-returns-to-scale technology

to produce good j by hiring labor Nt (j) and renting capital Kt (j) from households. The

producer’s decision problem is

max
Nt(j), Kt(j)

PXt(j)Xt (j)− wtNt(j)− rktKt(j), (43)

where Xt (j) ≡ AtKt (j)
αNt (j)

1−α and PXt (j) represents the competitive price of good j.

The aggregate technology shock At consists of permanent and transitory components (Aguiar

and Gopinath, 2007)

At = Apt νa,t, A
p
t = Apt−1gat,

log gat = (1− ρa) log ḡa + ρa log(ga,t−1) + σaεat,

9If we allow households to trade housing units, their holdings will be zero given the short-sales constraint

shown in Section II. For notational simplicity, we set the household’s holdings of housing units to zero.
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log νa,t = ρva log νa,t−1 + σvaεva,t ,

where |ρa| < 1,
∣

∣ρνa
∣

∣ < 1, σa > 0, σνa > 0, and εat and εva,t are i.i.d. standard normal

random variables.

V.3. Final-Good Firms. There is a continuum of heterogeneous competitive firms. Each

firm i ∈ [0, 1] combines intermediate goods xit (j) to produce the final consumption good

with the aggregate production technology

yit = ait exp

(
∫ 1

0

log xit(j)dj

)

, (44)

where ait represents an idiosyncratic productivity shock. Firm i purchases intermediate good

j at the price PXt (j). The total spending on working capital is
∫ 1

0
PXt(j)x

i
t(j)dj. The firm

finances working capital in the form of trade credit prior to the realization of its revenues yit.

Firm i buys and sells housing units as well as rents them out to households. The firm’s

income comes from profits and rents. Its flow-of-funds constraint is given by

dit + pt(h
i
t+1 − hit) = yit −

∫ 1

0

PXt(j)x
i
t(j)dj + rhth

i
t, t ≥ 0,with hi0 given. (45)

The firm’s objective (7) is to maximize the discounted present value of dividends.

In each period t, prior to sales of output and housing, firm i must borrow to finance its

input costs. Intermediate-goods producers extend trade credit to the firm at the beginning

of period t and allows it to pay input costs at the end of the period using revenues from

sales of output and housing. The firm has limited commitment and may default on the trade

credit. In the event of default, the firm would retain its production income yit as well as its

house holdings hit. But the firm would be denied access to financial markets in the future. In

particular, it would be barred from selling any asset holdings for profit and from obtaining

loans for working capital. The following incentive compatibility constraint is imposed on the

firm’s optimization problem to make the contract self-enforceable:

Vt(h
i
t, a

i
t) ≥

(

yit + rhth
i
t

)

+ βEt
Λt+1

Λt
V a
t+1

(

hit
)

, all t, (46)

where Vt(h
i
t, a

i
t) denotes the firm’s value without default and V a

t (h
i
t) denotes the firm’s value

in the default state. As discussed in Section III, equation (10) still holds.

V.4. Equilibrium. The markets clear for the housing sector and the intermediate-goods

sector:
∫

hitdi = Ht = 1,

∫

xit(j)di = Xt (j) = AtKt (j)
αNt (j)

1−α .

Since the equilibrium is symmetric for intermediate-goods producers, we have

PXt(j) = PXt, Nt(j) = Nt, Kt(j) = utKt, Xt (j) = Xt = At (utKt)
αNt

1−α,

for all j. The household’s dividend income is Dt =
∫ 1

0
ditdi.
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A competitive equilibrium consists of price sequences {wt, rht, rkt, pt, bt, Rft, PXt}
∞
t=0, al-

location sequences {Ct, It, ut, Nt, Yt, Bt+1, Kt+1, Xt}
∞
t=0 and a cutoff productivity sequence

{a∗t}
∞

t=0 , such that (1) given the prices, the allocations and cutoff productivity solve the

optimizing problems for the households, intermediate-goods producers, and final-good firms;

and (2) all the markets clear. Appendices B–D present all the details of characterizing and

solving the equilibrium.

VI. Empirical Analysis

The purpose of building the medium-scale model in the preceding section is to explain and

understand, through the lenses of the structural model, house price-rent fluctuations over

the U.S. business cycle. To this end, we take the Bayesian approach and fit the log-linearized

model to the six key U.S. time series over the period from 1987Q1 to 2013Q4:10 the house

price index, the house rent index, the quality-adjusted relative price of investment, real per

capita consumption, real per capita investment (in consumption units), and per capita hours

worked. Appendix E presents the detailed description of the data and Appendix F provides

the details of the estimation method.

VI.1. Price and Rent Data. While our structural model is suitable for the commercial

real-estate market, we adopt the residential real estate price and rent data for estimation.

One reason is that the commercial property price index is not nearly as well measured as the

CoreLogic home price index. The series named as “FL075035503” from the Flow of Funds

Accounts (FFA) database provided by the Board of Governors of the Federal Reserve System

is arguably the most comprehensive measure of commercial real-estate price index.11 Even for

such an authoritative series, the price index up through 1995Q4 is not based on repeated sales

but instead relies on a weighted-average of three appraisal -based commercial property price

series (per square foot): retail property, office property, and warehouse/industrial property.

These series come from National Real Estate Investor (NREI). The weights applied to the

NREI were calculated using annual data from the Survey of Current Business and are not

revised. From 1996Q1 onward, the commercial property price index switches to the Costar

Commercial Repeat Sales Index. The volume of transactions for the commercial real estate

is often much smaller than that for the residential real estate, especially during the recent

financial crisis period. For this and other reasons, the residential home price index based

on CoreLogic repeated sales can serve as a proxy for the commercial real-estate price index.

This approximation is reasonable because the residential home price index is highly correlated

10We use 1987Q1 as a starting date because the CoreLogic home price data before 1987 do not have as

representative a coverage of counties as do the post-1986 data.
11See the Federal Reserve Board of Governors’ website http://www.federalreserve.gov/apps/

fof/SeriesAnalyzer.aspx?s=FI075035503&t=.
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with the commercial real-estate price index. Figure 4 displays the commercial price index

along with the residential price index. As one can see, these two series move closely together

and their correlation is as high as 0.91.12

Residential rental price index for housing is constructed by using the Fisher chain-weighted

aggregate of PCE imputed rental of owner occupied non-farm housing price index and PCE

tenant rent price index, where PCE stands for personal consumption expenditure. As argued

in Campbell, Davis, Gallin, and Martin (2009), the residential rental price series is reliably

measured. The commercial rent series, on the other hand, is difficult to measure. One series,

provided by CBRE Econometric Advisors, is constructed by the Torto Wheaton Research

(TWR) hedonic approach (Wheaton and Torto, 1994) and (Malpezzi, 2002, Chapter 5).13

The main problem is that the rent data for commercial properties are for newly rented

properties, which tend to be more volatile than rents on all rented properties. As one can see

in Figure 5, the TWR rent index of retail property and the overall TWR commercial property

rental price index are more volatile than our residential rental price index. Nonetheless, the

commercial rental price index and the residential rental price index are highly correlated.

The correlation between the retail property rent index and the residential rent index is 0.943,

while the correlation between the retail property rent index and the overall commercial

property rent index is 0.957.

The volatility of commercial property rent indices, measured as std (∆ log(rht)), is 0.766%

for the retail property rent index and 1.231% for the overall commercial rent index, in

comparison to 0.278% for the residential property rent index. Note that the volatility of the

commercial property price index, measured by std (∆ log(pt)), is also larger than that of the

residential house price index, with 3.984% for the commercial price versus 2.759% for the

residential price. Thus the large price-rent ratio volatility exists for commercial properties

as well.

