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Lumpy Investment and Corporate Tax Policy

In the presence of both convex and nonconvex capital adjustment costs in
a dynamic general equilibrium model, corporate tax policy generates both
intensive and extensive margin effects via the channel of marginal Q. Its
impact is determined largely by the strength of the extensive margin effect,
which, in turn, depends on the cross-sectional distribution of firms. Depend-
ing on the initial distribution of firms, the economy displays asymmetric
responses to tax changes. Moreover, an anticipated increase in the future
investment tax credit reduces investment and adjustment rate initially.
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CORPORATE TAX POLICY IS an important instrument to influence
firms’ capital investment decisions and hence to stimulate the economy. Its transmis-
sion channel is through either the user cost of capital according to the neoclassical
theory of investment or Tobin’s marginal Q according to the q-theory of investment.1

The neoclassical theory assumes that firms do not face any investment frictions, while
the q-theory takes into account convex capital adjustment costs.

Recent empirical evidence documents that investment at the plant level is lumpy
and infrequent, indicating the existence of nonconvex capital adjustment costs.2

Motivated by this evidence, we address two central questions: (i) How does corporate
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tax policy affect investment at both the macro and micro levels in the presence of
nonconvex capital adjustment costs? (ii) Is lumpy investment important quantitatively
in determining the impact of tax policy on the economy in the short and long run?

To answer these two questions, one has to overcome two major difficulties. First,
in the presence of nonconvex adjustment costs, the standard q-theory widely used in
the analysis of tax policy fails in the sense that investment may not be monotonically
related to marginal Q (Caballero and Leahy 1996). Even though a modified q-theory
may work, the relationship between investment and marginal Q is nonlinear (Abel
and Eberly 1994). Second, investment at the micro level is nonlinear, making aggre-
gation difficult. This problem is especially severe in a dynamic general equilibrium
framework, because one has to deal with the cross-sectional distribution of firms
when solving equilibrium prices.

Our solution to these two difficulties is based on the generalized (S,s) approach
proposed by Caballero and Engel (1999). The key idea of this approach is to introduce
stochastic fixed adjustment costs, which makes aggregation tractable. We combine
this approach with the Abel and Eberly (1994) approach by assuming firms face
both flow convex and fixed adjustment costs. As a result, at the micro level, a
modified q-theory applies in that investment is a nondecreasing function of marginal
Q. In particular, there is a region for the stochastic fixed adjustment costs in which
investment is zero, independent of marginal Q. Outside of this region, investment
increases with marginal Q.

To resolve the curse of dimensionality issue encountered when numerically solv-
ing general equilibrium models with lumpy investment, Khan and Thomas (2003,
2008) and Bachmann, Caballero, and Engel (2008) use the Krusell and Smith (1998)
algorithm, which approximates the distribution of firms by a finite set of moments.3

Typically, the first moment is sufficient. We deal with the dimensionality problem
by making two assumptions as in Miao and Wang (2009): (i) firms’ production
technology has constant returns to scale, and (ii) fixed capital adjustment costs are
proportional to the capital stock. We show that under these two assumptions, we
obtain exact aggregation in the sense that the cross-sectional distribution of capital
matters only to the extent of its mean. We then characterize equilibrium by a system
of nonlinear difference equations, which can be tractably solved numerically. This
system also makes the analysis and intuition transparent.

We abstract from aggregate uncertainty and extend Miao and Wang’s (2009) model
by incorporating tax policy. We study the short- and long-run effects of temporary and
permanent changes in the corporate tax rate and the investment tax credit (ITC). We
also analyze anticipation effects of tax changes. We find that in the presence of fixed
adjustment costs, corporate tax policy affects a firm’s decision on the timing and size
of investment at the micro level. At the macro level, it affects the size of investment
for each adjusting firm and the number of total adjusting firms or the adjustment
rate. Thus, corporate tax policy has both intensive and extensive margin effects. By

3. Thomas (2002) and Gourio and Kashyap (2007) apply the numerical method developed by Dotsey,
King, and Wolman (1999).
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contrast, it has an intensive margin effect only according to the neoclassical theory
or the q-theory of investment.

We numerically show that the extensive margin effect plays an important role
in determining the impact of the corporate tax changes. The strength of this effect
depends crucially on the cross-sectional distribution of firms. As Miao and Wang
(2009) point out, the larger the steady-state elasticity of the adjustment rate with
respect to the investment trigger, the larger is the extensive margin effect. In ad-
dition, if the distribution is such that most firms have made capital adjustments
prior to tax changes, then expansionary tax policy is less effective in stimulating
the economy because the additional number of firms that decide to invest is con-
strained, while contractionary tax policy is more effective. The opposite is true if the
distribution is such that most firms have not made capital adjustments prior to tax
changes.

We show that the extensive margin effect is much larger in partial equilibrium than
in general equilibrium. In a calibrated experiment, we find that the increase in the
investment rate in partial equilibrium in response to an unanticipated temporary 10
percentage point decrease in the corporate income tax rate can be twice as large as that
in general equilibrium. The intuition is that the general equilibrium price movements
dampen the increase in firm profitability and marginal Q.

