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Abstract

This paper extends Woodford’s (2010) approach to the robustly optimal monetary policy to
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ear robustly optimal policy in a timeless perspective and for a time-invariant linear Markov

perfect equilibrium under discretion. We apply our methods to a New Keynesian model of

monetary policy with persistent cost-push shocks and inflation persistence. We find that

the robustly optimal commitment inflation is less responsive to a cost-push shock when

the shock is more persistent, and that the robustly optimal discretionary policy is more

responsive to lagged inflation when inflation is more persistent.
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1. Introduction

The traditional policy analysis has been typically conducted under the rational expectations

hypothesis. While we have learned many lessons from this hypothesis, there are several good

reasons for us to think about departures from it. First, the Ellsberg (1961) paradox and related

experimental evidence demonstrate that there is a distinction between risk and ambiguity.

Risk refers to the situation where there is a known probability distribution over the state of

the world, while ambiguity refers to the situation where the information is too vague to be

adequately summarized by a single probability distribution. As a result, a decision maker may

have multiple priors in mind (Gilboa and Schmeidler (1989)). Second, as Anderson, Hansen and

Sargent (2003) and Hansen and Sargent (2001, 2008) point out, economic agents view economic

models as an approximation to the true model. They believe that economic data come from an

unknown member of a set of unspecified models near the approximating model. Concern about

model misspecification induces a decision maker to want robust decision rules that work over

that set of nearby models.1

The above arguments are especially relevant for policy analysis in which uncertainty and

expectations play an important role. Either the policymaker or the private agents may not have

complete confidence in the likelihood of the state of the world and hence face model ambiguity.

Several possibilities may arise.2 First, the policymaker does not trust its approximating model,

but the private agents do. The policymaker forms expectations using a model in a set of nearby

models surrounding its approximating model. Hansen and Sargent (2003 and 2008, Chapter

16) study this case. Woodford (2010) studies a second case in which the policymaker trusts its

approximating model, but it has ambiguity about the private agents’ beliefs about the model.

The policymaker thinks that the private agents may form expectations using any model in a set

of nearby models surrounding the policymaker’s approximating model. The Hansen-Sargent

approach seems well understood and several computation algorithms in the linear-quadratic

framework have been proposed in the literature (e.g., Hansen and Sargent (2008), Giordani

and Soderlind (2008), Dennis (2008), Leitemo, and Soderstrom (2009)). However, little is

known about how to conduct robust policy analysis using the Woodford approach in a general

linear-quadratic framework.

This paper fills this gap by proposing algorithms for solving robustly optimal policy under

both timeless perspective commitment and discretion. Our algorithms borrow insights from

1There is a growing literature on the applications of robustness and ambiguity to finance and macroeconomics,
e.g., Epstein and Wang (1994); Hansen (2007); and Ju and Miao (2012); among others.

2See Hansen and Sargent (2012) for a discussion of different types of ambiguity.
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Woodford (2010), who derives analytical solutions for a basic New Keynesian model. We

focus on conditionally linear policy rules under timeless perspective commitment and linear

Markov perfect equilibria (MPE) under discretion. We show that robustly optimal conditionally

linear policy and a linear Markov perfect equilibrium can exist given certain conditions. Our

algorithms then reduce to solving for linear decision rules using tools from the literature on

solving linear rational expectations models and linear-quadratic control problems.

We apply our algorithms to a New Keynesian model with a persistent cost-push shock and

inflation persistence. The Woodford (2010) model is a special case of our model. We confirm

Woodford’s (2010) major findings for the case of purely temporary shocks that (i) the robustly

optimal inflation is less responsive to the current cost-push shock, and (ii) the robustly optimal

inflation is more history-dependent compared to the case of rational expectations. We also find

some new comparative statics results: (i) When the cost-push shock becomes more persistent,

robustly optimal inflation is less responsive to it, but the robustly optimal output gap is more

responsive. By contrast, optimal inflation under rational expectations is more responsive to

a cost-push shock when it is more persistent. (ii) In addition, the robust discretionary policy

becomes more costly and the range of parameters for the existence of a linear MPE shrinks.

(iii) When the steady state is more inefficient, the robustly optimal inflation is less responsive

to the cost-push shock.

As Woodford (2010) points out, the central bank is not willing to let inflation increase

in response to a positive cost-push shock when it is faced with a concern for robustness. The

central bank fears that a large shock in inflation might affect the inflation expectation of private

agents unfavorably to the central bank and thus the output-inflation trade-off might worsen if

it allows inflation to increase. Naturally, the central bank’s concern for the unfavorable change

in the private agents’ forecast becomes larger when the cost-push shock is more persistent. As

a result, the central bank is more conservative in setting the optimal inflation rate. If the shock

is as highly persistent as a unit root process, the central bank commits to an inflation rate

which does not depend on the current shock.

In our model, the New Keynesian Phillips curve contains lagged inflation. The lagged

inflation rate is an endogenous state variable and hence the method in Woodford (2010) cannot

be applied. Using our algorithms, we find the following new results: (i) When the degree

of inflation inertia is larger, the sensitivities to the contemporaneous cost-push shock of both

the robustly optimal commitment and discretionary policies are closer to those under rational

expectations. In this case, the impact of the belief distortion from the private sector is smaller

as a smaller weight is attached to the expected inflation. (ii) The robustly optimal discretionary
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policy is more sensitive to lagged inflation than the optimal discretionary policy under rational

expectations. This sensitivity increases as the volatility of the cost-push shock increases. This is

in contrast to the case of rational expectations under which the optimal discretionary inflation

responds to lagged inflation by the same degree regardless of the size of the shock volatility. The

intuition is that, without commitment, the inflation bias is larger with concerns for robustness

than in the case of rational expectations. Under the worst-case beliefs, inflation expectations

are biased upward, and hence a discretionary central bank has a greater incentive to respond

to both the current shock and lagged inflation.

The remainder of the paper proceeds as follows. Section 2 presents the general framework.

Section 3 presents an algorithm for solving robustly optimal policy in a timeless perspective.