VI.2. Parameter Estimates. Our tractable model fits the data remarkably well and is

competitive against the Minnesota-prior BVAR model.14 The model’s marginal data density

is 2, 082 in log value, while the BVAR’s marginal data density is 2, 078 in log value. Along

with 90% probability bounds, Table 1 reports the estimates of key structural parameters

and Table 2 reports the estimates of exogenous shock processes.

12Our model results remain when the model is fit to the commercial property price index. The commercial

property price index from the Real Capital Analytics (RCA), not reported here, has even a higher correlation

with the residential home price index used in this paper.
13See Geltner (2011) for the criticism of this approach.
14Following Smets and Wouters (2007) and making our work comparable with the empirical DSGE litera-

ture, we compare our dynamic general equilibrium model with the Minnesota-prior BVAR model. The result

that our structural model can compete with the BVAR model in fit is, by itself, a significant achievement.
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According to Table 1, the estimated inverse Frisch elasticity of labor supply is about 1.0,

consistent with ranges of values discussed in the literature (Keane and Rogerson, 2011). The

estimated survival elasticity η is high, implying both a significant heterogeneity in firms’

productivities and the importance of endogenous TFP. This large value, along with the

estimated value µ = 0.148 through steady state relationships, implies that the condition

µη > 1+µ is satisfied. The steady-state elasticity of capacity utilization δ′′/δ′ is 4.0 (greater

than the value discussed in the literature (Jaimovich and Rebelo, 2009)), suggesting that

the effect of capacity utilization on output fluctuations is small and that our model does not

have to rely on variable capacity utilization to fit the data. In a similar way, the estimated

habit formation γ and capital-adjustment cost Ω are very small in magnitude. These factors

are not a driving force for the dynamics of consumption and investment. The posterior

probability intervals reported in Table 1 indicate that all these structural parameters are

tightly estimated.

Table 2 reports the estimated persistence and standard-deviation parameters of exogenous

shock processes. Among all shocks, the SDF shock is the most persistent process. Other

persistent shocks include the technology shock, the housing demand shock, and the labor

supply shock. But the estimated standard deviation for the SDF shock process is substan-

tially smaller than those for all other shock processes. Indeed, the unconditional standard

deviation for the SDF shock process is only 0.0058. By contrast, the unconditional stan-

dard deviation is 0.0198 for housing demand, 0.0175 for stationary aggregate technology,

and 0.0770 for labor supply. According to the 90% error bounds, the differences are both

economically and statistically significant. The error bounds for the estimated standard de-

viation of the SDF shock process are particularly tight. Such a small standard deviation

implies that any large effects on asset prices and real aggregate variables must come from

the model’s internal propagation mechanism, which will be discussed in Section VII.

VI.3. Dynamic Responses. In this subsection we discuss the dynamic impact on key

financial and real variables of four most relevant shocks: an SDF shock, a housing demand

shock, a stationary technology shock, and a labor supply shock. The primary empirical

finding is as follows. Although the estimated volatility of a shock to the stochastic discount

factor is many times in magnitude less than the estimated volatilities of shocks to housing

demand, technology, and labor supply, it accounts for most of the interaction between price-

rent dynamics and real aggregate fluctuations. By comparison, shocks to housing demand,

technology, and labor demand are all unable to generate large price-rent fluctuations.
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Table 3 reports variance decompositions by the contributions from these four shocks for

key financial and real variables (in log level) over the 24-quarter forecast horizon.15 The

stationary technology shock explains a majority of output fluctuations on impact (64.77%),

but over the longer horizon the SDF shock dominates the technology shock in explaining

output fluctuations (reaching more than 30% at the end of the sixth-year horizon). The

labor supply shock explains most of the hours fluctuation but not much of the output fluc-

tuation. The housing demand shock affects only the house rent; and its contribution to

rent fluctuations declines steadily over time from 59% on impact to 20% at the end of the

forecast horizon. In Liu, Wang, and Zha (2013), the housing demand shock is important in

explaining fluctuations of real variables. Once one takes into account the observation that

the house price is more volatile than the house rent, a shock to housing demand no longer

plays a role in real business cycles.

Figure 6-9 report the impulse responses (in log level) to all four shocks. The estimated

dynamic response of the house rent to a housing demand shock is substantially higher than

the corresponding response of the house price, making the fluctuations in the house price in

relation to the rent inconsistent with the data (Figure 10 versus Figure 6). Moreover, since

the housing demand shock has no impact on the other variables in the model, we do not

display them in Figure 6. The intuition for this result has been explained in Section IV.2.

Shocks to the labor supply and technology also fail to generate the price-rent fluctuation

in magnitude comparable to the data. As shown in Figures 7 and 8, a labor supply shock

produces simultaneous responses of rent and price almost one for one, while a technology

shock generates exactly one-for-one responses. A labor supply shock has a much stronger

impact on hours than a technology shock, but its dynamic impact on all other real variables

is weaker. The response of output to a labor supply shock comes mostly from the response

of hours, while a technology shock has a direct impact on output. Both shocks generate a

much weaker response of endogenous TFP than the output response.

By contrast, a shock to the SDF drives most fluctuations in both endogenous TFP and

the house price without a large effect on the rent fluctuation (Figure 9). Thus this shock

is capable of generating a majority of price-rent fluctuations. This result is remarkable

given how small the standard deviation of this shock process is as compared to other shock

processes.

Figure 10 reports the 3× 3 matrix of impulse responses of output, house price, and house

rent from an estimated Bayesian vector autoregression (BVAR) model with the recursive

ordering suggested by Sims (1980) and Christiano, Eichenbaum, and Evans (2005). Since

cointegration relationships are important for asset prices (Hansen, Heaton, and Li, 2008), we

15We do not report the error bounds on variance decompositions for reasons articulated in Sims and Zha

(1999). The error bands are best reported for the corresponding impulse responses.
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use the prior proposed by Sims and Zha (1998) that favors unit roots and cointegration. One

can see from the three graphs along the diagonal of the graph matrix that output, house price,

and house rent all have large hump-shaped responses.16 The BVAR model does not identify

any fundamental economic shock but rather provides informative reduced-form evidence. For

our structural model, such large hump-shaped responses (especially the response of output)

are identified as those to an SDF shock (Figure 9). A shock to aggregate technology leads

to a hump-shaped response of the house price, but the magnitude of volatility is too small

compared to the price response to an SDF shock (Figure 8 versus Figure 9).

The first two graphs in the second column of Figure 10 also show that the house price

tends to comove with output. Such a comovement can be generated by our structural model

and is indeed captured by the dynamic responses to an SDF shock (Figure 9).

As explained in Section IV, endogenous TFP is a primary transmission channel for the

significant effect of the liquidity premium on aggregate output to take place. A more impor-

tant factor is the strong propagation effect generated by an SDF shock, as shown in Figure

9. Despite our assumption that the SDF shock process is AR(1), the house price rises on

impact and continues to rise over time in response to the shock. This large hump-shaped

response17 is generated entirely by the model’s internal mechanism, which will be discussed

in Section VII. The rent response is much smaller by comparison. As a result, a small

persistent shock to the stochastic discount factor generates large price-rent dynamics. The

response of endogenous TFP is strong on impact and stays elevated, while the response of

aggregate output exhibits a large hump shape. Unlike the calibrated simple model in Sec-

tion IV, the response of hours here is positive. We will discuss the intuition behind this

result in Section VII.

In summary, a technology shock has a direct and significant effect on output, but it causes

endogenous TFP to fall (Figure 8). We will explain the latter result further in Section VII.

Even though there is a hump-shaped response of consumption, the output response rises

on impact and declines steadily (no hump shape). In comparison to the effect of an SDF

shock, the investment response to a technology shock rises more significantly on impact but

declines more rapidly in subsequent periods (Figures 8 and 9). Labor supply and housing

demand shocks have even less impact on consumption, investment, and output (Figures 6

and 7). Unlike a shock to the stochastic discount factor, these three shocks play almost no

role in the price-rent fluctuation over the business cycle.