Furthermore, we show that under constant returns-to-scale technology and perfect
competition, a temporary change in the corporate tax rate can have a permanent
effect on capital accumulation in partial equilibrium, while it has a temporary effect
in general equilibrium. In addition, an unanticipated temporary increase in the ITC
has a larger short-run stimulative impact than a permanent increase in the ITC, in
contrast to Abel’s (1982) result in a partial equilibrium model. The preceding results
suggest that a partial equilibrium analysis of tax policy can be quite misleading both
quantitatively and qualitatively.

Our paper is related to a large literature on the impact of tax policy on investment
beginning from Hall and Jorgenson (1967) and Hall (1971). Most studies use a par-
tial equilibrium q-theory framework with convex adjustment costs (e.g., Summers
1981, Abel 1982, Hayashi 1982, Auerbach 1989). Instead, we use a general equi-
librium deterministic growth model framework as in Chamley (1981), Judd (1985,
1987), Prescott (2002), McGrattan and Prescott (2005), House and Shapiro (2006),
and Gourio and Miao (2010, 2011).4 Unlike these papers, this paper incorporates
heterogeneous firms subject to both convex and nonconvex capital adjustment costs.
Miao (2008) also incorporates these costs in a continuous time model, but he focuses
on a steady-state analysis. We extend Judd’s (1987) and Auerbach’s (1989) results
on anticipation effects of tax policy to a lumpy investment model. We show that an
anticipated decrease in the future corporate income tax rate raises investment and
adjustment rate immediately, while an anticipated increase in the future ITC reduces
investment and adjustment rate initially.

4. See Ljungqvist and Sargent (2004, Chap. 11) for a textbook treatment. See Auerbach and Kotlikoff
(1987) for the study of tax policy in the general equilibrium overlapping generations framework.



1174 : MONEY, CREDIT AND BANKING

The remainder of the paper proceeds as follows. Section 1 presents the model.
Section 2 analyzes equilibrium properties. Section 3 provides numerical results.
Section 4 concludes. Proofs are relegated to the Appendix.

1. THE MODEL

We consider an infinite-horizon economy that consists of a representative house-
hold, a continuum of production units with a unit mass, and a government. Time
is discrete and indexed by t = 1, 2, 3, ... We identify a production unit with a firm
or a plant. Firms are subject to idiosyncratic shocks to fixed capital adjustment
costs. To focus on the dynamic effects of permanent and temporary tax changes,
we abstract away from aggregate uncertainty and long-run economic growth. By
a law of large numbers, all aggregate quantities and prices are deterministic over
time.

1.1 Firms

All firms have identical production technology that combines labor and capital to
produce output. Specifically, if firm j owns capital K j

t and hires labor N j
t , it produces

output Y j
t according to the production function

Y j
t = F

(
K j

t , N j
t

)
. (1)

Assume that F is strictly increasing, strictly concave, continuously differentiable,
and satisfies the usual Inada conditions. In addition, it has constant returns to
scale.

Firm j may make investment I j
t to increase its existing capital stock K j

t . Investment
incurs both nonconvex and convex adjustment costs. We follow Uzawa (1969) and
Hayashi (1982) and introduce convex adjustment costs into the capital accumulation
equation

K j
t+1 = (1 − δ)K j

t + K j
t �

(
I j
t

K j
t

)
, K j

1 given, (2)

where δ is the depreciation rate and � (·) is a strictly increasing and strictly concave
function.5 To facilitate analytical solutions, we follow Jermann (1998) and specify
the convex adjustment cost function as

� (x) = ψ

1 − θ
x1−θ + ς, (3)

5. Assuming convex adjustment costs that decrease profits directly as in Abel (1982) and Auerbach
(1989) will not change our analysis significantly.
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where ψ > 0 and θ ∈ (0, 1) . Nonconvex adjustment costs are fixed costs that must
be paid if and only if the firm chooses to invest. As in Cooper and Haltiwanger
(2006), we measure these costs as a fraction of the firm’s capital stock.6 That
is, if firm j makes new investment, then it pays fixed costs ξ j

t K j
t , which is in-

dependent of the amount of investment. As will be clear later, this modeling of
fixed costs is important to ensure that firm value is linearly homogenous. Follow-
ing Caballero and Engel (1999), we assume that ξ j

t is identically and indepen-
dently drawn from a distribution with density φ over [0, ξmax] across firms and over
time.

Each firm j pays dividends to households who are shareholders of the firm. Divi-
dends are given by

D j
t = (

1 − τ k
t

) (
F
(
K j

t , N j
t

)− wt N j
t

)+ τ k
t δK j

t − (
1 − τ i

t

)
I j
t − ξ

j
t K j

t 1I j
t �=0, (4)

wherewt is the wage rate, τ k
t is the corporate income tax rate, and τ i

t is the ITC. Here,
1I j

t �=0 represents the indicator function taking the value 1 if I j
t �= 0, and 0 otherwise.

We have assumed that economic depreciation is equal to physical depreciation. Al-
lowing for more complicated depreciation allowance schemes will complicate our
analysis without changing our key insights.