Section 4 provides an algorithm for solving robustly optimal discretionary policy. Section 5

analyzes a monetary policy example. Section 6 concludes. Technical details are relegated to

appendices.

2. A Linear-Quadratic Framework

2.1. Uncertainty and Beliefs

Uncertainty is generated by a stochastic process of shocks {εt}∞t=0 where εt is an nε × 1

vector of independently and identically distributed standard normal random variable. Let

εt = {ε0, ε1, ..., εt} . At date t, both the policymaker and the private sector have common infor-

mation generated by εt and some initial state x0. They may not have rational expectations in

that their subjective beliefs may not coincide with the objective probability distribution gov-

erning exogenous shocks {εt}∞t=0. One reason is that economic agents view their model as an

approximation and thus may be concerned about model misspecification.

Model misspecification is described by a perturbation to the distribution of shocks. Let

p (ε) denote the standard normal density of εt. Let P and Pt denote the induced distribution

over the full state space and the induced joint distribution of εt, respectively. Assume that a

distorted distribution is absolutely continuous with respect to the reference distribution P. We

can then represent belief distortions by Radon-Nikodym derivatives.

Let p̂
(
ε|εt, x0

)
denote an alternative one-step-ahead density for εt+1 conditioned on date

t information. Form the likelihood ratio or the Radon-Nikodym derivative for one-step-ahead

distributions:

mt+1 =
p̂
(
ε|εt, x0

)
p (ε)

.
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It satisfies the property

Et [mt+1] = 1, (1)

where Et denotes the conditional expectation operator for the reference distribution P given

date t information. Inspired by Hansen and Sargent (2001, 2008), Woodford (2010) uses con-

ditional relative entropy to measure the discrepancy between the distorted distribution and

the reference distribution. He first constructs the conditional relative entropy of a one-step-

ahead distribution given date t information as Et [mt+1 lnmt+1]. He then defines the expected

discounted entropy conditioned on date zero information as

E0

∞∑
t=0

βt [Et (mt+1 lnmt+1)] = E0

∞∑
j=0

βtmt+1 lnmt+1. (2)

Model ambiguity is described by a set of one-step-ahead densities {mt}∞t=1 satisfying the con-

straint:

E0

∞∑
t=0

βtmt+1 lnmt+1 ≤ η0 (3)

for some η0 > 0.

2.2. Robustly Optimal Policy Problem

Suppose that the equilibrium system from the private sector can be summarized by the following

form: [
I 0

D21 D22

][
xt+1

Êtyt+1

]
= Â

[
xt

yt

]
+ B̂ut +

[
Ĉx

0

]
εt+1, (4)

where x0 is exogenously given and Êt denotes the conditional expectation operator given date t

information based on the common beliefs of the private sector. The private sector’s beliefs may

not coincide with the “objective” probability distribution for {εt} , the reference distribution

P. Here xt is an nx × 1 vector of predetermined variables in the sense defined in Klein (2000),

yt is an ny × 1 vector of non-predetermined or forward-looking variables, and ut is an nu × 1

vector of instrument or control variables chosen by the policymaker. We typically use xt to

represent the state of the economy, which may include productivity shocks, preference shocks,

or capital stock. Note that xt may include a component of unity in order to handle constants.

The vector yt represents endogenous variables such as consumption, inflation rate, and output.
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Examples of instruments ut include interest rates and money growth rates. The equation

for xt is backward-looking and represents the law of motion of state variables. The equation

for yt is forward-looking and typically represents the first-order conditions from intertemporal

optimization, such as Euler equations.

All matrices in (4) are conformable. For simplicity, we suppose that the matrix on the left

side of equation (4) is invertible so that we can multiply both sides of this equation by its

inverse to obtain the system:3[
xt+1

Êtyt+1

]
= A

[
xt

yt

]
+But + Cεt+1, (5)

where we have used the shorthand notation,

A ≡

[
Axx Axy

Ayx Ayy

]
, B ≡

[
Bx

By

]
, C ≡

[
Cx

0

]
,

and where we have partitioned matrices conformably.

The policymaker has the period loss function,

L (xt, yt, ut) =
1

2

[
x′t, y

′
t

] [ Qxx, Qxy

Q′
xy Qyy

][
xt

yt

]
+

1

2
u′tRut +

[
x′t, y

′
t

] [ Sx

Sy

]
ut,

where we assume the matrix Qxx Qxy Sx

Q′
xy Qyy Sy

S′
x S′

y R

 ,

is symmetric and positive semidefinite.

If both the private sector and the policymaker have rational expectations, then they have

common beliefs which coincide with P, the probability distribution governing exogenous shocks

{εt} . In this case, the optimal policy problem with commitment is given by

max
{xt,yt,ut}

−E0

∞∑
t=0

βtL (xt, yt, ut) , (6)

subject to (5) in which the conditional expectation operator Êt is equal to Et, the conditional

expectation operator with respect to P.

3The singular case can be handled by the QZ decomposition method, e.g., Klein (2000) and Sims (2002).
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Following Woodford (2010), we suppose that the policymaker has a single model of the

exogenous processes {εt} and thus no ambiguity along this dimension. Nevertheless, the poli-

cymaker faces ambiguity because it knows only that the private sector’s model is within a set of

probability models surrounding its own model. The policymaker evaluates the private sector’s

forward-looking equation using a worst-case model and solves the following problem:

max
{xt,yt,ut}

min
{mt+1}

− E0

∞∑
t=0

βtL (xt, yt, ut) + θE0

∞∑
t=0

βtmt+1 lnmt+1, (7)

subject to (1) and[
xt+1

Et [mt+1yt+1]

]
= A

[
xt

yt

]
+But + Cεt+1. (8)

Here the parameter θ > 0 penalizes one-step-ahead densities {mt} with large relative entropies

defined in (2). It may be regarded as the Lagrange multiplier for the constraint (3). Following

Hansen and Sargent (2001, 2008), instead of solving for the constraint problem subject to

(3), we treat θ as a parameter, which measures the policymaker’s degree of concern for possible

departures from rational expectations, with a small value of θ implying a great degree of concern

for robustness, while a large value of θ implies that only modest departures from rational

expectations are considered plausible. When θ → ∞, the rational expectations analysis is

obtained as a limiting case.