16The response of output in the first column of Figure 10 will eventually come down, so its hump shape

is even larger than the graph shows.
17It is hump-shaped because the response is near the peak at the end of the forecast horizon and will

eventually fall.
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VII. Transmission Channel and Propagation Mechanism

Since all of our exogenous shocks are assumed to follow an AR(1) process, it is not sur-

prising that we have the monotone responses in the simple model discussed in Section IV.

For our medium-scale structural model, therefore, it is all the more important to under-

stand the inherent mechanism that generates hump-shaped impulse responses of both asset

prices and real variables following an SDF shock. With the presence of capital accumulation,

households are now able to postpone their consumption by accumulating productive capital.

This intertemporal substitution between current and future consumption contributes to the

hump-shaped response of consumption even without habit (our estimate of habit is very

small). Such a result is not new in the RBC literature.

What is new is that our medium-scale structural model identifies the source that accounts

for the observed hump-shaped responses of the house price and output (Section VI). Since our

estimate of investment-adjustment costs is negligible, its contribution to the hump-shaped

response of output is largely muted. Indeed, the dynamic response of output in response to an

aggregate technology shock is monotone (Figure 8). By comparison, a monotone SDF shock

is capable of generating large hump-shaped responses of both asset prices and aggregate

output. What is the transmission channel and what is the propagation mechanism?

To delve into intuitive answers, we begin with Figure 11. The figure plots the asset-pricing

curve and the liquidity-constraint curve, which represent equations (17) and (24). These two

equations continue to be the equilibrium conditions for our medium-scale structural model,

except

Λt =
Θt

Ct − γCt−1
− βγEt

Θt+1

Ct+1 − γCt
, (47)

and the cutoff productivity level a∗t is now determined in Appendix B. Now consider a

positive stationary shock to aggregate technology. Point A in Figure 11 represents the initial

equilibrium at the steady state. The technology shock increases aggregate output directly

and hence shifts the liquidity-constraint curve upward. The rise of output has a positive

wealth effect on consumption, shifting the asset-pricing curve upward as well. Since the

direct effect of the aggregate technology shock on output is larger than the indirect effect on

consumption, the cutoff productivity level declines and the equilibrium moves from Point A

to Point B on impact.

In the subsequent period, an increase of consumption as a result of intertemporal substi-

tution continues to shift the asset-pricing curve upward, but output drops (no hump shape)

because the technology shock begins to decline. The direct output effect shifts the liquidity-

constraint curve downward, resulting in a lower value of cutoff productivity and dampening

the rise of the liquidity premium. The equilibrium moves from Point B to Point C in Fig-

ure 11. Over time, the direct output effect continues to dominate and the liquidity premium
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will begin to decline. Consequently, we see from Figure 8 the decline of cutoff productivity

and no hump shape of the output response, even though the responses of consumption and

the liquidity premium are hump-shaped.

By contrast, the dynamic impact of a positive SDF shock presents a different picture.

Figure 12, similar to Figure 2, has two panels. The top panel plots the production and labor-

market curves. The bottom panel plots the asset-pricing and liquidity-constraint curves. We

use these two panels to illustrate how the financial sector interacts with the real sector and

how the interaction sheds light on the propagation mechanism that is lacking in Section IV.

The production curve describes aggregate output

Yt = (TFPt)At (utKt)
αN1−α

t . (48)

To derive the labor-market curve, we use the labor supply equation

Λtwt = ΘtψtN
ν
t (49)

and the labor demand equation

(1− α)Yt =

∫∞

a∗t

a
a∗t
f(a)da

1− F (a∗t )
wtNt (50)

to eliminate wt.
18 We then obtain the equation for the labor-market curve

N1+ν
t =

1− F (a∗t )
∫∞

a∗t

a
a∗t
f(a)da

(1− α)YtΛt
Θtψt

. (51)

In contrast to Figure 2, the labor-market curve is upward sloping in Figure 12 because Yt

and Λt/Θt can no longer cancel each other out.

Suppose that the initial equilibrium is Point A at the steady state for both panels of Fig-

ure 12. According to equations (17) and (47), a positive shock delivers immediate impetus to

the liquidity premium, shifting the asset-pricing curve upward and raising cutoff productiv-

ity. A rise in cutoff productivity increases aggregate output through endogenous TFP as the

transmission channel. An increase in aggregate output causes the liquidity-constraint curve

to shift upward [equation (24)]. The direct effect of the SDF shock on asset prices dominates

the indirect effect on aggregate output so that the net effect on cutoff productivity is positive

(Figure 11 vs. the bottom panel of Figure 12). The equilibrium moves from Point A to Point

B on impact, with an increase of both cutoff productivity and the liquidity premium.

18The preceding three equations are derived in Appendix B.



LIQUIDITY PREMIA, PRICE-RENT DYNAMICS, AND BUSINESS CYCLES 26

As an increase of cutoff productivity raises aggregate output and thus shifts the production

curve upward, it simultaneously shifts the labor-market curve upward so long as the term19

1

1− F (a∗t )

∫ ∞

a∗t

a

a∗t
f (a) da

increases with a∗t and the impact of Λt is relatively small. When the rise of the production

curve dominates the rise of the labor-market curve, both output and hours increase with

cutoff productivity a∗t and the equilibrium moves from Point A to Point B on impact (the

top panel).

In the simple model articulated in Section III, no matter how persistent the AR(1) process

of the SDF shock is, one cannot obtain a hump-shaped response of either house price or

aggregate output. With capital accumulation in our medium-scale model, it is optimal for

households to postpone consumption for investment. Thus the hump-shaped response of

consumption leads to a further upward shift of the asset-pricing curve in subsequent periods,

pushing cutoff productivity higher. A higher cutoff productivity level, in turn, leads to higher

endogenous TFP and higher aggregate output. As a result of higher aggregate output, the

liquidity-constraint curve shifts further up, generating an even higher liquidity premium. As

long as the SDF shock is very persistent as is seen in our estimation, the effect on the asset-

pricing curve is likely to continue to dominate the effect on the liquidity-constraint curve,

moving the equilibrium from Point B to Point C (the bottom panel of Figure 12) with an

increase in both liquidity premium and cutoff productivity.

At the same time, a higher cutoff productivity level shifts both the production curve and

the labor-market curve further upward to support higher aggregate output while hours begin

to decline, moving the equilibrium from Point B to Point C (the top panel of Figure 12). The

propagation mechanism described here generates the hump-shaped responses of aggregate

output and amplify small SDF shocks to large price-rent fluctuations . The financial sector

cannot be understood apart from the real sector: both panels of Figure 12 are necessary for

understanding the interaction between asset prices and the real economy.

VIII. Volatility and Predictability

One of our key findings is that the estimated standard deviation for the SDF shock process

is considerably smaller than the estimated standard deviations for all other shock processes.

A natural question is how much of the observed volatility is attributed to the volatility of

SDF shocks. Table 4 reports the observed and model-generated volatilities of output and

the price-rent ratio, along with the model-generated volatility of the SDF shock itself. Using

the posterior mode estimates of model parameters, we simulate a sample of 108 periods (the

19As shown in Section IV.2, if µη > (1 + µ), then this term increases with a∗
t
up to the first-order

approximation.
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same sample length as the data) with only SDF shocks. We repeat the simulation 10,000

times and compute the median volatility of output, the house price, and the house rent,

along with 90% probability bounds. According to the median value, the volatility of SDF

shocks is diminutive but these shocks are amplified and account for 58% of the observed

output volatility and most of the observed price-rent ratio volatility.