After observing its idiosyncratic shock ξ j
t , firm j’s objective in period t is to

maximize cum-dividends market value of equity P j
t ,

max P j
t ≡ Et

∞∑
s=0

βs�t+s

�t
D j

t+s, (5)

subject to (2) and (4). Here, the expectation is taken with respect to the idiosyncratic
shock distribution and βs�t+s/�t is the stochastic discount factor between periods
t and t + s. We will show later that �t+s is a household’s marginal utility in period
t + s.

1.2 Households

All households are identical and derive utility from the consumption and labor
sequences {Ct , Nt } according to the time-additive utility function

E

[ ∞∑
t=1

β t−1U (Ct , Nt )

]
, (6)

6. There are several ways to model fixed adjustment costs in the literature. Fixed costs may be
proportional to the demand shock (Abel and Eberly 1998), profits (Caballero and Engel 1999, Cooper and
Haltiwanger 2006), or labor costs (Thomas 2002, Khan and Thomas 2003, 2008).
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where β ∈ (0, 1) is the discount factor and U satisfies the usual assumptions. Each
household chooses consumption Ct , labor supply Nt , and shareholdings α j

t+1 to
maximize utility (6) subject to the budget constraint:

Ct +
∫
α

j
t+1

(
P j

t − D j
t

)
d j =

∫
α

j
t P j

t d j + (
1 − τ n

t

)
wt Nt + Tt , (7)

where τ n
t is the labor income tax rate and Tt denotes government transfers (lump-sum

taxes) if Tt > (<) 0. The first-order conditions are given by

�t

(
P j

t − D j
t

)
= βEt�t+1 P j

t+1, (8)

U1 (Ct , Nt ) = �t , (9)

− U2 (Ct , Nt ) = �t
(
1 − τ n

t

)
wt . (10)

Equations (8) and (9) imply that the stock price P j
t is given by the discounted present

value of dividends as in equation (5). In addition, �t is equal to the marginal utility
of consumption.

1.3 Government

The government finances government spending Gt by corporate and personal taxes.
We assume that lump-sum taxes (or transfers) are available so that the government
budget is balanced. The government budget constraint is given by

Gt + Tt = τ k
t

∫ (
F(K j

t , N j
t ) − wt N j

t − δK j
t

)
d j + τ n

t wt Nt − τ i
t

∫
I j
t d j, (11)

where Tt represents lump-sum transfers (taxes) if Tt > 0 (Tt < 0).

1.4 Competitive Equilibrium

The sequences of quantities {I j
t , N j

t , K j
t }t≥1, {Ct , Nt }t≥1, prices {wt , P j

t }t≥1 for
j ∈ [0, 1], and government policy {τ k

t , τ
n
t , τ

i
t , Tt ,Gt }t≥1 constitute a competitive

equilibrium if the following conditions are satisfied:

(i) Given prices {wt }t≥1, {I j
t , N j

t }t≥1 solves firm j’s problem (5) subject to the
law of motion (2).

(ii) Given prices {wt , P j
t }t≥1, {Ct , Nt , α

j
t+1}t≥1 maximizes utility in (6) subject to

the budget constraint (7).
(iii) Markets clear in that

α
j
t = 1,

Nt =
∫

N j
t d j,
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Ct +
∫

I j
t d j +

∫
ξ

j
t K j

t 1I j
t �=0d j + Gt =

∫
F
(

K j
t , N j

t

)
d j. (12)

(iv) The government budget constraint (11) is satisfied.

2. EQUILIBRIUM PROPERTIES

We start by analyzing a single firm’s optimal investment policy, holding prices
fixed. Next, we conduct aggregation and characterize equilibrium aggregate dynamics
by a system of nonlinear difference equations. Finally, we analyze steady state.

2.1 Optimal Investment Policy

To simplify problem (5), we first solve a firm’s static labor choice decision. Let
n j

t = N j
t /K j

t . The first-order condition with respect to labor yields

f ′(n j
t

) = wt , (13)

where we define f (·) = F(1, ·). This equation reveals that all firms choose the same
labor–capital ratio in that n j

t = nt for all j. We can then derive firm j’s operating
profits

max
N j

t

F
(
K j

t , N j
t

)− wt N j
t = Rt K j

t , (14)

where Rt = f (nt ) − wt nt is independent of j . Note that Rt also represents the
marginal product of capital because F has constant returns to scale. Let i j

t = I j
t /K j

t

denote firm j’s investment rate. We can then express dividends in (4) as

D j
t =

[(
1 − τ k

t

)
Rt + τ k

t δ − (
1 − τ i

t

)
i j
t − ξ

j
t 1i j

t �=0

]
K j

t ,

and rewrite (2) as

K j
t+1 = [(1 − δ) +�

(
i j
t

)
]K j

t . (15)

The above two equations imply that equity value or firm value are linear in capital
K j

t . We can then write firm value as V j
t K j

t and rewrite problem (5) by dynamic
programming

V j
t K j

t = max
i j
t

[(
1 − τ k

t

)
Rt + τ k

t δ − (
1 − τ i

t

)
i j
t − ξ

j
t 1i j

t �=0

]
K j

t

+ Et

[
β�t+1

�t
V j

t+1 K j
t+1

]
, (16)
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subject to (15). Substituting equation (15) into equation (16) yields