3. Commitment in a Timeless Perspective

Instead of solving for an optimal commitment policy,4 Woodford (2010) uses a timeless perspec-

tive to derive a closed-form solution to a robustly optimal monetary policy problem in a simple

New Keynesian model. We now extend his idea to our general formulation. We replace E0 in

(7) with E−1, the conditional expectation operator given the economy’s state at date −1, i.e.,

before the realization of the period zero state x0 or implied ε0. Instead of supposing that the

policymaker chooses a sequence of (possibly time-varying) {yt} for all t ≥ 0, we consider only

the problem of choosing an optimal sequence of commitments {yt} for periods t ≥ 1, taking as

given a commitment y0 that the policymaker must fulfill.

Suppose that the initial commitment takes a linear form:

y0 = Φ−1 + Γ−1ε0,

4Kwon and Miao (2012) study this type of policy in models with three types of ambiguity.
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for some coefficients (Φ−1,Γ−1) . Suppose that {yt} chosen for periods t ≥ 1 may depend on

(Φ−1,Γ−1) and shocks from periods zero through t. We focus on conditionally linear rules of

the following form:

yt+1 = Φt + Γtεt+1, t ≥ 0, (9)

where Φt is stochastic and measurable with respect to date t information and Γt is deterministic.

For any initial commitment (Φ−1,Γ−1) , the policymaker chooses (Φt,Γt)t≥0 , {xt,mt}t≥1 , and

{ut}t≥0 to solve problem (7).

To define optimal policy from a timeless perspective, suppose that Φ−1 is drawn from some

distribution ρ. The initial commitment (Φ−1,Γ−1) is self-consistent if the solution to the robust

Ramsey policy is such that (i) Γt = Γ−1 and (ii) the unconditional distribution of ρt for Φt is

equal to ρ, for each t ≥ 0. Our goal is to solve for a conditionally linear robustly optimal policy

with a self-consistent initial commitment.5

Form the Lagrangian expression:

E−1

∞∑
t=0

βt

{
− L (xt, yt, ut) + θmt+1 lnmt+1 − ϕt (Etmt+1 − 1)

−
[
µ′
xt+1, µ

′
yt

]([ xt+1

Etmt+1yt+1

]
−A

[
xt

yt

]
−But − Cεt+1

)}
,

where βtϕt and βt
[
µ′
xt+1, µ

′
yt

]
are vectors of Lagrange multipliers associated with the con-

straints (1) and (8), respectively. Note that µxt+1 is measurable with respect to date t + 1

information and corresponds to xt+1, but µyt is measurable with respect to date t information

and corresponds to yt.

The first-order conditions with respect to mt+1 are given by

θ(1 + lnmt+1)− ϕt − µ′
ytyt+1 = 0. (10)

Substituting the linear form in (9) into the above equation yields:

lnmt+1 = −1 + θ−1ϕt + θ−1µ′
yt(Φt + Γtϵt+1). (11)

Since Γt, Φt, µyt, ϕt are measurable with respect to the date t information, mt+1 follows a

log-normal distribution conditioned on date t information. Using equation (1), we can show

5See Woodford (2003, Chapter 7) for the concept of self-consistency under rational expectations.
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that the worst-case density is given by

mt+1 = exp

(
−1

2
θ−2µ′

ytΓtΓ
′
tµyt + θ−1µ′

ytΓt
ϵt+1

)
. (12)

This implies that under the worst-case belief, the shock εt follows a normal distribution with

mean θ−1Γ
′
tµyt and covariance matrix I.

Under the worst-case belief, the conditional expectation of yt+1 is given by

Etmt+1yt+1 = Φt + θ−1ΓtΓ
′
tµyt, (13)

and the conditional relative entropy is given by

Etmt+1 lnmt+1 =
1

2
θ−2µ′

ytΓtΓ
′
tµyt. (14)

Since Etyt+1 = Φt, it follows that, relative to the policymaker’s expectations, the worst-case

beliefs distort the private agents’ expectations by θ−1ΓtΓ
′
tµyt.

Now substitute equations (13) and (14) into the Lagrangian to obtain

E−1

∞∑
t=0

βt

{
−L(xt,Φt−1 + Γt−1ϵt, ut) +

1

2
θ−1µ′

ytΓtΓ
′
tµyt

−
[
µ′
xt+1, µ

′
yt

]([ xt+1

Φt + θ−1ΓtΓ
′
tµyt

]
−A

[
xt

Φt−1 + Γt−1ϵt

]
−But − Cεt+1

)}

The first-order conditions with respect to xt, ut, Φt, and Γt are given by6

xt : 0 = −Qxxxt −Qxy (Φt−1 + Γt−1ϵt)− Sxut − β−1µxt +A′
xxEtµxt+1 +A′

yxµyt, (15)

ut : 0 = −Rut − S′
xxt − S′

y (Φt−1 + Γt−1ϵt) +B′
xEtµxt+1 +B′

yµyt, (16)

Φt : 0 = −
(
Q′

xyEtxt+1 +QyyΦt

)
− SyEtut+1 − β−1µyt +Et

[
A′

xyµxt+2 +A′
yyµyt+1

]
, (17)

6For any scalar function f (X) of a n× k matrix X = (xij), we define the derivative

∂f (X)

∂X
=


∂f(X)
∂x11

... ∂f(X)
∂x1k

...
∂f(X)
∂xn1

... ∂f(X)
∂xnk


n×k

.
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Γt : 0 =− βQ′
xyEtxt+1ϵ

′
t+1 − βQyyEt (Φt + Γtϵt+1) ϵ

′
t+1 − βSyEtut+1ϵ

′
t+1

− θ−1µytµ
′
ytΓt + βEt

[(
A′

xyµxt+2 +A′
yyµyt+1

)
ϵ′t+1

]
. (18)

Plugging (9), (13) and (14) into (8) yields:

