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This appendix consist of two sections. In Section A we adopt the Chen-Epstein (2002)

recursive multiple-priors utility model to study the robust contracting problem. We compare

this case with the robust contracting problem studied in the paper. In Section B we study a

model with risk aversion only and compare the solution with our robust contracting solution.

We also establish some observational equivalence results.

A Contract with Chen-Epstein Utility

Suppose that the principal’s preferences are represented by recursive multiple-priors utility

proposed by Chen and Epstein (2002). The contracting problem is given by

max
(C,τ,a)

min
{h:|ht|≤κ}

EQh

[∫ τ

0
e−rt(dXt − dCt) + e−rτL

]

, (A.1)

subject to the incentive constraint and the participation constraint described in the paper.

By the Girsanov theorem, we write the dynamics of W under Qh as

dWt = γWtdt− dCt − λµ(1− at)dt+ htφtdt+ φtdB
h
t . (A.2)

We then obtain the HJB equation:

rF (W ) = max
dC≥0,φ≥σλ

min
|h|≤κ

µ+ σh− dC + F ′(W )(γW − dC + hφ) +
F ′′(W )

2
φ2. (A.3)

For optimization over φ to be well defined, it must be the case that F ′′(W ) < 0. Otherwise,

F would approach infinity when φ approaches infinity.

By an argument similar to that in the paper, we must have F ′ (W ) ≥ −1. Define W̄ as

the smallest value such that F ′ (W ) = −1. Then the principal pays the agent whenever Wt
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hits the boundary W̄ and reflects at this point.

Solving for h yields the solution

h(F ′(W );φ) =







−κ if φF ′(W ) + σ > 0

κ if φF ′(W ) + σ < 0

any in [−κ, κ] if φF ′(W ) + σ = 0

. (A.4)

Substituting this solution into (A.3), we obtain

rF (W ) = max
φ≥σλ

µ+ F ′(W )γW +
(
F ′ (W )φ+ σ

)
h(F ′(W );φ) +

1

2
F ′′(W )φ2. (A.5)

We consider two cases.

Case 1 F ′(W ) ≥ 0

By the incentive constraint 0 < σλ ≤ φ, we can see from (A.4) that h(F ′(W );φ) = −κ.

In this case the HJB equation becomes

rF (W ) = max
σλ≤φ

µ+ F ′(W )γW −
(
F ′ (W )φ+ σ

)
κ+

1

2
F ′′(W )φ2.

Since F is concave, the first-order condition gives the unconstrained maximizer

φ (W ) =
F ′(W )κ

F ′′(W )
≤ 0,

which violates the incentive constraint. Thus the optimal sensitivity is given by φ∗(W ) = σλ.

That is, the incentive constraint binds. This case happens on the left increasing branch of F

for low values ofW since F is concave. Intuitively, for low values ofW there is a strong concern

for liquidation. The optimal contract should expose the agent to minimum uncertainty and

hence the optimal sensitivity is such that the incentive constraint just binds. This feature is

similar to that in our model with the multiplier preferences.

Case 2 −1 ≤ F ′(W ) < 0

Define

φ̃(W ) ≡ −σ/F ′(W ).

Since F ′(W ) ∈ [−1, 0), we have φ̃(W ) ∈ [σ,∞). It follows from λ ∈ (0, 1) that σλ < φ̃(W ).
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Figure 1: Functions G1 and G2 for the case where σλ ≤ F ′(W )κ
F ′′(W ) ≤ φ̃(W ).

We can then rewrite the HJB equation (A.5) as

rF (W ) = max







max
σλ≤φ≤φ̃(W )

µ+ F ′(W )γW −
(
F ′ (W )φ+ σ

)
κ+

1

2
F ′′(W )φ2

︸ ︷︷ ︸

G1(φ;W )

, (A.6)

max
φ̃(W )≤φ

µ+ F ′(W )γW +
(
F ′ (W )φ+ σ

)
κ+

1

2
F ′′(W )φ2

︸ ︷︷ ︸

G2(φ;W )







.