V j
t = max

i j
t

(
1 − τ k

t

)
Rt + τ k

t δ − (
1 − τ i

t

)
i j
t − ξ

j
t 1i j

t �=0

+ g(i j
t )Et

[
β�t+1

�t
V j

t+1

]
, (17)

where we define

g(i j
t ) = 1 − δ +�(i j

t ). (18)

Since V j
t depends on ξ j

t ,we write it as V j
t = Vt (ξ

j
t ) for some function Vt and suppress

its dependence on other variables. We integrate out ξ j
t and define

V̄t =
∫ ξmax

0
Vt (ξ )φ(ξ )dξ. (19)

Because ξ j
t is i.i.d. across both time and firms and there is no aggregate shock, we

obtain

Et

[
�t+1

�t
V j

t+1

]
= �t+1

�t

∫ ξmax

0
Vt+1 (ξ )φ(ξ )dξ = �t+1

�t
V̄t+1. (20)

Define marginal Q as the discounted shadow value of a marginal unit of investment

Qt = β�t+1

�t
V̄t+1. (21)

Because firm value is linearly homogeneous in capital in our model, marginal Q is
equal to average Q (Hayashi 1982). Using (21), we rewrite problem (17) as

Vt
(
ξ

j
t

) = max
i j
t

(
1 − τ k

t

)
Rt + τ k

t δ − (
1 − τ i

t

)
i j
t − ξ

j
t 1i j

t �=0 + g
(
i j
t

)
Qt . (22)

From this problem, we can characterize a firm’s optimal investment policy by a
generalized (S, s) rule (Caballero and Engel 1999).

PROPOSITION 1. Firm j’s optimal investment policy is characterized by the (S, s)
policy in that there is a unique trigger value ξ̄t > 0 such that the firm invests if and
only if ξ j

t ≤ ξ̄t ≡ min{ξ ∗
t , ξmax}, where the cutoff value ξ ∗

t satisfies the equation

θ

1 − θ
(ψQt )

1
θ

(
1 − τ i

t

) θ−1
θ = ξ ∗

t . (23)

The optimal target investment rate is given by

i j
t =

(
ψQt

1 − τ i
t

) 1
θ

. (24)
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Marginal Q satisfies

Qt = β�t+1

�t

{ (
1 − τ k

t+1

)
Rt+1 + τ k

t+1δ + (1 − δ + ς ) Qt+1

+
∫ ξ̄t+1

0

[
ξ ∗

t+1 − ξ
]
φ(ξ )dξ

}
. (25)

Equation (23) says that at the value ξ ∗
t , the benefit from investment per unit of

capital is equal to the fixed cost of investment per unit of capital so that the firm
is indifferent between investing and not investing. It is possible that ξ ∗

t exceeds
the upper support of the fixed costs. In this case, we set the investment trigger
ξ̄t = ξmax.

We should emphasize that the investment trigger ξ̄t depends on the aggregate
capital stock and corporate tax policy. Thus, corporate tax policy affects the timing

of investment at the micro level in that it affects the adjustment hazard,
∫ ξ̄t

0 φ (ξ ) dξ .
Under the q-theory of investment, corporate tax policy has only an intensive margin
effect on investment in the sense that it can affect how much a firm may invest, but
cannot affect how likely a firm may invest.

Equation (24) shows that the optimal investment level is independent of a firm’s
characteristics such as its capital or idiosyncratic shock. It is positively related to
marginal Q if and only if the firm’s idiosyncratic fixed cost shock ξ j

t is lower than
the trigger value ξ̄t , conditioned on the aggregate state and tax policy in the economy.
When ξ j

t > ξ̄t , firm j chooses not to invest. This zero investment is unrelated to
marginal Q. As a result, optimal investment may not be related to marginal Q in
the presence of fixed adjustment costs, a point made by Caballero and Leahy (1996).
But it is still a nondecreasing function of marginal Q. Thus, a modified q-theory still
works (Abel and Eberly 1994).

Equation (25) is an asset-pricing equation that states that the aggregate marginal
Q is equal to the present value of marginal product of capital, plus an option value
of waiting because of the fixed adjustment costs. When the shock ξ j

t > ξ̄t , it is not
optimal to pay the fixed costs to make investment. Firms will wait to invest until
ξ

j
t ≤ ξ̄t and there is an option value of waiting.

We may interpret (25) as the capital demand equation and (24) as the capital
supply equation. Define Q̃t = Qt/(1 − τ i

t ) as in Abel (1982) and Goolsbee (1998).
It represents the tax-adjusted price of capital.

2.2 Aggregation and Equilibrium Characterization

Given the linear homogeneity feature of firm value, we can conduct aggrega-
tion tractably. We define aggregate capital Kt = ∫

K j
t d j, aggregate labor demand
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Nt = ∫
N j

t d j, aggregate output Yt = ∫
Y j

t d j, and aggregate investment expenditure
in consumption units It = ∫

I j
t d j.