0 = xt+1 −Axxxt −Axy (Φt−1 + Γt−1ϵt)−Bxut − Cxϵt+1, (19)

θ−1ΓtΓ
′
tµyt +Φt −Ayxxt −Ayy (Φt−1 + Γt−1ϵt)−Byut = 0. (20)

Since we focus on self-consistent optimal policy, we assume that Γt = Γ for all t. We start

with an initial guess of Γ and then solve for
{
xt, ut,Φt, µxt, µyt

}
given this guess. Equations

(15), (16), (17), (19), and (20), together with two identity equations, Etεt+1 = 0 and Etµxt+1 =

Etµxt+1, form a linear system of the following form:

J



Etεt+1

Etxt+1

Φt

Etut+1

Etµyt+1

Etµxt+1

Etµxt+2


= F



εt

xt

Φt−1

ut

µyt

µxt

Etµxt+1


, (21)

where

J =



I 0 0 0 0 0 0

0 0 0 0 0 I 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 A′
xx 0

0 0 0 0 0 B′
x 0

0 Q′
xy Qyy Sy −A′

yy 0 −A′
xy


,
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and

F =



0 0 0 0 0 0 0

0 0 0 0 0 0 I

AxyΓ Axx Axy Bx 0 0 0

AyyΓ Ayx Ayy By −θ−1ΓΓ′ 0 0

QxyΓ Qxx Qxy Sx −A′
yx β−1I 0

S′
yΓ S′

x S′
y R −B′

y 0 0

0 0 0 0 −β−1I 0 0


.

Here εt, xt and Φt−1 are predetermined variables, and ut, µyt, µxt and Etµxt+1 are non-

predetermined variables.7 Adapting a standard method for solving linear rational expectations

models (e.g., Klein (2000)), we can show in Appendix A that the solution takes the following

state space representation:8 εt+1

xt+1

Φt

 = M

 εt

xt

Φt−1

+

 I

Cx

0

 εt+1. (22)

and 
ut

µyt

µxt

Etµxt+1

 = N

 εt

xt

Φt−1

 , (23)

where the first row of M contains zero elements.

For Φt to have an invariant distribution, (22) should be a stationary process, which can be

satisfied if M has all eigenvalues inside the unit circle. We assume this condition is satisfied.

After deriving the state space representation, we can derive an updated value for Γ using

(18). When θ is finite, the presence of the term β−1θ−1µytµ
′
ytΓt in (18) implies that the

solution for Γ may be time varying. The timeless perspective discussed in Woodford (2010)

solves this issue. Since the optimal policy in the timeless perspective should satisfy (18) for

every realization of the initial commitment, Φ−1, we can take unconditional expectations on

7In our solution, the non-predetermined variable yt in the equilibrium system from the private sector is
rewritten using predetermined variables (Φt−1, εt). Thus, the Lagrange multiplier µyt associated with yt becomes
a non-predetermined variable.

8Note that the system in (21) does not fit exactly in Klein’s (2000) general form.
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both sides of (18) to derive 9

Γ = β
(
θ−1E

[
µytµ

′
yt

]
+ βQyy

)−1

×
{
E
[(
A′

xyµxt+2 +A′
yyµyt+1

)
ϵ′t+1

]
−Q′

xyCx − SyE
[
utϵ

′
t

]}
, (24)

where we have assumed that the inverse exists. In Appendix B, we derive formulas for comput-

ing unconditional moments E
[
µytµ

′
yt

]
, E

[
µxt+2ϵ

′
t+1

]
, E

[
µyt+1ϵ

′
t+1

]
, and E [utϵ

′
t]. The above

equation gives an updated solution for Γ denoted by Γ̂. If Γ̂ is sufficiently close to Γ, stop. Oth-

erwise, use Γ̂ to replace Γ and repeat the above procedure until convergence. We are unable

to give a condition to guarantee convergence. But this algorithm works well for all examples

studied in this paper.

From the above analysis, we find that the robustness parameter θ appears explicitly in two

terms only: one is −θ−1ΓΓ′ in the matrix F and the other is θ−1E
[
µytµ

′
yt

]
in equation (24). In

the limit as θ → ∞, both terms vanish and the solution converges to the rational expectations

case. When θ is smaller, the impact of robustness is larger. In addition, the impact of robustness

on Γ depends on the moment E
[
µytµ

′
yt

]
for any fixed finite value of θ. These observations are

important for understanding the intuition behind the examples analyzed later.

4. Robust Discretionary Policy

To understand the value and importance of policy commitment, we now study robust discre-

tionary policy. In this case, the policymaker reoptimizes every period by taking the private

agents’ expectations about future policy as given. We shall focus on Markov perfect equilib-

rium (MPE). A robust MPE consists of time-invariant functions f (xt) and V (xt) such that

given yt+1 = f (xt+1) , V (xt) and yt = f (xt) solve the following Bellman equation:

V (xt) = max
yt,ut

min
mt+1

− L (xt, yt, ut) + βEtV (xt+1) + θEtmt+1 lnmt+1, (25)

subject to (1) and (8).

We focus on linear solutions for f in that

yt = Gxt, for all t, (26)

for some matrix G to be determined. Adapting the method from the rational expectations

9Note that taking unconditional expectations on other first-order conditions, i.e. (15)∼(17), does not add
additional information to the solution.
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analysis (e.g., Backus and Driffil (1986) and Soderlind (1999)), we use an iterative procedure

to find G by backward induction. Specifically, let

yt+1 = Gt+1xt+1, (27)

where Gt+1 is a deterministic matrix. Substituting this expression into the forward-looking

equation in (8) and rewrite the Bellman equation (25) as

Vt (xt) = max
yt,ut

min
mt+1

− L (xt, yt, ut) + βEtVt+1 (xt+1) + θEtmt+1 lnmt+1. (28)

We can show that the first-order condition with respect to mt+1 is given by (10), where ϕt

and µyt are the Lagrange multipliers associated with (1) and the forward-looking equation in

(8), respectively. Using equations (1), (8), (10), (26) we can show that

mt+1 = exp

(
−1

2
θ−2µ′

ytGt+1CxC
′
xG

′
t+1µyt + θ−1µ′

ytGt+1
Cxϵt+1

)
.