When φ = φ̃(W ), G1 and G2 are equal. Since F is concave, F ′(W )κ/F ′′(W ) > 0 achieves the

unconstrained maximum for G1 (φ;W ) and −F ′(W )κ/F ′′(W ) < 0 achieves the unconstrained

maximum for G2 (φ;W ). Incorporating constraints, we consider three cases.

First, when

σλ ≤
F ′(W )κ

F ′′(W )
≤ φ̃(W ),

G1 (φ
∗ (W ) ;W ) is the maximum on the right-hand side of equation (A.6), where the optimal

sensitivity is

φ∗ (W ) =
F ′(W )κ

F ′′(W )
,

and the worst-case density generator is h∗ (W ) = −κ. Figure 1 illustrates the solution.
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Figure 2: Functions G1 and G2 for the case where F ′(W )κ
F ′′(W ) ≤ σλ ≤ φ̃(W ).

Second, when
F ′(W )κ

F ′′(W )
≤ σλ ≤ φ̃(W ),

G1 (φ
∗ (W ) ;W ) is the maximum on the right-hand side of equation (A.6), where the optimal

sensitivity is φ∗ (W ) = σλ and the worst-case density generator is h∗ (W ) = −κ. Figure 2

illustrates the solution.

Third, when

σλ ≤ φ̃(W ) ≤
F ′(W )κ

F ′′(W )
,

the optimal sensitivity is φ∗ (W ) = φ̃(W ) and G1 (φ
∗ (W ) ;W ) = G2 (φ

∗ (W ) ;W ) . In this

case the worst-case density generator takes any value in [−κ, κ] by (A.4). Figure 3 illustrates

the solution.

Combining the three cases above, the optimal sensitivity is given by

φ∗ (W ) = max

{

σλ,min

{
F ′(W )κ

F ′′(W )
, φ̃(W )

}}

.

It is possible that

min

{
F ′(W )κ

F ′′(W )
, φ̃(W )

}

> σλ
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Figure 3: Functions G1 and G2 for the case where σλ ≤ φ̃(W ) ≤ F ′(W )κ
F ′′(W ) .

so that the incentive constraint does not bind. We expect that this case happens when W

is sufficiently large. For example, when W reaches the payout boundary W = W̄ , the HJB

equation becomes

rF (W̄ ) = max{ max
σλ≤φ≤σ

{µ− γW̄ − (−φ+ σ) κ},max
σ≤φ

{µ − γW̄ + (−φ+ σ)κ}}.

It follows that the optimal sensitivity is given by φ = σ > σλ. Thus at the payout boundary

the agent bears all the uncertainty. This feature is the same as in our model with the multiplier

preferences. Intuitively, when W is sufficiently large, the concern for ambiguity is large and

hence the principal wants the agent to share more ambiguity.

In summary, the Chen-Epstein model and the multiplier utility model in continuous time

deliver some similar properties of the optimal contract. In particular, the incentive constraint

binds when the agent’s continuation value is low and does not bind when the agent’s con-

tinuation value is sufficiently high. The key difference is that the corner solution gives the

worst-case belief in the Chen-Epstein model, while the worst-case belief in the multiplier util-

ity model is time varying and state dependent. The time-varying worst-case belief in the

multiplier utility model has much more transparent asset pricing implications. Another dif-

ference is that the principal’s value function is globally concave in the Chen-Epstein model,

but this may not be the case in the multiplier utility model. Finally, the multiplier utility

model is analytically much more tractable and is numerically much easier to solve.
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B Comparison with Risk Aversion

Does risk aversion have the same implications as ambiguity aversion? To address this question,

we study a contracting problem with a risk averse principal who has no concern for robustness.