PROPOSITION 2. The aggregate equilibrium sequences {Yt , Nt ,Ct , It , Kt+1, Qt , ξ̄t }t≥1

are characterized by the following system of difference equations:

It/Kt =
(
ψQt

1 − τ i
t

) 1
θ
∫ ξ̄t

0
φ(ξ )dξ, (26)

Kt+1 = (1 − δ + ς )Kt + ψ

1 − θ
Kt (It/Kt )

1−θ
[∫ ξ̄t

0
φ(ξ )dξ

]θ
, (27)

Yt = F (Kt , Nt ) = Gt + It + Ct + Kt

∫ ξ̄t

0
ξφ(ξ )dξ, (28)

−U2 (Ct , Nt )

U1 (Ct , Nt )
= (

1 − τ n
t

)
F2 (Kt , Nt ) , (29)

Qt = βU1 (Ct+1, Nt+1)

U1 (Ct , Nt )

[ (
1 − τ k

t+1

)
F1 (Kt+1, Nt+1) + τ k

t+1δ

+ (1 − δ + ς ) Qt+1 +
∫ ξ̄t+1

0

(
ξ ∗

t+1 − ξ
)
φ(ξ )dξ

]
, (30)

where ξ̄t and ξ ∗
t are given in Proposition 1 and K1 is given.7

We derive equations (26) and (27) by aggregating equations (24) and (2), respec-
tively. Equation (26) reveals that the aggregate investment rate is equal to a firm’s
target investment rate multiplied by the fraction of adjusting firms (or the adjustment

rate),
∫ ξ̄t

0 φ(ξ )dξ. Thus, corporate tax policy has both intensive and extensive margin
effects on investment in the presence of fixed adjustment costs. To see the magnitude
of these effects intuitively, we log-linearize equation (26) for an interior solution to
obtain

Ît − K̂t = 1

θ

(
Q̂t + τ i

1 − τ i
τ̂ i

t

)
︸ ︷︷ ︸

intensive

+ ξ̄φ(ξ̄ )∫ ξ̄
0 φ(ξ )dξ

̂̄ξ t︸ ︷︷ ︸
extensive

, (31)

7. The usual transversality condition must be satisfied.
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where for any variable Xt , X denotes its steady-state value and X̂t = ln Xt − ln X.
The first term on the right-side equation (31) captures the usual intensive marginal
effect in the q-theory of investment without nonconvex adjustment costs. A change
in τ k

t or τ i
t affects marginal Q as revealed by asset-pricing equation (30), and thus

induces firms to decide how much to invest.
The second term on the right side of equation (31) is the percentage deviation

in the adjustment rate
∫ ξ̄t

0 φ(ξ )dξ, which represents the extensive margin effect.
A change in τ k

t or τ i
t and the resulting change in marginal Q also affect a firm’s

decision on when to invest. Thus, tax changes affect the adjustment trigger ξ̄t and
hence the number of firms to make investment. The extent of this extensive margin

effect is measured by the coefficient of ̂̄ξ t , ξ̄φ(ξ̄ )/
∫ ξ̄

0 φ(ξ )dξ, which is the steady-
state elasticity of the adjustment rate with respect to the adjustment trigger ξ̄ . The
larger the elasticity, the larger is the extensive margin effect. For the power function
distribution φ (ξ ) = ηξη−1/ (ξmax)η , η > 0, we can explicitly compute the elasticity
to be η.8 In this case, the component due to the extensive margin effect is equal to
η̂ξ̄ t . Thus, even if the investment trigger ξ̄t does not change much in response to tax
changes, a larger elasticity η can raise the impact on the adjustment rate.

We can also explicitly compute the response of the investment trigger ξ̄t to changes
in the tax rates. Log-linearizing equation (23) yields

̂̄ξ t = 1

θ

(
Q̂t + (1 − θ ) τ i

1 − τ i
τ̂ i

t

)
.

Plugging this expression into (31), we can compare the relative importance of the
two components due to the intensive and extensive margin effects. For the power
function distribution, we can see that the investment response due to the extensive
margin effect is η times as large as that due to the intensive margin effect when only
capital tax is changed but the ITC is fixed (i.e., τ̂ i

t = 0). Thus, for η > 1, the extensive
margin effect is larger than the intensive margin effect.

2.3 Steady State

We consider a deterministic steady state in which government policy variables
(τ k

t , τ
n
t , τ

i
t , Tt ,Gt ) stay constant over time. In addition, all aggregate equilibrium

quantities, prices, and the investment trigger are constant over time, while at the
firm level, firms still face idiosyncratic fixed-costs shocks. The following proposition
characterizes the steady-state aggregate variables (Y,C, N , K , I, Q, ξ̄ ), when ξ̄ is an
interior solution.