To ascertain whether the SDF volatility is not the main source of the price-rent ratio

volatility, we compute the SDF volatility by removing the liquidity premium from the model

(i.e., by setting b̂t = 0) and then decompose the price-rent ratio volatility into two com-

ponents. One component is the contribution from the SDF volatility and the remaining

contribution is due to the liquidity premium.20 The price-rent ratio volatility is 2.731%, of

which 0.883% comes from the SDF volatility and 1.848% is due to the liquidity premium.

Thus a majority of the price-rent ratio volatility does not rely on the SDF volatility but rather

stems from the volatility of liquidity premium magnified by the transmission mechanism as

detailed in Section VII.

Table 5 reports a similar structural decomposition of price-rent dynamics in response to

an SDF shock at different horizons. The SDF contribution is obtained by first computing

the impulse responses of the price-rent ratio with the liquidity premium channel removed

and then calculating the percentage contribution to the original price-rent responses. The

remaining percentage is due to the liquidity premium. As shown in the table, the percentage

of the SDF contribution steadily declines over time. Behind the driving force for price-rent

dynamics over the long horizon are the dynamic responses of liquidity premium generated by

the interaction between the real sector and the financial sector as discussed in Section VII.

In the data the rent-price ratio has a predictive power for future house returns, especially

over the long horizon. When we run the OLS predictive regression

rt→t+k = α0 + α1 log (rht/pt) + εt,k,

where the house return from t to t+k is defined as rt→t+k = log (pt+k/pt), the slope coefficient

α1 not only is positive but also becomes larger as k increases from one quarter to 20 quarters.

The regression fit, measured by R2, increases with k as well. In Section IV.3 we use the

closed-form solution to our simple model to illustrate that the slope coefficient at k = 1

should be positive, although the magnitude is small when ρθ is close to one. This result is

consistent with what is observed in the data.

Table 6 reports the results from predictive regressions based on both the actual data

and the simulated data at different horizons (k = 1, 4, 8, . . . , 20). Using the posterior mode

estimates of model parameters, we simulate a sample of 108 periods (the same sample length

20We ignore the correlation between these two components because it is negligible as discussed in Sec-

tion IV.3.
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as the actual data) with only SDF shocks. For each simulated sample, we run the OLS

predictive regression. We repeat the simulation 10,000 times and compute the median values

of α1 and R
2 as well as the corresponding 90% probability bounds. As one can see, the 90%

probability bounds contain the estimates based on the actual data. Conversely, the 90%

confidence interval for α1 based on the actual data contains the median value of α1 based on

the simulated samples at each horizon k. Overall, the model’s results match the data. More

important is the model’s ability to predict the long-horizon house return by the rent-price

ratio.

IX. Conclusion

The main contribution of this paper is the formulation of a dynamic general equilibrium

model capable of explaining the price-rent dynamics over the business cycle and their pre-

dictability on house returns in the long horizon. The model is tractable and fit remarkably

well to the U.S. time series of house price, house rent, and other key macroeconomic vari-

ables. The large volatility of the price-rent ratio relative to output enables us to quantify

the importance of the model’s mechanism that transforms a small and persistent SDF shock

into the large price-rent fluctuation. Our estimated model not only matches the key aspects

of the business cycle but also delivers a structural interpretation of how the rent-price ratio

can predict the house return over the long horizon.

To make the findings and the mechanism transparent, our model abstracts from many

other dimensions that merit further study in the future. One such dimension is to extend

the model to include mortgage markets for households and intertemporal loans. For instance,

De Fiore and Uhlig (2011) embed corporate bonds and bank loans in a tractable DSGE model

where financial contracts are optimal. Another dimension for expanding our model is the

introduction of monetary and regulatory policies. The recent financial crisis has generated

a heated debate on how monetary policy should respond to the boom and bust of housing

prices (Gaĺı, 2014, for example). We hope that the mechanism developed in our paper lays

the groundwork for extending the model along these and other important dimensions.
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Table 1. Posterior distributions of structural parameters

Posterior estimates

Parameter Representation Mode Low High

ν Inverse Frisch 1.0229 0.6145 2.1178

η Survival elasticity 9.3134 8.2581 12.899

δ′′/δ′ Capacity utilization 4.3031 1.6745 9.1139

γ Habit formation 0.1079 0.0332 0.2724

Ω Capital adjustment 0.0166 0.0040 0.0719

Note: “Low” and “High” denote the bounds of the 90% probability interval for each

parameter.

Table 2. Posterior distributions of shock parameters

Posterior estimates

Parameter Representation Mode Low High

ρz Permanent investment tech 0.1619 0.0880 0.2958

ρνz Stationary investment tech 0.0168 0.0154 0.6733

ρa Permanent neutral tech 0.9270 0.1803 0.9496

ρνa Stationary neutral tech 0.9273 0.8359 0.9401

ρθ SDF 0.9996 0.9973 0.9998

ρξ Housing demand 0.9380 0.8953 0.9730

ρψ Labor supply 0.9908 0.9758 0.9967

σz Permanent investment tech 0.0054 0.0046 0.0060

σνz Stationary investment tech 0.0001 0.0001 0.0018

σa Permanent neutral tech 0.0005 0.0004 0.0040

σνa Stationary neutral tech 0.0065 0.0058 0.0076

σθ SDF 0.0002 0.0001 0.0002

σξ Housing demand 0.0069 0.0063 0.0079

σψ Labor supply 0.0104 0.0083 0.0170

Note: “Low” and “High” denote the bounds of the 90% probability interval for each

parameter.
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Table 3. Variance decompositions (%) of key financial and real variables

Horizon Shock to

(quarter) Housing Labor Technology SDF

Price-rent ratio

1 5.89 0.00 0.00 94.11

4 4.97 0.00 0.00 95.03

8 4.02 0.00 0.00 95.98

16 2.78 0.00 0.00 97.22

24 2.05 0.00 0.00 97.95

Rent

1 59.52 10.69 16.56 3.68

4 53.20 12.08 17.89 5.21

8 43.71 14.00 20.35 8.23

16 29.07 16.20 20.58 13.99

24 19.85 16.62 17.51 18.09

Output

1 0.00 15.84 64.77 19.19

4 0.00 16.96 59.68 22.04

8 0.00 17.99 52.47 25.32

16 0.00 18.48 38.82 29.69

24 0.00 17.68 28.36 31.65

Cutoff productivity

1 0.00 0.12 2.52 96.19

4 0.00 0.14 2.18 96.67

8 0.00 0.11 1.53 97.64

16 0.00 0.08 0.86 98.66

24 0.00 0.06 0.57 99.09

Hours

1 0.00 80.50 11.82 2.52

4 0.00 82.19 10.40 2.75

8 0.00 85.85 7.96 2.61

16 0.00 90.20 5.13 2.27

24 0.00 92.24 3.84 1.99

Note: Variance decompositions attributed to shocks to housing demand, labor supply,

stationary aggregate technology, and SDF.
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Table 4. Key data volatilities explained by SDF shocks (%)

Description Volatility Data Model

Median Low High

Output std (∆ log Yt) 0.736 0.429 0.381 0.478

Price-rent std (∆ log(pt/rht)) 2.731 2.623 2.333 2.924

SDF shock std (∆ log θt) 0.016 0.014 0.018

Note: “SDF” stands for the stochastic discount factor and “Low” and “High” denote the

bounds of the 90% probability interval of the simulated data from the model.