Suppose that the principal derives utility from a consumption process (Cp
t ) according to time-

additive expected utility

EP a

[∫ ∞

0
e−rtu(Cp

t )dt

]

,

where we take u(cp) = − exp (−αcp) /α for tractability. Here α > 0 represents the CARA

parameter. Risk neutrality corresponds to α = 0. Since it is generally impossible to have

Cp
t dt + dCt = dYt = µatdt + σdBa

t , we suppose that the principal can borrow and save at

the interest rate r. Suppose that the agent cannot borrow or save. We use Xt to denote the

principal’s wealth level and write his budget constraint before liquidation as

dXt = rXtdt− Cp
t dt− dCt + µatdt+ σdBa

t , X0 given, (B.1)

for 0 ≤ t < τ . At the liquidation time τ , the principal obtains liquidation value L and starts

with wealth Xτ− + L. The budget constraint after liquidation is given by

dXt = rXtdt− Cp
t dt, Xτ = Xτ− + L, (B.2)

for t ≥ τ . The principal selects a contract (Cp, C, τ , a) to solve the following problem:

Problem B.1 (contract with risk aversion)

max
(Cp,C,τ ,a)

EP a

[∫ ∞

0
e−rtu(Cp

t )dt

]

,

subject to (B.1), and (B.2), and

EP a

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]

≥ EP â

[∫ τ

0
e−γs(dCs + λµ(1− âs)ds)

]

, (B.3)

EP a

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]

= W0, (B.4)

where âs ∈ {0, 1} and W0 ≥ 0 is given.
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This particular problem has not been studied in the literature and is of independent

interest.1 In the benchmark model and the model in Section 2, the principal is not allowed to

save and consumes the residual profits dYt − dCt each time. Since the interest rate and the

principal’s discount rate are identical, the risk neutral principal is indifferent between spending

one dollar now and saving this dollar for consumption tomorrow. Thus allowing saving does

not affect the optimal contract except that wealth must be added to the principal’s value

function without saving to obtain the value function with saving. When the principal is risk

averse, the wealth level is a new state variable in addition to the agent’s continuation value,

making our analysis more complicated. We will show below that due to the lack of wealth

effect of the CARA utility, we can simplify our problem to a one-dimensional one.

B. 1 Optimal contract with Agency

Let V (W0,X0) denote the principal’s value function for Problem B.1 when we vary W0 and

X0. Suppose that implementing high effort at = 1 is optimal. Then V (W,X) satisfies the

heuristic HJB equation

rV (W,X) = max
Cp, c≥0, φ≥σλ

−
1

α
exp (−αCp) + VW (W,X)(γW − c)

+VX(W,X)(rX − Cp − c+ µ)

+VWW (W,X)
φ2

2
+ VXX(W,X)

σ2

2
+ VXW (W,X)σφ. (B.5)

The first-order conditions imply that

exp (−αCp) = VX(W,X),

VX(W,X) ≥ −VW (W,X) with equality when c > 0,

φ = max

{

−
VXW (W,X)σ

VWW (W,X)
, σλ

}

.

The second-order condition for φ is VWW (W,X) < 0, i.e., V is concave in W.

Conjecture that the value function takes the form

V (W,X) = −
1

αr
exp (−αr [X +H (W )]) , (B.6)

where the function H can be interpreted as the certainty equivalent value to the principal.

Substituting this guess into the preceding first-order conditions yields the principal’s con-

1Biais et al (2007, p. 371) point out that an important future research topic is to introduce a risk averse
principal and study the relation between expected stock returns and incentive problems.
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sumption policy

Cp (W,X) = r (X +H (W )) , (B.7)

the optimal sensitivity

φ (W ) = max

{
αrσH ′(W )

H ′′(W )− αrH ′ (W )2
, σλ

}

, (B.8)

and the payout policy

H ′(W ) ≥ −1 with equality when c > 0. (B.9)

The second-order condition for φ becomes

H ′′ (W )− αrH ′ (W )2 < 0. (B.10)