It follows that mt+1 follows a log-normal distribution conditioned on date t information. We

can then compute

Etmt+1 lnmt+1 =
1

2
θ−1µ′

ytΛt+1µyt, (29)

Etmt+1yt+1 = Gt+1 (Axxxt +Axyyt +Bxut) + Λt+1µyt, (30)

where we define Λt+1 ≡ θ−1Gt+1CxC
′
xG

′
t+1. Since Etyt+1 = Gt+1 (Axxxt +Axyyt +Bxut) , the

worst-case beliefs distort the private agents’ expectations by Λt+1µyt, relative to the policy-

maker’s expectations.

Substituting (30) into (8) yields:

Gt+1 (Axxxt +Axyyt +Bxut) + Λt+1µyt = Ayxxt +Ayyyt +Byut. (31)

Conjecture that

Vt (xt) = −1

2
x′tJtxt −

1

2
vt,

where Jt is a deterministic matrix and vt is a deterministic constant. Substituting the conjecture
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and (29) into the Bellman equation (28) yields:

−1

2
x′tJtxt −

1

2
vt = max

yt,ut

− 1

2
x′tQxxxt −

1

2
y′tQyyyt − x′tQxyyt (32)

−1

2
u′tRut − x′tSxut − y′tSyut

+
1

2
µ′
ytΛt+1µyt + βEt

(
−1

2
x′t+1Jt+1xt+1 −

1

2
vt+1

)
,

subject to (31) and

xt+1 = Axxxt +Axyyt +Bxut + Cxεt+1,

where the Lagrange multiplier µyt is associated with (31). The above problem is a standard

linear quadratic control problem with state variable xt and control variables ut and yt. In

Appendix C, we solve for Jt, vt and linear decision rules of the following form:

ut = −Ftxt, yt = Gtxt.

To find the time-invariant functions, we start with an initial guess of a positive semi-definite

matrix Jt+1, a constant vt+1, and any matrix Gt+1. We then obtain the updated constant vt

and matrices Jt and Gt. Iterating this process until convergence gives J and G in a Markov

perfect equilibrium. In addition, vt converges to v in the value function and Ft converges to F ,

which gives the stationary policy rule. Note that since a MPE is a fixed point, there may be

multiple equilibria or no equilibrium. For the simple New Keynesian model, Woodford (2010)

provides explicit characterizations. But a similar characterization for our general model is not

available.

5. Applications to Monetary Policy

In this section, we apply our general theory to the study of robustly optimal monetary policy

in a New Keynesian model. The central bank’s loss function is given by

E−1

∞∑
t=0

βt 1

2

[
π2
t + λ(xt − x∗)2

]
, (33)

where πt denotes the inflation rate, xt denotes the output gap, and x∗ ≥ 0 denotes the target

output gap. The value of x∗ measures the degree of inefficiency of the steady state. If x∗ = 0,

the steady state is efficient. The parameter λ measures the weight to the output gap.

13



Empirical studies find evidence that inflation is persistent (e.g., Fuhrer (1996)). Thus,

suppose that the New Keynesian Phillips curve (NKPC) is given by

πt = κxt + ηπt−1 + β(1− η)Etmt+1πt+1 + zt, (34)

where η ∈ (0, 1) measures the degree of backward-looking behavior exhibited by inflation.10

Assume that κ > 0 and {zt} follows an AR(1) process:

zt = ρzzt−1 + σzεt, εt ∼ N (0, 1), (35)

where ρz ∈ (0, 1) and σz > 0. When η = 0, the model reduces to the basic New Keynesian

model studied by Woodford (2010). When η ∈ (0, 1), Woodford’s (2010) analytical method

does not apply because the lagged inflation rate provides another state variable.

5.1. Timeless Perspective Commitment

The robustly optimal policy problem with commitment is given by

max
{xt,πt}

min
{mt+1}

−E−1

∞∑
t=0

βt 1

2

[
π2
t + λ(xt − x∗)2

]
+ θE−1

∞∑
t=0

βtmt+1 lnmt+1 (36)

subject to (34). To solve this problem using our general framework, we define a new predeter-

mined state variable as kt+1 ≡ πt and rewrite (34) as

kt+1 = πt, (37)

Etmt+1πt+1 = β−1(1− η)−1 (−ηkt + πt − κxt − zt) . (38)

To map this problem into our general framework, we note that kt and zt constitute the pre-

determined vector xt, πt is the forward-looking variable yt, and xt is the control variable ut.

Assume that the central bank commits to a policy in the form

πt+1 = Φt + Γεt+1. (39)

Let µπt denote the Lagrange multiplier associated with (38). As in Section 3, we can show that

the worst-case belief satisfies

Etmt+1πt+1 = Φt + θ−1Γ2µπt. (40)

10See, e.g, Gali and Gertler (1999) for a microfounded model with this feature.
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Since Etπt+1 = Φt, θ
−1Γ2µπt represents the distortion of the private agents’ expectations rela-

tive to the central bank’s. We can then use our algorithm developed in Section 3 to solve for a

robustly optimal policy with timeless perspective commitment.

We set baseline parameter values for β, κ, λ, and x∗ as in Woodford (2010): β = 0.99,

κ = 0.2, λ = 0.08, x∗ = 0.05.11 We first set η = 0 in the top four panels of Figure 1. In

particular, the first panel replicates the result in Woodford (2010) when ρz = 0. We confirm

his result that when the central bank is more concerned for robustness, it is more conservative

and inflation responds less to the cost-push shock in the sense that Γ decreases with 1/θ. In

addition, Γ decreases more than proportionally with σz. This implies that certainty-equivalence

does not apply to the robustly optimal case. Notably, Γ decreases with σz for large values of

σz when ρz is sufficiently large. When the cost-push shock is sufficiently persistent as much as

ρz = 0.95, robustly optimal Γ is almost independent of σz, as illustrated in the second panel

of Figure 1. The middle two panels of this figure shows the impact of ρz for σz = 0.02 and

0.04. Under rational expectations, Γ is an increasing function of ρz, which can be easily verified

analytically. When robustness matters, however, this relation does not apply. For low values

of σz, e.g., σz = 0.02, Γ first increases with ρz and then decreases to zero. If the concern for

robustness is very high, e.g., θ = 0.001, Γ decreases with ρz for high σz, e.g., σz = 0.04. In the

limiting case, Γ = 0 if the cost-push shock process is a unit root process (i.e., ρz = 1) for all

θ < ∞.