Table 5. Contributions (%) to the price-rent dynamics in response to an SDF

shock at different horizons

Quarter Contributions from

SDF premium

1 33.48 66.52

4 32.46 67.54

8 31.09 68.91

16 28.34 71.66

24 25.56 74.44

40 19.97 80.03

Note: “SDF” represents the stochastic discount factor that contributes to the price-rent

dynamics in response to an SDF shock and “premium” represents the effect on the

liquidity premium of endogenous amplification mechanism.
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Table 6. Prediction of house returns by the ratio of rent to price at different horizons

Predictive regression: rt→t+k = α0 + α1 log (rht/pt) + εt,k

Horizon Data (α1) Model (α1) Data (R2) Model (R2)

k Median Low High Median Low High

1 0.016(-0.009, 0.042) 0.040 -0.002 0.130 0.011 0.019 0.000 0.069

4 0.120(0.045, 0.195) 0.159 -0.008 0.473 0.065 0.076 0.002 0.248

8 0.338(0.215, 0.461) 0.317 -0.012 0.815 0.176 0.153 0.003 0.431

20 1.031(0.850, 1.213) 0.779 -0.050 1.425 0.510 0.384 0.011 0.716

Note: We report the OLS estimates of α1 and R2. The numbers in parentheses in the

column headed by “Data (α1)” represent the 90% confidence interval of the estimated

coefficient. The house return from t to t+ k is defined as rt→t+k = log (pt+k/pt). “Low” and

“High” denote the bounds of the 90% probability interval of the simulated data from the

model.
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Figure 1. The time series of the log price-rent ratio in the U.S. housing sector

(the left scale) and the time series of log output in the U.S. economy (the right

scale).
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Figure 2. Impact of a positive SDF shock: An illustration of the key eco-

nomic mechanism. The production line represents equation (19) and the

labor-market line represents equation (23). The asset-pricing and liquidity-

constraint curves plot equations (17) and (24).
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Figure 3. Calibrated impulse responses to a positive SDF shock for the sim-

ple general equilibrium model without capital, where p is the house price, b is

the liquidity premium, rh is the house rent, a∗ is the cutoff productivity level,

Y is aggregate output, and N is labor hours.
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Figure 4. Log values of CoreLogic national house price index and flow-of-

funds data national commercial real-estate price index.
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Figure 5. Log values of house rent index, retail-property rent index, and

overall commercial-property rent price index.
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Figure 6. Impulse responses of key financial and real variables to a one-

standard-deviation housing demand shock. The asterisk lines represent the

estimated results and the dashed lines demarcate the 90% error bands.
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Figure 7. Impulse responses of key financial and real variables to a one-

standard-deviation labor supply shock. The asterisk lines represent the esti-

mated results and the dashed lines demarcate the 90% error bands.
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Figure 8. Impulse responses of key financial and real variables to a one-

standard-deviation stationary technology shock. The asterisk lines represent

the estimated results and the dashed lines demarcate the 90% error bands.
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Figure 9. Impulse responses of key financial and real variables to a one-

standard-deviation SDF shock. The asterisk lines represent the estimated

results and the dashed lines demarcate the 90% error bands.
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Figure 10. Impulse responses of output, house price, and house rent from an

estimated BVAR model with Sims and Zha (1998)’s prior and with four lags.

All the variables are expressed in log level. The shocks are orthogonalized with

output ordered first, the house price second, and the house rent third. The

solid lines represent the estimated results and the dashed lines demarcate the

90% error bands.
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Figure 11. An illustration of the propagation mechanism that transmits a

positive technology shock. The asset-pricing curve represents equation (17)

and the liquidity-constraint curve represents equation (24).
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Figure 12. An illustration of the propagation mechanism that transmits a

positive SDF shock. The production and labor-market curves represent equa-

tions (48) and (51). The asset-pricing and liquidity-constraint curves represent

equations (17) and (24).
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Appendix A. Proofs of Propositions 1-3

We conjecture that the value function takes the form Vt (h
i
t, a

i
t) = vt (a

i
t)h

i
t, where vt (a

i
t)

satisfies (13). Using the Bellman equation (12), we can rewrite the incentive constraint (9)

as follows

dit + βEt
Λt+1

Λt
Vt+1(h

i
t+1, a

i
t+1) ≥ aitAtn

i
t + (rht + pat )h

i
t.

Given the conjectured value function and equations (8), (10), and (13), we can rewrite this

constraint as

aitAtn
i
t − wtn

i
t + rhth

i
t + pth

i
t ≥ aitAtn

i
t + (rht + pat )h

i
t.

Simplifying the proceeding inequality yields the constraint (14).

Substituting the conjectured value function into the Bellman equation (12) yields

vt
(

ait
)

hit = max
ni
t,h

i
t+1

aitAtn
i
t − wtn

i
t + rhth

i
t − pt

(

hit+1 − hit
)

+ pth
i
t+1.

Simplifying yields

vt
(

ait
)

hit = max
ni
t

(

aitAt − wt
)

nit + rhth
i
t + pth

i
t.

When ait ≥ a∗t = wt/At, the credit constraint (14) binds. Thus the preceding equation implies

that

vt
(

ait
)

=

{

(aitAt − wt)
bt
wt

+ rht + pt if ait ≥ a∗t

rht + pt otherwise
. (A1)

We also obtain the optimal labor choice in (15). Finally, we substitute (A1) into (13) and

obtain (16). Using (11) and bt = pt − pat , we obtain (17).

By equations (5), (16), and (17), we can derive that

πt
Λt

= βEtbt+1
Λt+1

Λt

∫

a∗t+1

a− a∗t+1

a∗t+1

f(a)da.

If bt > 0 for all t, then πt > 0. It follows from the complementary slackness condition

πthot+1 = 0 that the household will not possess housing units, i.e., hot+1 = 0 whenever bt > 0

for all t.

Appendix B. Equilibrium System for the Medium-Scale Model

The representative household chooses consumption, labor supply, investment, capital, and

capacity utilization in order to maximize (38). The first-order conditions are given by

Λt =
Θt

Ct − γCt−1
− βγEt

Θt+1

Ct+1 − γCt
, (A2)

rht =
Θtξt
Λt

, (A3)

Λtwt = ΘtψtN
ν
t , (A4)
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1

Zt
= Qkt

[

1−
Ω

2

(

It
It−1

− ḡI

)2

− Ω

(

It
It−1

− ḡI

)

It
It−1

]

+βEt
Λt+1

Λt
Qkt+1Ω

(

It+1

It
− ḡI

)

I2t+1

I2t
, (A5)

Qkt = βEt
Λt+1

Λt
(ut+1rkt+1 + (1− δ)Qkt+1), (A6)

rkt = δ′(ut)Qkt, (A7)

1

Rft

= βEt
Λt+1

Λt
. (A8)

These equations admit the usual interpretations. Note that we have imposed the market

clearing condition Ht = 1 in (A3).

The first-order conditions for the intermediate goods producers are given by

αPXt(j)AtKt (j)
α−1Nt (j)

1−α = rkt, (A9)

and

(1− α)PXt(j)AtKt (j)
αNt (j)

−α = wt. (A10)

Now we compute that

Et
βΛt+1

Λt
V a
t+1

(

hit
)

= Et
βΛt+1

Λt
rht+1h

i
t + Et

βΛt+2

Λt
rht+2h

i
t + ...

= path
i
t,

where pat satisfies the recursive equation

pat = βEt
Λt+1

Λt

[

rht+1 + pat+1

]

. (A11)

We write firm i’s decision problem by dynamic programming

Vt(h
i
t, a

i
t) = max

xit(j),h
i
t+1

≥0
dit + βEt

Λt+1

Λt
Vt+1(h

i
t+1, a

i
t+1), (A12)

subject to (45) and (46).