Substituting (B.6), (B.7), (B.8), and (B.9) into (B.5) yields an ODE for H (W ) ,

rH(W ) = µ+H ′(W )γW +H ′′(W )
φ(W )2

2
− αr

[φ(W )H ′ (W ) + σ]2

2
. (B.11)

We now find boundary conditions for this ODE. First, define a cutoff W̄ as the lowest

value such that

H ′
(
W̄
)
= −1. (B.12)

For W ∈ [0, W̄ ), H ′(W ) > −1. Then it is optimal to pay the agent according to dC =

max
{
W − W̄ , 0

}
. By the super-contact condition,

H ′′(W̄ ) = 0. (B.13)

Then equation (B.8) implies that φ(W̄ ) = σ > σλ.

When W = 0, the project is liquidated and the principal obtains the liquidation value L.

Since both the discount rate of the principal and the interest rate equal r, we can show that

Cp(0,X) = r(X + L) and V (0,X) = − exp (−αr(X + L)) / (αr) so that

H (0) = L. (B.14)

Proposition 1 Consider the contracting problem B.1 with risk aversion. Suppose that im-
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plementing high effort at = 1 is optimal and

L <
µ

r
−

ασ2

2
. (B.15)

Suppose that there exists a twice continuously differentiable function H (W ) satisfying (B.11)

with the boundary conditions (B.12), (B.13), and (B.14) such that condition (B.10) holds and

H ′ (W ) > −1 on [0, W̄ ). Then the principal’s value function is given by (B.6) for W ∈
[
0, W̄

]
,

the principal’s optimal consumption policy is given by (B.7). The contract delivers the initial

value W ∈
[
0, W̄

]
and the optimal payment C∗ given in

C∗
t =

∫ t

0
1{Ws=W̄}dC

∗
s (B.16)

to the agent whose continuation value (Wt) follows the dynamics

dWt = γWtdt− dC∗
t + φ (Wt) dB

1
t , W0 = W, (B.17)

for t ∈ [0, τ ] , where the optimal sensitivity φ (W ) is given in (B.8). When W > W̄ , the

principal’s value function is given by V (W,X) = − 1
αr

exp
(
−αr

[
X +H

(
W̄
)
−
(
W − W̄

)])
.

The principal pays W−W̄ immediately to the agent and the contract continues with the agent’s

new initial value W̄ .

Proof. Given the conjecture in (B.6), we can derive

VX(W,X) = e−αr(X+H(W )), VXX(W,X) = −αre−αr(X+H(W )),

VW (W,X) = H ′ (W ) e−αr(X+H(W )), VXW (W,X) = −αrH ′ (W ) e−αr(X+H(W )),

VWW (W,X) =
[

H ′′ (W )− αrH ′ (W )2
]

e−αr(X+H(W )).

Substituting these expressions into the HJB equation (B.5), we can derive the optimal policies

in the proposition. The proof of the optimality follows a similar argument for Propositions

1-3 in the paper. We omit it here.

Condition (B.15) is analogous to condition (17) in the paper and ensures that liquidation

is inefficient in the optimal contract with risk aversion. We can give a necessary and sufficient

condition for the optimality of implementing high effort analogous to that in Proposition 3 of

the paper. For simplicity, we omit this result.

We first observe that when α = 0, ODE (B.11) reduces to that in DeMarzo and Sannikov

(2006). Furthermore, when H is concave, (B.8) implies φ (W ) = σλ and hence the incen-

tive constraint always binds. Since the boundary conditions (B.12), (B.13), and (B.14) are
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identical to those in DeMarzo and Sannikov (2006), the solution for H (W ) and W̄ must be

identical to theirs too. We next turn to the case of risk aversion with α > 0 and compare the

solution with that in the case of robustness.