8. Gourio and Kashyap (2007) use a “compressed” distribution for the fixed cost to get a large extensive
margin effect. From Figure 3 in their paper, we can see that the distribution is very steep at large values of
fixed costs implying that the steady-state elasticity of the adjustment rate is large.
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PROPOSITION 3. Suppose that

0 < δ − ς <
ψ

(1 − θ )θ θ (1−θ)

(
ξmax

1 − τ i

)1−θ ∫ ξmax

0
φ(ξ )dξ. (32)

Then the steady-state investment trigger ξ̄ ∈ (0, ξmax) is the unique solution to the
equation

δ − ς = ψ

(1 − θ )θ θ (1−θ)

(
ξ̄

1 − τ i

)1−θ ∫ ξ̄

0
φ(ξ )dξ. (33)

Given this value ξ̄ , the steady-state value of Q is given by

Q = 1

ψ

(
ξ̄ (1 − θ )

θ

)θ (
1 − τ i

)1−θ
. (34)

The other steady-state values (I, K ,C, N ) satisfy

I

K
= Q

1 − τ i
(δ − ς ) (1 − θ ) , (35)

F (K , N ) = I + C + K
∫ ξ̄

0
ξφ (ξ ) dξ + G, (36)

−U2(C, N )

U1(C, N )
= (1 − τ n)F2(K , N ), (37)

Q = β

1 − β (1 − δ + ς )

{ (
1 − τ k

)
F1 (K , N ) + τ kδ

+
∫ ξ̄

0

(
ξ̄ − ξ

)
φ(ξ )dξ

}
. (38)

Condition (32) ensures that equation (33) has a unique interior solution by the
intermediate value theorem. It is satisfied for the parameterization analyzed in Section
3. We can derive some interesting theoretical results from the above proposition.
First, equation (33) shows that the steady-state investment trigger is independent
of the corporate tax rate τ k, but decreases with the ITC τ i . Thus, the steady-state

adjustment rate
∫ ξ̄

0 φ(ξ )dξ has the same property. Second, it follows from equation
(34) that the steady-state marginal Q is independent of τ k, but decreases with τ i .

We can also show that the tax-adjusted producer price of capital Q̃ = Q/(1 − τ i )
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increases with τ i .9 Third, it is straightforward from (35) to show that the steady-state
investment rate is independent of τ k, but increases with τ i . The intuition behind the
latter result is as follows. An increase in τ i has negative an extensive margin effect
because it reduces the adjustment rate, but has a positive intensive margin effect
because it raises Q̃.Overall, the negative extensive margin effect is dominated by the
positive intensive margin effect following an increase in τ i . Except for the predictions
regarding the adjustment rate, the preceding results are still valid in a model with
convex adjustment costs only or in a standard growth model without adjustment costs.

3. NUMERICAL RESULTS

We evaluate our lumpy investment model quantitatively and compare this model
with two benchmark models. The first one is a standard growth model with dis-
tortionary taxes, obtained by removing all adjustment costs in the model presented
in Section 1. The second one is obtained by removing fixed adjustment costs only.
We call this model partial adjustment model. In each of the benchmark models, all
firms make identical decisions, and thus they give the same aggregate equilibrium
allocations as that in a standard representative-agent and a representative-firm growth
model. Because we can characterize the equilibria for all three models by systems
of nonlinear difference equations, we can solve them numerically using standard
methods.10 To do so, we need first to calibrate parameter values.

3.1 Baseline Parameterization

For all model economies, we take the Cobb–Douglas production function,
F(K , N ) = K αN 1−α, and the period utility function, U (C, N ) = ln(C) − ϕN ,
where ϕ > 0 is a parameter. We fix the length of period to correspond to 1 year, as
in Thomas (2002), and Khan and Thomas (2003, 2008). Annual frequency allows us
to use empirical evidence on establishment-level investment in selecting parameters
for the fixed adjustment costs.

We first choose parameter values for preferences and technology to ensure that the
steady state of the standard growth model with taxes is consistent with the long-run
values of key postwar U.S. aggregates. Specifically, we set the subjective discount
factor to β = 0.9615 so that the implied real annual interest rate is 4%. We choose
the value of ϕ in the utility function so that the steady-state hours are about one-third
of available time spent in market work. We set the capital share α = 0.36, implying

9. See Goolsbee (1998) for empirical evidence.
10. We use the Dynare package version 3.0 to solve our models numerically (see Juillard 2005). The

solution uses a nonlinear method based on a Newton-type algorithm described in Juillard (1996). The idea
is to first solve the two steady states prior to and after a tax reform. Then use these two steady states as the
initial and terminal conditions for the equilibrium system of nonlinear difference equations. Finally, solve
this system using a Newton-type algorithm.
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TABLE 1

BASELINE PARAMETER VALUES

β ϕ α δ τ k τ n τ i G θ ξmax η

0.9615 2.5843 0.36 0.1 0.35 0.32 0 0.105 1/5.98 0.0242 1

a labor share of 0.64, which is close to the labor income share in the NIPA. We take
the depreciate rate δ = 0.1, as in the literature on business cycles.

In a steady state, all tax rates are constant over time. By the estimates from
McGrattan and Prescott (2005) and Prescott (2002), we set capital tax rate τ k =
0.35 and labor tax rate τ n = 0.32. Because the ITC is typically used as a short-run
stimulative policy, we set τ i = 0 in the steady state. We assume that the government
spending Gt is constant over time and equal to 20% of the steady-state output in the
standard growth model. We fix this level of government spending for all experiments
below.