As Woodford (2010) points out, the central bank is not willing to let inflation increase in

response to a positive cost-push shock when it is faced with a concern for robustness. The central

bank fears that a large shock in inflation might affect the private agents’ inflation expectations

unfavorably to the central bank and thus the output-inflation trade-off might worsen if it allows

inflation to increase. Naturally, the central bank’s concern for the unfavorable change in the

agent’s forecast becomes larger when the cost-push shock is more persistent. As a result, the

central bank is more conservative in setting the optimal inflation rate. If the shock is as highly

persistent as a unit root process, the central bank commits to an inflation rate which does not

depend on the current shock.

The bottom two panels of Figure 1 show the impact of inflation persistence η. For simplicity,

we assume that the cost-push shock does not exhibit persistence, i.e., ρz = 0. In the rational

expectations case (i.e., θ = ∞), Γ increases with η until η = 0.5, then decreases. The shape

of Γ shows a symmetry around η = 0.5. As the degree of concern for robustness increases,

11There is a typo in Woodford (2010). Parameter values of κ and x∗ in his paper should be interchanged to
replicate the figures in his paper.
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Figure 1: Variation of Γ with σz, ρz, and η for alternative values of θ. For the top four panels,
we set η = 0. For the bottom two panels, we set ρz = 0.
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i.e., θ decreases, Γ also decreases for a fixed η. The degree of decrease in Γ is larger when η

is smaller. This is because the impact of the concern for robustness increases when the weight

on the inflation expectation is larger (i.e., η is smaller) in the New Keynesian Phillips curve.

In the limiting case when η = 1, inflation is completely determined one period ahead so that

the central bank’s doubt about the private sector’s expectations does not change the optimal

policy for inflation. Accordingly, the shape of Γ is no longer symmetric. Also note that for a

given value of η the optimal value of Γ decreases more as σz increases.
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Figure 2: Impulse responses to a purely temporary positive cost-push shock with η = 0.3 and
σz = 0.02. The inflation expectation is with respect to the worst-case beliefs of the private
agents.

Figure 2 presents the dynamics of inflation, the worst-case inflation expectation, output

gap, and prices in response to a purely temporary one-standard-deviation cost-push shock. For

a moderate degree of inflation inertia (η = 0.3), the impulse responses exhibit very similar

dynamics for both the rational expectations equilibrium and the robustly optimal equilibrium.

The intuition is that the impact of the belief distortion from the private sector is small since a
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weight of 0.7 is attached to the expected inflation. We also find that the long-run inflation rate

is small but positive for both the rational expectations and robustness cases. The intuition is

that in the presence of inflation inertia, the change in current inflation does not move future

expected inflation one for one as it is attached a weight less than one. The central bank has an

incentive to increase inflation to raise the output gap given x∗ > 0. The robustly optimal long-

run output gap is still negative, which follows from the fact the long-run worst-case inflation

expectations of the private agents are positive, worsening the inflation-output tradeoff.

We emphasize that the impact of robustness also depends on the efficiency of the steady

state, as reflected by the value of x∗. This is because the Lagrange multiplier µπt associated

with NKPC (34) increases with x∗ by the following first-order condition with respect to xt,

β−1(1− η)−1κµπt = −λ(xt − x∗).

As revealed by Figure 2, this result has two consequences. First, x∗ biases the inflation expecta-

tion upward by (40). Thus, the steady-state output gap is negative even though the steady-state

inflation rate is zero. Second, E
[
µ2
πt

]
also increases with x∗. As we have discussed in the end

of Section 3, this implies that Γ decreases with x∗ for a finite θ (see (24)). Thus, under ro-

bustly optimal monetary policy the central bank will be more conservative in raising inflation

in response to a positive cost-push shock when the economy is more inefficient. This result is

in sharp contrast to that in the rational expectations case. Under rational expectations, the

level of x∗ does not affect Γ. It only affects the steady-state inflation.

5.2. Discretion

We define zt and kt = πt−1 as the state variables and use the algorithm described in Section 4

to solve for a linear MPE of the form:

πt = G0 +Gππt−1 +Gzzt, (41)

where G0, Gπ, and Gz are constants to be determined. The coefficients Gπ and Gz measure

the sensitivities of inflation to πt−1 and zt , respectively. We can rewrite (41) as

πt = G0 +Gππt−1 + ρzGzzt−1 + Ḡεt,

where Ḡ ≡ σzGz, which is the sensitivity of inflation to a shock εt and corresponds to Γ under

commitment.
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Ḡ

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04
ρ z=0.5, η=0.5

σ z

Γ ,

Ḡ

Figure 3: Variation of Ḡ and Γ with σz for different values of ρz and η, under discretionary
policy and under an optimal commitment, with and without a concern for robustness (θ = ∞
and θ = 0.001).

As we showed earlier, the inflation inertia in the New Keynesian Phillips curve reduces the

effect of inflation expectations and hence the effect of a concern for robustness on the optimal

policy under commitment. This fact also applies to the discretionary policy with a concern for

robustness. Figure 3 shows the optimal responses of inflation (i.e., Γ and Ḡ) to a cost-push shock

under commitment and under discretion for different values of σz, respectively, and the effects

of η and ρz. For a purely temporary shock without inflation persistence (i.e., ρz = 0 and η = 0),

we confirm Woodford’s (2010) result that robustly optimal inflation under discretion is more

responsive to the cost-push shock than in the rational expectations case. When the cost-push

shock becomes more persistent, e.g., ρz is increased to 0.5, the robustly optimal inflation under

discretion is more responsive to the cost-push shock for a given value of σz. But the range of

σz for the existence of a robust MPE shrinks.
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Figure 4: Variation of senstitvity of inflation to lagged inflation (Gπ) with σz

Turn to the impact of inflation persistence. For ρz = 0, when the degree of inflation inertia

is increased from η = 0 to η = 0.5, the robustly optimal inflation under discretion is less

responsive to the cost-push shock for a given value of σz. In addition, the range of σz for the

existence of a robust MPE expands. Thus, the net effects of the shock persistence and inflation

persistence are ambiguous. Comparing the bottom two panels of Figure 3, we find that given

η = 0.5, when ρz is increased from 0 to 0.5, the robustly optimal inflation under discretion

becomes more responsive to the cost-push shock for small values of σz, but it is less responsive

for high values of σz.