To solve the firm’s decision problem, we first derive the unit cost of production. Define

the total cost of producing yit as

Φ(yit, a
i
t) ≡ min

xit(j)

∫

PXt(j)x
i
t(j)dj, (A13)

subject to ait exp
(∫

log xit(j)dj
)

≥ yit. Cost-minimization implies that

Φ(yit, a
i
t) = yit

a∗t
ait
, (A14)

where the term a∗t is given by

a∗t ≡ exp

[
∫

logPXt(j)dj

]

, (A15)
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and the demand for each xit(j) satisfies

PXt(j)x
i
t(j) = a∗t exp

(
∫

log xit(j)dj

)

. (A16)

Using the cost function in (A14), we can rewrite firm i’s budget constraint as

dit + pt(h
i
t+1 − hit) ≤ yit − yit

a∗t
ait

+ rhth
i
t. (A17)

Conjecture that

Vt
(

hit, a
i
t

)

= vt
(

ait
)

hit,

where vt (a
i
t) satisfies

βEt
Λt+1

Λt
vt+1(a

i
t+1) = pt. (A18)

We can also rewrite the credit constraint (46) as

yit
a∗t
ait

≤ bth
i
t, (A19)

where bt = pt − pat represents the liquidity premium.

Substituting the preceding conjecture and (A17) into the Bellman equation (A12), we

obtain

vt
(

ait
)

hit = max
yit

yit

(

1−
a∗t
ait

)

+ rhth
i
t − pt(h

i
t+1 − hit) + pth

i
t+1,

subject to (A19). We then obtain the optimal output choice

yit =

{

ait
a∗t
bth

i
t if ait ≥ a∗t

0 otherwise
. (A20)

Substituting this decision rule back into the Bellman equation and matching coefficients, we

obtain

vt
(

ait
)

=

{

(

ait
a∗t

− 1
)

bt + rht + pt if ait ≥ a∗t

rht + pt otherwise
.

Substituting this expression into (A18) we obtain

pt = βEt
Λt+1

Λt

[

rht+1 + pt+1 + bt+1

∫

a∗t+1

a− a∗t+1

a∗t+1

f(a)da

]

. (A21)

By (A11) and (A21),

bt = βEt
Λt+1

Λt
bt+1

[

1 +

∫

a∗
t+1

a− a∗t+1

a∗t+1

f(a)da

]

. (A22)

The usual transversality conditions hold.

Equation (A15) implies

a∗t = PXt. (A23)
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We hence have

αPXt
Xt

utKt
= rkt, (A24)

(1− α)PXt
Xt

Nt
= wt, (A25)

and the resource constraint:

Ct +
It
Zt

= Yt. (A26)

By the market-clearing conditions and (A20), aggregate output is given by

Yt =

∫

yitdi =

∫

ait≥a
∗

t

ait
a∗t
bth

i
tdi =

bt
a∗t

∫ ∞

a∗t

af(a)da. (A27)

By the market-clearing conditions, (44), (A16), and (46), the total production cost is given

by

PXtXt =

∫

PXtx
i
t(j)didj =

∫

ait≥a
∗

t

a∗t
ait
yitdi = bt [1− F (a∗t )] . (A28)

Using the fact that PXt = a∗t and Xt = At (utKt)
αN1−α

t , we can derive that

bt =
a∗tAt (utKt)

αN1−α
t

1− F (a∗t )
. (A29)

Using this equation, we can rewrite aggregate output in (A27) as

Yt = At (utKt)
αN1−α

t

∫∞

a∗t
af(a)da

1− F (a∗t )
, (A30)

where the last expectation is taken with respect to the density f and gives the endogenously

determined TFP.

By (A24) and (A25),

rktutKt = αAta
∗
t (utKt)

αN1−α
t =

αYt
1

1−F (a∗t )

∫∞

a∗t

a
a∗t
f(a)da

, (A31)

and

wtNt = (1− α)Ata
∗
t (utKt)

αN1−α
t =

(1− α)Yt
1

1−F (a∗t )

∫∞

a∗t

a
a∗t
f(a)da

. (A32)

Define

µt + 1 ≡
1

1− F (a∗t )

∫ ∞

a∗t

a

a∗t
f(a)da > 1.

A competitive equilibrium consists of 15 stochastic processes for {Kt} , {Λt} , {Nt} , {It} ,

{Qkt} , {ut} , {pt} , {bt} , {Ct} , {a
∗
t} , {Yt} , {rkt} , {rht} , {Rft} , and {wt} such that a system

of 15 equations hold: (42), (A2)-(A8), (A21), (A22), (A26), (A27), (A30), (A31), and (A32).

Note that equation (A15) is implied by equations (A30), (A31), and (A32). The usual

transversality conditions also hold.
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Appendix C. Stationary Equilibrium

We make the following transformations of the variables:

C̃t ≡
Ct
Γt
, Ĩt ≡

It
ZtΓt

, Ỹt ≡
Yt
Γt
, K̃t ≡

Kt

Γt−1Zt−1

,

w̃t ≡
wt
Γt
, r̃ht ≡

rht
Γt
, p̃t ≡

pt
Γt
, b̃t ≡

bt
Γt
,

r̃kt ≡ rktZt, Q̃kt ≡ QktZt, Λ̃t ≡
Λt
Θt

Γt,

where Γt = Z
α

1−α

t A
1

1−α

t . The other variables are stationary and there is no need to scale them.

Let Gzt =
Zt

Zt−1
and Gat =

At

At−1
. Then

logGzt = log gzt + log gνz,t,

logGat = log gat + log gνa,t,

where

log gνz,t = log νz,t − log νz,t−1,

log gνa,t = log νa,t − log νa,t−1.

Denoting the gross growth rate of Γt by gγt ≡ Γt/Γt−1, we have

log gγt =
α

1− α
logGzt +

1

1− α
logGat.

Denoting the non-stochastic steady-state of gγt by gγ , we have

log gγ ≡
α

1− α
log gz +

1

1− α
log ga. (A33)

On the nonstochastic balanced growth path, investment and capital grow at the rate of

gI ≡ gγgz; consumption, output, wages, and the liquidity premium grow at the rate of gγ;

and the house rent, the rental rate of capital, Tobin’s marginal Q, and the relative price of

investment goods decrease at the rate gz. We now display the equilibrium system for the

stationary variables.

(1) Marginal utility of consumption,

Λ̃t =
1

C̃t − γC̃t−1/gγt
− βγEtθt+1

1

C̃t+1gγt+1 − γC̃t
. (A34)

(2) Labor supply,

Λ̃tw̃t = ψtN
ν
t . (A35)

(3) Rent of house,

r̃ht =
ξt
Λ̃t
. (A36)
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(4) Investment,

1 = Q̃kt



1−
Ω

2

(

Ĩt

Ĩt−1

Gztgγt − gI

)2

− Ω

(

Ĩt

Ĩt−1

Gztgγt − gI

)

Ĩt

Ĩt−1

Gztgγt





+βEtθt+1
Λ̃t+1

Λ̃t
Q̃kt+1Ω

(

Ĩt+1

Ĩt
gγt+1Gzt+1 − gI

)

Ĩ2t+1

Ĩ2t
gγt+1Gzt+1. (A37)

(5) Marginal Tobin’s Qk,

Q̃kt = βEtθt+1
Λ̃t+1

Λ̃t

1

gγt+1Gzt+1
[ut+1r̃kt+1 + (1− δ(ut+1))Q̃kt+1]. (A38)

(6) Capital utilization,

r̃kt = δ′(ut)Q̃kt. (A39)

(7) Liquidity premium,

b̃t = βEt
Λ̃t+1

Λ̃t
θt+1b̃t+1

[

1 +

∫

a∗t+1

(
a

a∗t+1

− 1)f(a)da

]

. (A40)

(8) House price,

p̃t = βEt
Λ̃t+1

Λ̃t
θt+1

[

r̃ht+1 + p̃t+1 + b̃t+1

∫

a∗t+1

(
a

a∗t+1

− 1)f(a)da

]

. (A41)

(9) Rental rate of capital,

r̃ktutK̃t =
αGztgγtỸt

1
1−F (a∗t )