B. 2 Limited Observational Equivalence

When αr = 1/θ, equations (27) and (B.8) are identical and hence the two ODEs (26) and

(B.11) are identical. In addition, the boundary conditions are the same. The second-order

conditions (15) and (B.10) are also identical. By Propositions 2 in the paper and 1, we have

the following result:

Proposition 2 When αr = 1/θ, the robust contract for Problem 3.1 and the optimal contract

with risk aversion for Problem B.1 deliver the same liquidation time and payout policy to

the agent. Furthermore, H (W ) = F (W ) , where F (W ) is the principal’s value function in

Problem 3.1.

Given this result, our previous characterization of the robust contract can be applied here.

But the interpretation is different. The tradeoff here is between risk sharing and incentives

for the risk averse principal. But the tradeoff in the robust contracting problem is between

ambiguity sharing and incentives. In that problem, the principal is risk neutral, but ambiguity

averse. The endogenous belief heterogeneity is the driving force for the principal and the agent

to share model uncertainty.

Note that Proposition 2 shows only a limited observational equivalence between the robust

contract and the contract with risk aversion because the principal’s consumption policy and

value function are different in these two contracts. In particular, the principal’s value function

V (W,X) is globally concave in W under assumption (B.10) in Proposition 7, but the value

function F (W ) in Proposition 2 may not be globally concave. Thus, unlike in the robust

contracting problem, public randomization is never optimal in the contracting problem with

risk aversion. Moreover, the principal’s consumption processes in these two contracts are dif-

ferent. With exponential preferences the principal consumes continuously in time, while with

linear preferences the principal only consumes at certain points. Technically, the consumption

processes are absolutely continuous in the former case and are singular in the latter case.

The preceding limited observational equivalence has a different nature than the equiva-

lence between robustness and a special class of recursive utility (i.e., risk-sensitive utility)

established by Hansen et al (2006). To see this, we consider a discrete-time approximation for

intuition. Let the time interval be dt. The time-additive expected utility process (Ut) derived
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from a consumption process (ct) satisfies

Ut = u (ct) dt+ e−rdtEt [Ut+dt] ,

where Et is the conditional expectation operator with respect to a reference measure P. The

function u characterizes both risk aversion and intertemporal substitution. The multiplier

utility process (Ut) with a concern for robustness introduced by Hansen and Sargent satisfies

the recursion

Ut = u (ct) dt+ e−rdt

[

inf
Q

EQ
t [Ut+dt] + θEtΦ

(

ξQt+dt

ξQt

)]

,

where Φ (x) = x lnx − x + 1 is the relative entropy index and ξQt = dQ/dP |Ft . Solving

the minimization problem implies that the multiplier utility model is equivalent to the risk-

sensitive utility model given by

Ut = u (ct) dt− e−rdtθ lnEt exp

(
−Ut+dt

θ

)

.

This utility is a special case of recursive utility studied by Epstein and Zin (1989). The

parameter 1/θ enhances risk aversion.

In the continuous-time limit as dt → 0, we can represent a utility process by the backward

stochastic differential equation

dUt = µU
t dt+ σU

t dBt,

where (Bt) is a standard Brownian motion under P . For the multiplier utility model, the

drift µU
t satisfies

rUt = u (ct) + µU
t + inf

ht

(

σU
t ht +

θ

2
h2t

)

= u (ct) + µU
t −

(
σU
t

)2

2θ
, (B.18)

where the worst-case density is given by ht = −σU
t /θ. The expression on the right-hand side

of the last equality is the same as that for risk-sensitive utility, which is a special case of the

continuous-time model of recursive utility studied by Duffie and Epstein (1992).

We now consider two contracting problems in the “risk neutral” case with u (c) = c

by replacing the time-additive expected utility in Problem B.1 with multiplier utility and

recursive risk-sensitive utility. Let V m (W,X) and V rs (W,X) denote the principal’s value

function in these two problems.