Figure 4 exhibits how a discretionary policy responds to lagged inflation for different values

of σz. When the central bank has a doubt about its knowledge of the inflation expectations

of the private sector, the optimal discretionary policy is more sensitive to lagged inflation than

under rational expectations. The sensitivity increases as the volatility σz of the cost-push shock
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increases. This is in contrast to the case of rational expectations under which optimal inflation

responds to lagged inflation by the same degree regardless of the size of σz. Furthermore, as

the central bank is more concerned about robustness (i.e., θ is smaller), the sensitivity to the

lagged inflation of a discretionary policy becomes larger. But the range of σz for the existence

of a robust MPE is smaller.

Figure 4 also reveals that for fixed ρz, when inflation peristence is larger (e.g., η is increased

from 0.3 to 0.5), the robustly optimal inflation under discretion is more responsive to lagged

inflation. For fixed η, when the cost-push shock is more persistent (e.g., ρz is increased from 0 to

0.5), the robustly optimal inflation under discretion is also more responsive to lagged inflation.

The intuition behind the above results is that, without commitment, the inflation bias is

larger in the case of concerns for robustness than in the case of rational expectations. Under the

worst-case beliefs, inflation expectations are biased upward, and hence a discretionary central

bank has a greater incentive to respond to both the current shock and lagged inflation than

under rational expectations. This effect is stronger if the cost-push shock is more persistent.

However, this effect is weaker if a smaller weight is put on the inflation expectations.

Figure 5 shows the impulse responses of inflation, the worst-case inflation expectation,

output gap, and prices to a positive cost-push shock under discretion. To compare with the

commitment solution, we also plot impulse responses under commitment. When the central

bank has a concern for robustness, the steady-state level of inflation under discretion is higher

than that under rational expectations. But the steady-state level of the output gap under

discretion is still below the one with commitment. With commitment, however, the steady-

state level of inflation is not affected by a concern for robustness. This is because under robust

MPE, the central bank needs to keep inflation rate higher since otherwise output would be

lowered even further due to the distorted belief of private agents. But the central bank cannot

allow too much inflation to increase output for fear of the possibility that inflation expectation

would become so high that the output gap might actually decline further.

We emphasize that with discretionary monetary policy under robustness, the inflation expec-

tation is distorted more than with commitment. With commitment, the central bank actively

manages the beliefs of private agents and reduces the distortion in private beliefs; hence the

output gap. By contrast, the central bank with discretionary monetary policy cannot manage

expectations of the private sector effectively, and thus both the inflation expectation and the

output gap worsen.
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Figure 5: Impulse responses to a purely temporary positive cost-push shock with η = 0.3 and
σz = 0.02 under commitment and discretion. With concern for robustness, θ = 0.001.

6. Conclusion

In this paper, we have presented algorithms for solving robust policy problems in a general

linear-quadratic framework by extending the Woodford (2010) approach. We have applied

our algorithms to a New Keynesian model. Our algorithms are based on a linear-quadratic

framework, which has been applied widely for policy analysis. One may wonder whether this

framework can be justified by a microfounded model. This question does not seem obvious with

concerns for robustness, though this issue is well understood under rational expectations (e.g.,

Woodford (2003)). Adam and Woodford (2012) present a fully microfounded model and show

that the linear-quadratic model of Woodford (2010) can be microfounded.

This paper only focuses on the Woodford approach to robust policy. As Hansen and Sargent

(2012) point out, there are other types of ambiguity for policy analysis. It would be interesting
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to study these types of ambiguity in the general linear-quadratic framework. We leave this

study to Kwon and Miao (2012).
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Appendix

A State Space Representation of the Solution

We adapt Klein’s (2000) method to derive the solution in (22) and (23). His method cannot

be directly applied since the system in (21) does not fit in his general form. Apply a QZ

decomposition to matrices J and F. There exist square complex matrices Q, S, T and Z such

that

J = QSZH , F = QTZH ,

where ZH denotes the transpose of the complex conjugate of Z. Q and Z are unitary (i.e.,

QHQ = ZHZ = I), and S and T are upper triangular (see Golub and van Loan (1996)).

The decomposition can be reordered so that the block corresponding to the stable generalized

eigenvalues (the ith diagonal element of T divided by the corresponding element in S) comes

first. Define auxiliary variables

[
kt

λt

]
= ZH



εt

xt

Φt−1

ut

µyt

µxt

Etµxt+1


, (A.1)

where kt corresponds to the predetermined variables εt, xt and Φt−1, and λt corresponds to the

non-predetermined variables ut, µyt, µxt, and Etµxt+1. Premultiplying (21) by QH , using (A.1),

and partitioning S and T conformably, we can derive[
Skk Skλ

0 Sλλ

]
Et

[
kt+1

λt+1

]
=

[
Tkk Tkλ

0 Tλλ

][
kt

λt

]
. (A.2)

We solve for a stable solution to the above system, which requires that the number of stable

generalized eigenvalues be equal to the number of predetermined variables. We rule out the

case of generalized eigenvalues with unitary modulus. Thus, the lower right block contains the

unstable generalized eigenvalues. It follows that λt = 0 for all t. We can then write remaining
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equations in the above system as

Etkt+1 = S−1
kk Tkkkt, (A.3)

where Skk is invertible by our ordering of the matrix S.