∫∞

a∗t

a
a∗t
f(a)da

. (A42)

(10) Labor demand,

w̃tNt =
(1− α)Ỹt

1
1−F (a∗t )

∫∞

a∗t

a
a∗t
f(a)da

. (A43)

(11) Aggregate output,

Ỹt =
1

(GztGat)
α

1−α

(

utK̃t

)α

N1−α
t

∫∞

a∗t
af(a)da

1− F (a∗t )
. (A44)

(12) Liquidity constraint,

b̃t
a∗t

∫ ∞

a∗t

af(a)da = Ỹt. (A45)

(13) Aggregate capital accumulation,

K̃t+1 = (1− δ(ut))
K̃t

gztgγt
+



1−
Ω

2

(

Ĩt

Ĩt−1

gztgγt − gI

)2


 Ĩt. (A46)

(14) Resource constraint,

C̃t + Ĩt = Ỹt. (A47)
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(15) Risk-free rate,

1 = βRftEt

[

Λ̃t+1θt+1

Λ̃t

1

gγ,t+1

]

. (A48)

Appendix D. Log-Linearized System

We log-linearize the stationary model given in the preceding appendix around the deter-

ministic steady state.

(1) Marginal utility of consumption,

Λ̂t (gγ − βγ) (gγ − γ) =
[

−g2γĈt + γgγ

(

Ĉt−1 − ĝγt

)]

− βγEt

[

−gγ

(

Ĉt+1 + ĝγt+1

)

+ γĈt + θ̂t+1(gγ − γ)
]

. (A49)

(2) Labor supply,

Λ̂t + ŵt = ψ̂t + νN̂t. (A50)

(3) House rent,

r̂ht = −Λ̂t + ξ̂t. (A51)

(4) Investment,

0 = Q̂kt − Ω (gzgγ)
2
[

Ît − Ît−1 + ĝzt + ĝvzt + ĝγt

]

+ βΩ (gzgγ)
2Et

(

Ît+1 − Ît + ĝzt+1 + ĝγt+1 + ĝvzt+1

)

. (A52)

(5) Marginal Tobin’s Qk,

Q̂kt + Λ̂t = Et

[

θ̂t+1 + Λ̂t+1 − ĝγt+1 − ĝzt+1 − ĝvzt+1

]

+(1− β(1− δ))Et (ût+1 + r̂kt+1)

+β(1− δ)Et

[

Q̂kt+1 −
δ′(1)

1− δ
ût+1

]

. (A53)

(6) Capital utilization,

r̂kt =
δ′′(1)

δ′(1)
ût + Q̂kt. (A54)

(7) Liquidity premium,

b̂t + Λ̂t = Et(θ̂t+1 + Λ̂t+1 + b̂t+1)− [1− β]
1 + µ

µ
Etâ

∗
t+1. (A55)
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(8) House price,

p̂t + Λ̂t = Et

(

θ̂t+1 + Λ̂t+1

)

+
β(r̃h/Ỹ )

p̃/Ỹ
Etr̂ht+1 + βEtp̂t+1+

(1− β)(b̃/Ỹ )

p̃/Ỹ
Et

[

b̂t+1 −
1 + µ

µ
â∗t+1

]

. (A56)

(9) Rental rate of capital,

r̂kt + ût + K̂t = Ŷt + ĝzt + ĝγt + ĝvzt +

[

1−
ηµ

1 + µ

]

â∗t . (A57)

(10) Labor demand,

ŵt + N̂t = Ŷt +

(

1−
ηµ

1 + µ

)

â∗t . (A58)

(11) Aggregate output,

Ŷt = α(ût + K̂t) + (1− α)N̂t +
ηµ

1 + µ
â∗t −

α

1− α
(ĝzt + ĝvzt + ĝat + ĝvat) . (A59)

(12) Liquidity constraint,

b̂t −
1 + η + µ

1 + µ
â∗t = Ŷt. (A60)

(13) Aggregate capital accumulation,

K̂t+1 =
(1− δ)

gzgγ
K̂t +

(

1−
1− δ

gzgγ

)

Ît −
δ′(1)

gzgγ
ût − (1− δ)

[

ĝzt + ĝvzt
gzgγ

+
ĝγt
gzgγ

]

. (A61)

(14) Resource constraint,

C̃

Ỹ
Ĉt +

Ĩ

Ỹ
Ît = Ŷt. (A62)

(15) Risk-free rate,

Λ̂t = R̂ft + Et(Λ̂t+1 + θ̂t+1 − ĝγt+1). (A63)

We have 7 shocks.

(1) Permanent IST shock,

ĝzt = ρz ĝzt−1 + σzεzt. (A64)

(2) Temporary IST shock,

ν̂z,t = ρvz ν̂z,t−1 + σvzεvz,t . (A65)

(3) Permanent technology shock,

ĝat = ρaĝat−1 + σaεat. (A66)

(4) Temporary technology shock,

ν̂a,t = ρva ν̂a,t−1 + σvaεva,t . (A67)
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(5) SDF shock,

θ̂t = ρθθ̂t−1 + σθεθt. (A68)

(6) Housing demand shock,

ξ̂t = ρξ ξ̂t−1 + σξεξt.

(7) Labor supply shock,

ψ̂t = ρψψ̂t−1 + σψεψt. (A69)

Appendix E. Data

All the data used in this paper was constructed by Patrick Higgins at the Federal Reserve

Bank of Atlanta, some of which are collected directly from the Haver Analytics Database

(Haver for short). In this section, we describe how the data was constructed in detail.

The model estimation is based on six U.S. aggregate time series: the real price of house

(pData
t ), the real rental price of house (rData

ht ), the quality-adjusted relative price of investment

((1/Zt)
Data), real per capita consumption (CData

t ), real per capita investment (IData
t ), and per

capita total hours (HData
t ). These series are constructed as follows:

• pData
t = LiqCoreLogic87

PriceNonDurPlusServExHous
.

• rData
ht = PCERentOERPriceIndex

PriceNonDurPlusServExHous
.

• (1/Zt)
Data = GordonPriceCDplusES

PriceNonDurPlusServExHous
.

• CData
t = (NomConsNHSplusND)/PriceNonDurPlusServExHous

POPSMOOTH@USECON
.

• IData
t = (CD@USECON + FNE@USECON)/PriceNonDurPlusServExHous

POPSMOOTH@USECON
.

• HData
t = TotalHours

POPSMOOTH@USECON
.

Sources for the constructed data, along with the Haver keys (all capitalized letters) to the

data, are described below.

LiqCoreLogic87: Seasonally adjusted and liquidity-adjusted price index for housing.

To construct this series, we first obtain Haver’s seasonally adjusted CoreLogic home

price index (USLPHPIS@USECON) from 1987Q1 to 2013Q4. We then adjust this

home price index using the method of Quart and Quigley (1989, 1991) to take into

account time-on-market uncertainty. The CoreLogic home price index series provided

by the Core Logic Databases is similar to the Case-Shiller home price index but covers

far more counties than the Case-Shiller series.

PCERentOERPriceIndex: Rental price index for housing. Constructed by using the

Fisher chain-weighted aggregate of PCE owner-occupied rent (OER) [JCSRD USNA]

and PCE tenant rent [JCSHT USNAqtr] price indices. Average of 2009 prices = 100

and seasonally adjusted. Haver Description for PCE OER [JCSRD USNA] is “PCE:

Imputed Rental of Owner-Occupied Nonfarm Housing Price Index (SA, 2009=100).”