Proposition 3 The contracting problems B.1 with multiplier utility and risk-sensitive utility

are equivalent. They deliver the same liquidation time and payout policy to the agent as in
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the robust contract for Problem 3.1. In addition, V m (W,X) = V rs (W,X) = X + F (W ) ,

where F (W ) is the principal’s value function in Problem 3.1.

Proof. By equation (B.18), the HJB equation for multiplier utility is given by

rV m(W,X) = max
Cp, c≥0, φ≥σλ

Cp + V m
W (W,X)(γW − c)

+V m
X (W,X)(rX − Cp − c+ µ)

+V m
WW (W,X)

φ2

2
+ V m

XX(W,X)
σ2

2
+ V m

XW (W,X)σφ

+min
h

[V m
X (W,X) σ + V m

W (W,X)φ] h+
θ

2
h2.

The optimal density generator is given by

h = −
V m
X (W,X) σ + V m

W (W,X) φ

θ
.

This HJB equation is equivalent to that for risk-sensitive utility after solving for the optimal

density. We can easily verify that V m (W,X) = V rs (W,X) = X + F (W ) , where F (W ) is

the value function for Problem 3.1. The optimal policies are also the same.

B. 3 Implementation and Asset Pricing with Risk Aversion

Proposition 2 shows that the robust contract and the optimal contract with risk aversion

deliver identical liquidation and payout policies when αr = 1/θ. This section will show

that the implementation of the two contracts and the asset pricing implications are slightly

different. Now the risk averse principal (investors) can put his wealth into two bank accounts.

One is the corporate account which holds cash reserves Mt = Wt/λ and earns interests at

the rate r as in Section 4. Project payoffs are put in this account. The other is the private

account with savings Sp
t = Xt − Mt at the interest rate r. There are still debt and equity.

The firm pays coupon [µ− (γ − r)Mt] dt, regular dividends dC∗
t /λ, and special dividends

[
σ − 1

λ
φ (λMt)

]
dB1

t (it raises capital through equity issues when this term is negative). The

entrepreneur (agent) holds a fraction λ of equity and receives regular dividends dC∗
t . Investors

(principal) receive coupon, regular dividends (1− λ) dC∗
t /λ, and all special dividends (or inject

capital) and put them in the private saving account. Investors finance their consumption

spending using this account. The cash reserves Mt follow dynamics as in equation (30). The

firm is liquidated when the cash reserves reach zero and pays out special dividends (repurchases

equity) or raises capital through equity issues when the cash reserves Mt rise to a level Ŵ/λ.

It pays regular dividends when the cash reserves Mt hits another higher level W̄/λ. As in
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Section 4, this capital structure is incentive compatible.

The private savings Sp
t follow the dynamics

dSp
t = rSp

t dt− Cp (λMt,Mt + Sp
t ) dt

+ [µ− (γ − r)Mt] dt+
1− λ

λ
dC∗

t +

[

σ −
φ (λMt)

λ

]

dB1
t ,

where Sp
0 = X0−W0/λ. The investors’ consumption Cp (λMt,Mt + Sp

t ) = Cp (Wt,Xt) achieves

their maximized utility in the optimal contract. From the preceding equation, we can see

clearly the smoothing role of special dividends. Note that σ − φ (λMt) /λ < 0. In good times

when dB1
t > 0, investors inject cash into the firm’s cash reserves so that they can receive

dividends in bad times when dB1
t < 0.

We now price debt and equity. The state price in the model with risk averse investors is

equal to the intertemporal marginal rate of substitution

πt = π(t,Mt, S
p
t ) = exp (−rt− α [Cp(λMt, S

p
t +Mt)− Cp(λM0, S

p
0 +M0)]) , (B.19)

where π0 = 1. Using the state price, we can compute equity value per share as

St = EP 1

t

[∫ τ

t

πs

πt

1

λ
dC∗

s

]

+
1

1− λ
EP 1

t

[∫ τ

t

πs

πt

(

σ −
φ (λMs)

λ

)

dB1
s

]

= EP 1

t

[∫ τ

t

πs

πt

1

λ
dC∗

s

]

.