It is often argued that convex adjustment costs are not observable directly and
hence cannot be calibrated based on average data over the long run. Thus, we impose
the two restrictions, ψ = δθ and ς = −θδ/ (1 − θ ) , so that the partial adjustment
model and the standard growth model give identical steady-state allocations (e.g.,
Q = 1 and I/K = δ). Following Thomas (2002) and Khan and Thomas (2003), we
set θ = 1/5.98, implying that the Q-elasticity of the investment rate is 5.98.

Following the literature (e.g., Khan and Thomas 2003, 2008, Fiori 2012), we
assume the uniform distribution for the fixed cost with the support [0, ξmax] . We
calibrate the parameter ξmax to match the steady-state inaction rate (1 − ξ̄ /ξmax) of
0.081 reported by Cooper and Haltiwanger (2006). This gives ξmax = 0.0242. In this
case, we can compute that in the steady state, total fixed adjustment costs account for
2.0% of output, 10.0% of total investment spending, and 1.0% of the aggregate capital
stock, which are reasonable according to the estimation by Cooper and Haltiwanger.
Cooper and Haltiwanger also report that the positive spike rate is about 0.186. Our
model can capture positive investment spikes. However, because our model implies
that the target investment rate is identical for all firms, our model cannot match the
spike rate observed in the data.11

We list the baseline parameter values in Table 1. Suppose that the economy in period
1 is in the initial steady state with parameter values given in Table 1. We then consider
the economy’s responses to changes in corporate tax policy by changing sequences
of tax rates {τ k

t } and ITC {τ i
t }.We hold labor income tax rates τ n constant at the value

in Table 1 and allow lump-sum taxes to adjust to balance government budget. For all
tax policy experiments studied below, we assume that the tax policy is announced

11. By incorporating plant-level productivity shocks and maintenance investment, Khan and Thomas
(2008) and Bachmann, Caballero, and Engel (2009) can match both the spike rate and the inaction rate
observed in the data.
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FIG. 1. Response to Unanticipated Temporary Decrease in τ k .

NOTES: The 10 percentage point tax cut lasts from periods 1 to 4. This policy is announced and implemented in period
1. In each panel, the vertical axis measures the percentage deviation from the initial steady state and the horizontal axis
measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value of Xt .

in period 1 and agents have perfect foresight about future tax rates. Following the
public finance literature (e.g., Judd 1985, 1987, Mertens and Ravn 2011, 2012), we
say that a tax policy is unanticipated (anticipated) when it is actually implemented
at the same time of the announcement date (in a future date).

3.2 Temporary Changes in the Corporate Tax Rate

We start with the first policy experiment in which the corporate tax rate τ k
t decreases

by 10 percentage points temporarily and this decrease lasts for only four periods. After
this decrease, τ k

t reverts to its previous level. Suppose this tax policy is unanticipated
initially, but once it occurs in period 1, agents have perfect foresight about the future
tax rates.

Figure 1 presents the transitional dynamics for the standard growth, partial ad-
justment, and lumpy investment models (labeled as “Growth,” “PA,” and “Lumpy,”
respectively) following this tax policy. We find that these three models display similar
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transitional dynamics. Because the responses in the standard growth model are well
known in the literature (e.g., Ljungqvist and Sargent 2004, Chap. 11), our analysis
will focus on the other two models. For these models, the decrease in τ k

t in periods 1–
4 raises the after-tax marginal product of capital and hence marginal Q immediately
by (30), leading to a jump of investment in the initial period. Note that the impact
jump of marginal Q is larger for the partial adjustment model than for the lumpy
investment model. Marginal Q starts to decrease until period 4 and then gradually
rises to its steady-state value because τ k

t rises to its original level permanently starting
in period 5. Consequently, the investment rate follows a similar path by the intensive
margin effect (see (31)). The capital stock rises until period 4, and then decreases
monotonically to the original steady-state level.

We define the after-tax (gross) interest rate between periods t and t + 1 as

rt = U1 (Ct , Nt )

βU1 (Ct+1, Nt+1)
= Ct+1

βCt
.

It is also equal to the after-tax return on capital by equation (30). In response to the
temporary decrease in τ k

t , the after-tax return on capital rises initially and decreases
until period 4. After this period, it gradually rises to its original steady-state level.
Due to the substitution effect, consumption drops initially and then rises until period
4. After period 4, it decreases to its original steady-state level. Note that the wealth
effect is small because the decrease in τ k

t must be accompanied by an increase in
lump-sum taxes that leaves the government budget balanced.

Given our adopted utility function, the wage rate wt satisfies ϕCt = (1−τ n)wt .

Thus, wage and consumption must follow identical dynamics, causing the labor
hours to follow a pattern opposite to consumption because the marginal product
of labor equals the after-tax wage. Output rises in the initial period because labor
rises and capital is predetermined. After period 1, output gradually decreases to its
steady-state value.