The key JCSHT USNAqtr represents the PCE-based measure of home rental prices
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reported by Haver as JCSHT@USNA and described by Haver as “rental of tenant-

occupied non-farm housing.” This series is revised over time. Although it is less

subject to breaks due to improved methodology, it may continue to have a substan-

tial break in 1977 and a smaller break in 1985 due to “non-response bias” (Crone,

Nakamura, and Voith, 2010). Our sample starts in 1987Q1, so this potential problem

is avoided.

PriceNonDurPlusServExHous: Consumer price index. Price deflator of non-durable

consumption and non-housing services, constructed by Tornqvist aggregation of price

deflator of non-durable consumption and non-housing related services (2009=100).

GordonPriceCDplusES: Price of investment goods. Quality-adjusted price index for

consumer durable goods, equipment investment, and software investment. This is a

weighted index from a number of individual price series within this category. For each

individual price series from 1947 to 1983, we use Gordon (1990)’s quality-adjusted

price index. Following Cummins and Violante (2002), we estimate an econometric

model of Gordon’s price series as a function of time trend and several macroeconomic

indicators in the National Income and Product Account (NIPA), including the current

and lagged values of the corresponding NIPA price series; the estimated coefficients

are then used to extrapolate the quality-adjusted price index for each individual price

series for the sample from 1984 to 2008. These constructed price series are annual. We

use Denton (1971)’s method to interpolate these annual series at quarterly frequency.

We then use the Tornqvist procedure to construct the quality-adjusted price index

from the interpolated individual quarterly price series.

NomConsNHSplusND: Nominal personal consumption expenditures. Nominal non-

durable goods and non-housing services (SAAR, billion of dollars). It is computed

as

CN@USECON + CS@USECON - CSRU@USECON.

POPSMOOTH@USECON: Population. Smoothed civilian noninstitutional popu-

lation with ages 16 years and over (thousands). This series is smoothed by eliminating

breaks in population from 10-year censuses and post-2000 American Community Sur-

veys using the “error of closure” method. This fairly simple method is used by the

Census Bureau to get a smooth monthly population series and reduce the unusual

influence of drastic demographic changes.21

CD@USECON: Consumer durable goods expenditures. Nominal personal consump-

tion expenditures: durable goods (SAAR, billion of dollars).

21The detailed explanation can be found at http://www.census.gov/popest/archives/

methodology/intercensal\_nat\_meth.html.
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FNE@USECON: Equipment and software expenditures. Nominal private nonresi-

dential investment: equipment & software (SAAR, billion of dollars).

TotalHours: Total hours in the non-farm business sector.

Appendix F. Estimation Procedure

We apply the Bayesian methodology to the estimation of the log-linearized medium-scale

structural model, using our own C/C++ code. The advantage of using our own code instead

of using Dynare is the flexibility and accuracy we have for finding the posterior mode. We

generate over a half million draws from the prior as a starting point for our optimization

routine and select the estimated parameters that give the highest posterior density. The

optimization routine is a combination of NPSOL software package and the csminwel routine

provided by Christopher A. Sims.

In estimation, we use the log-linearized equilibrium conditions, reported in Appendix D, to

form the likelihood function fit to the six quarterly U.S. time series from 1987Q1 to 2013Q4:

the house price, the house rent, the quality-adjusted relative price of investment, real per

capita consumption, real per capita investment (in consumption units), and per capita hours

worked. The data for the estimated sample begins with 1987Q1 for two reasons. First, the

Case-Shiller house price time series begins in 1987. Second, the CoreLogic house price time

series is similar to the Case–Shiller house price series, but covers far more counties than the

Case-Shiller series. The CoreLogic house price series collected for the period before 1987

it does not have as much coverage as the series collected for the after-1986 period. The

Case-Shiller house price time series exists only for the period after 1986, which we use to

verify the quality of the CoreLogic house price series.

We fix the values of certain parameters as an effective way to sharpen the identification

of other key parameters in the model. The capital share α is set at 0.33, consistent with

the average capital income share. The growth rate of aggregate investment-specific technol-

ogy, gz = 1.013, is consistent with the average growth rate of the inverse relative price of

investment goods. The growth rate of aggregate output, gγ = 1.0035, is consistent with the

average common growth rate of consumption and investment. The interest rate Rf is set at

1.01. The steady state capacity utilization u is set at 1. The steady-state labor supply as

a fraction of the total time is normalized at N = 0.3. To solve the steady state, we impose

three additional restrictions to be consistent with the data: 1) the capital-output ratio is

1.15 at annual frequency; 2) the investment-capital ratio is 0.2 at annual frequency; and 3)

the rental-income-to-output ratio is 0.1.22

22Rental income of house is housing rental income of persons with capital consumption adjustment (SAAR,

million dollars) from Table 7.4.5 in the National Income and Product Accounts. The output data used for our

model is a sum of personal consumption expenditures and private domestic investment. Consumption is the
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We estimate five structural parameters as well as all the persistence and volatility pa-

rameters that govern exogenous shock processes. The five structural parameters are the

inverse Frisch elasticity of labor supply ν, the survival elasticity η, the elasticity of capac-

ity utilization δ′′(1)/δ′(1), the habit formation γ, and the investment-adjustment cost Ω.

The remaining parameters are then obtained from the steady state relationships that satisfy

the aforementioned data restrictions. These parameters are: the capital depreciation rate

(δ = 0.0404), the subjective discount factor (β = 0.9936), the parameter related to cutoff

productivity (µ = 0.1482), the capacity utilization rate (δ′(1) = 0.0635), the housing demand

(ξ̄ = 0.1348), and the labor disutility (ψ̄ = 8.9843).

For the estimated parameters, we specify a prior that is agnostic enough to cover a wide

range of values that are economically plausible (Table 7). The prior for ν, η, δ′′(1)/δ′(1),

and Ω has a gamma distribution with the shape hyperparameter a = 1 and the rate hyper-

parameter b = 0.5. These hyperparameters allow a positive probability density at the zero

value and the implied 90% prior probability bounds are from 0.1 to 6. The prior for γ has

a beta distribution with the hyperparameters taking the values of 1 and 2. This particular

specification allows a positive probability of no habit formation and at the same time permits

a wide range of values considered in the literature (Boldrin, Christiano, and Fisher, 2001).

The prior for the persistence parameters of exogenous shock processes follows the beta

distribution with the 90% probability interval between 0.026 and 0.776. The prior for the

standard deviations of shock processes follows the inverse gamma distribution with the 90%

probability interval between 0.0001 and 2. All these prior specifications are far more diffuse

than those used in the literature.

private expenditures on nondurable goods and nonhousing services. Investment is the private expenditures

on consumer durable goods and fixed investment in equipment and software. Accordingly, we measure capital

stock using the annual stocks of equipment, software, and consumer durable goods.
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Table 7. Prior distributions of structural and shock parameters

Parameter Distribution a b Low High

ν Gamma(a,b) 1.0 3.0 0.017 1.000

η Gamma(a,b) 1.0 0.5 0.100 6.000

δ′′/δ′ Gamma(a,b) 1.0 0.5 0.100 6.000

γ Beta(a,b) 1.0 2.0 0.026 0.776

Ω Gamma(a,b) 1.0 0.5 0.100 6.000

ρz Beta(a,b) 1.0 2.0 0.026 0.776

ρνz Beta(a,b) 1.0 2.0 0.026 0.776

ρa Beta(a,b) 1.0 2.0 0.026 0.776

ρνa Beta(a,b) 1.0 2.0 0.026 0.776

ρθ Beta(a,b) 1.0 2.0 0.026 0.776

ρξ Beta(a,b) 1.0 2.0 0.026 0.776

ρψ Beta(a,b) 1.0 2.0 0.026 0.776

σz Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σνz Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σa Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σνa Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σθ Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σξ Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

σψ Inv-Gam(a,b) 0.3261 1.45e04 0.0001 2.0000

Note: “Low” and “High” denote the bounds of the 90% probability interval for each

parameter.
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