Premultiplying both sides of (A.1) by Z yields:

εt

xt

Φt−1

ut

µyt

µxt

Etµxt+1


= Z

[
kt

λt

]
=

[
Zkk Zkλ

Zλk Zλλ

][
kt

λt

]
=

[
Zkk

Zλk

]
kt, (A.4)

where we have used the fact that λt = 0. Suppose that Zkk is invertible. It follows that

kt = Z−1
kk

 εt

xt

Φt−1

 . (A.5)

Substituting the above equation into (A.3) yields:

Z−1
kk Et

 εt+1

xt+1

Φt

 = S−1
kk TkkZ

−1
kk

 εt

xt

Φt−1

 .

Premultiplying by Zkk and using the law of iterated expectations, we obtain Etεt+1

Etxt+1

Φt

 = ZkkS
−1
kk TkkZ

−1
kk

 εt

xt

Φt−1

 .

Using equations (A.4) and (A.5) yields:
ut

µyt

µxt

Etµxt+1

 = Zλkkt = ZλkZ
−1
kk

 εt

xt

Φt−1

 .
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Using (5), we then obtain the solution in the form of (22) and (23).

B Computing Unconditional Moments

After we derive the state space representation of the solution, we can compute unconditional

moments of interest. First, define an auxiliary variable Xt ≡
[
ε′t x′t Φ′

t−1

]′
. Then it follows

from (22) that

E
[
Xt+1X

′
t+1

]
= ME

[
XtX

′
t

]
M ′ +

 I C ′
x 0

Cx CxC
′
x 0

0 0 0


This is a Lyapunov equation which determines the unconditional second moments of predeter-

mined variables. This equation can be solved if predetermined variables are stationary processes,

i.e. all the eigenvalues of M are inside the unit circle, which is assumed to be true under a

timeless perspective.

Next, we use (23) to derive that

µyt = N21εt +N22xt +N23Φt−1 = N2Xt,

where N2 ≡
[
N21 N22 N23

]
is the second row of N. We can compute that

E
[
µytµ

′
yt

]
= N2E

[
XtX

′
t

]
N ′

2.

Finally, we use (23) to compute the unconditional moments:

E


ut+1ε

′
t+1

µyt+1ε
′
t+1

µxt+1ε
′
t+1

Et+1µxt+2ε
′
t+1

 = NE

εt+1ε
′
t+1

xt+1ε
′
t+1

Φtε
′
t+1

 = N

 I

Cx

0

 .

We then obtain the moments E
[
µytµ

′
yt

]
, E
[
µxt+2ε

′
t+1

]
, E
[
µyt+1ε

′
t+1

]
, and E [utε

′
t] .
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C Computing Discretionary Policy

Substituting xt+1 = Axxxt+Axyyt+Bxut+Cxεt+1 into the value function for xt+1 in (32) and

deriving first-order conditions, we obtain

yt : 0 =−Qyyyt −Q′
xyxt − Syut + (Ayy −Gt+1Axy)

′ µyt

− βA′
xyJt+1 (Axxxt +Axyyt +Bxut) , (C.1)

ut : 0 =−Rut − S′
xxt − S′

yyt + (By −Gt+1Bx)
′ µyt

− βB′
xJt+1 (Axxxt +Axyyt +Bxut) . (C.2)

Define the matrix B̂t+1 ≡ (Ayy −Gt+1Axy)
′ and assume that it is invertible. Solving (C.1)

for µyt, we can obtain

µyt = At+1xt +Bt+1yt +Ct+1ut, (C.3)

where

At+1 ≡ B̂−1
t+1

(
Q′

xy + βA′
xyJt+1Axx

)
,

Bt+1 ≡ B̂−1
t+1

(
Qyy + βA′

xyJt+1Axy

)
,

Ct+1 ≡ B̂−1
t+1

(
Sy + βA′

xyJt+1Bx

)
.

Substituting (C.3) into (C.2) and solving for ut will yield

ut = A∗
t+1xt +B∗

t+1yt, (C.4)

where

A∗
t+1 ≡ −D−1

t+1

[
S′
x − (By −Gt+1Bx)

′At+1 + βB′
xJt+1Axx

]
,

B∗
t+1 ≡ −D−1

t+1

[
S′
y − (By −Gt+1Bx)

′Bt+1 + βB′
xJt+1Axy

]
.

Note that we have defined

Dt+1 ≡ R− (By −Gt+1Bx)
′Ct+1 + βB′

xJt+1Bx,

and assumed that it is invertible.
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Substituting (C.4) into (C.3), we obtain

µyt = At+1xt + Bt+1yt, (C.5)

where

At+1 ≡ At+1 +Ct+1A
∗
t+1,

Bt+1 ≡ Bt+1 +Ct+1B
∗
t+1

After plugging (C.4) and (C.5) into (31) and solving for yt, we can derive the policy rule

for period t as yt = Gtxt, where

Gt ≡ −∆−1
t+1

[
Gt+1

(
Axx +BxA

∗
t+1

)
+ Λt+1At+1 −Ayx −ByA

∗
t+1

]
,

∆t+1 ≡ Gt+1

(
Axy +BxB

∗
t+1

)
+ Λt+1Bt+1 −Ayy −ByB

∗
t+1.

We also have to assume that ∆t+1 is invertible. Substituting yt = Gtxt into (C.4) yields:

ut = −Ftxt, (C.6)

where

Ft ≡ −A∗
t+1 −B∗

t+1Gt.

Applying the envelop theorem to (32) yields:

−Jtxt = −Qxxxt −Qxyyt − Sxut + Ât+1µt − βA′
xxJt+1 (Axxxt +Axyyt +Bxut) .

Substituting yt = Gtxt, (C.5), and (C.6) for yt, µyt and ut into the above equation, we can

show that

Jt = Qxx +QxyGt − SxFt − Ât+1 (At+1 + Bt+1Gt)

+βA′
xxJt+1 (Axx +AxyGt −BxFt) .

Matching constant terms in (32) yields:

vt = β
(
tr
(
C ′
xJt+1Cx

)
+ vt+1

)
.
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