Unlike in the robust contracting problem, special dividends are not priced by the risk averse

principal. This is because the principal believes that the events of dB1
s > 0 and dB1

s < 0 are

equally likely. But the ambiguity averse principal is pessimistic and believes that dB1
s < 0 is

more likely and thus special dividends have a positive price.

We can also compute debt value

Dt = EP 1

t

[∫ τ

t

πs

πt

[µ− (γ − r)Ms] ds+
πτ

πt

L

]

,

and credit yield spread. Due to the lack of wealth effect for CARA utility, the cash reserve level

Mt is the only state variable for asset pricing. We still write St = S (Mt) and Dt = D (Mt) .

We will present asset pricing formulas in Appendix B2.

Proposition 4 For the model with risk aversion, the market price of risk is equal to

αr[H ′(λMt)φ(λMt) + σ], (B.20)
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and the local expected equity premium under measure P 1 is

φ (λMt)

λ

S′ (Mt)

S (Mt)
αr[H ′(λMt)φ(λMt) + σ], (B.21)

for Mt ∈
[
0, W̄ /λ

]
.

Proof. Applying Ito’s Lemma to (B.19) yields

dπt = dπ(t,Mt, S
p
t ) = π1(t,Mt, S

p
t )dt+ π2(t,Mt, S

p
t )dMt + π3(t,Mt, S

p
t )dS

p
t

+
1

2
π22(t,Mt, S

p
t )d [M,M ]t +

1

2
π33(t,Mt, S

p
t )d [S

p, Sp]t + π23(t,Mt, S
p
t )d [M,Sp]t ,

where the subscript of π denotes partial derivative and [X,Y ]t denotes the quadratic covari-

ance between any two processes (Xt) and (Yt) . Plugging the dynamics of Mt and Sp
t and

using equation (B.11), we can show that

−
dπt

πt
= rdt+ αr[H ′(λMt)φ(λMt) + σ]dB1

t ,

where φ is given by (B.8). Thus the market price of risk is given by (B.20). Proposition

1 shows that C∗
t makes Wt reflect at a constant boundary W̄ . This payout policy does not

depend on wealth X. It follows that equity value only depends on one state variable Mt. Let

St = S (Mt) . Since the process (mt) defined below is a martingale,

mt ≡ πtSt +

∫ t

0
πs

1

λ
dC∗

s = Et

[∫ τ

0
πs

1

λ
dC∗

s

]

,

we use Ito’s Lemma and set its drift to zero. We then obtain the ODE

rS(M) = S′(M)

[

γM − αr(H ′(λM)φ(λM) + σ)
φ(λM)

λ

]

+ S′′(M)
φ(λM)2

2λ2 , (B.22)

with boundary conditions S(0) = 0 and S′(W̄/λ) = 1.

The local expected equity premium is given by

EP 1

t

[
dSt

St
+

dC∗
t

λSt
− rdt

]

.

We use (B.22) and Ito’s Lemma to compute dSt = dS (Mt) and obtain (B.21).

When αr = 1/θ, Proposition 2 implies that the market price of risk in (B.20) is the

same as −h∗ (Wt) = −h∗ (λMt) , where h∗ is given in (20). The latter is the market price of

model uncertainty in the model with ambiguity aversion, which comes from the endogenous

14



distortion of beliefs reflected by the worst-case density generator h∗. Because special dividends

are not priced in the model with risk aversion, (B.21) is obtained from (31) without the hedge

component. Because the hedge component is generally small in our numerical examples, we

find that the equity premium in the model with risk aversion is also high for distressed firms

with low cash reserves and approaches zero when M approaches W̄/λ. In Appendix B2 we

show that debt value and credit yield spread in the model with risk aversion are the same as

those in the model with ambiguity aversion when αr = 1/θ.
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