Figure 1 reveals that the short-run impact on investment and output for the partial
adjustment model is smaller than for the standard growth model because of the
smoothing effect of convex capital adjustment costs. The presence of fixed capital
adjustment costs in the lumpy investment model makes the short-run impact of tax
changes larger. The reason is that tax policy in this model has an additional extensive
margin effect as discussed in Section 2.2. Figure 1 shows that the investment rate
along the extensive margin (i.e., the adjustment rate) rises by about 3.6% on impact
for the lumpy investment model. The total impact increase in the investment rate
for this model is about 7.2%, implying that the intensive margin effect contributes
to about 3.6% of the increase. By contrast, the response of the investment rate on
impact in the partial adjustment model is due to the intensive margin effect only,
which is about 4.5%. Even though the lumpy investment model delivers a smaller
intensive margin effect, this model generates a larger overall response of investment
to tax changes than the partial adjustment model.

The fact that the intensive margin effect is smaller in the lumpy investment model
than in the partial adjustment model is also consistent with a smaller response of
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FIG. 2. Response to Unanticipated Temporary Decrease in τ k in Partial Equilibrium.

NOTES: The 10 percentage point tax cut lasts from periods 1 to 4. This policy is announced and implemented in period
1. In each panel, the vertical axis measures the percentage deviation from the initial steady state and the horizontal axis
measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value of Xt .

marginal Q in the lumpy investment model presented in Figure 1. If the lumpy
investment model implied a larger intensive margin effect, this effect combined with
the extensive margin effect would generate a much larger investment response for the
lumpy investment model. The resulting large capital would lead to a small marginal
product of capital. This would give a smaller response of marginal Q in the lumpy
investment model than in the partial adjustment, contradicting Figure 1.

Despite the large extensive margin effect, the dynamic responses to the tax change
for the lumpy investment model are similar to those for the standard growth model
and the partial adjustment model. The reason is that the general equilibrium price
movements smooth aggregate investment dynamics.12 Figure 2 illustrates this point by
presenting the transitional dynamics for the partial adjustment and lumpy investment
models in partial equilibrium. In particular, we fix the interest rate and the wage rate

12. Thomas (2002) first makes this point and shows that lumpy investment is quantitatively irrelevant
for business cycles. Using a different numerical solution method, Khan and Thomas (2003, 2008) confirm
her finding. In an analytical framework, Miao and Wang (2009) provide conditions under which Thomas’s
result can hold true.
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at their steady-state values prior to tax changes through the transition period so that
the system of equations (23), (26), (27), and

Qt = β

{ (
1 − τ k

t+1

)
Rt+1 + τ k

t+1δ + (1 − δ + ς ) Qt+1

+
∫ ξ̄t+1

0

[
ξ ∗

t+1 − ξ
]
φ(ξ )dξ

}
(39)

characterizes the partial equilibrium dynamics of {It , Kt+1, Qt , ξ̄t }, where ξ̄t =
min{ξ ∗

t , ξmax}. In response to the tax cut, marginal Q rises by about 1.7% and 2.2%
for the partial adjustment and lumpy investment models, respectively, much higher
than the corresponding values, 0.7% and 0.6% in general equilibrium. As a result,
the increase in the adjustment rate in partial equilibrium is much higher than that in
general equilibrium. In particular, the increase in Q in partial equilibrium is so high
that all firms decide to make capital adjustments in the first two periods for the lumpy
investment model. This large extensive margin effect causes the aggregate investment
rate rises by about 21% in the lumpy investment model. This increase is much larger
than the corresponding increase of 7.2% in general equilibrium.

We also emphasize that in a partial equilibrium model with competitive firms and
constant-returns-to-scale technology, Q can be determined independently of capital.
This can be seen from equation (39), in which the marginal product of capital Rt is
constant when the wage rate is fixed.13 A temporary cut in τ k

t from periods 1 to 4
induces Q to rise immediately and then decrease monotonically to its steady-state
value. The investment rate also follows the same pattern. Because the investment rate
never falls below its steady-state level, a temporary change in τ k

t has a permanent
effect on the capital stock, as revealed in Figure 2. This result is in sharp contrast
to that in general equilibrium, suggesting that a partial equilibrium analysis of tax
policy can be quite misleading.

We next turn to the case in which the temporary decrease in τ k
t is anticipated

initially to be effective in period 2 and lasts for four periods. Figure 3 presents the
transitional dynamics. The future tax cut raises the future after-tax marginal product
of capital, ceteris paribus. Because marginal Q reflects the present value of the future
after-tax marginal product of capital by (30), it rises immediately. Thus, anticipating
the tax cut in the future, adjusting firms react by raising investment immediately. In
addition, the adjustment rate also rises immediately in the lumpy investment model.
The investment rate and the adjustment rate continue to rise until period 4. The
household reacts by reducing consumption and raising labor supply immediately.
From periods 1 to 4, consumption and hours gradually rise. Output also rises from
periods 1 to 4. Starting from period 5, the economy’s responses are similar to those
in the case of unexpected tax change presented in Figure 1.

13. Using equation (14), we can show that Rt = α ((1 − α) /wt )
1−α
α . It is constant over time when

wage wt is fixed at the initial steady-state value prior to tax changes.
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FIG. 3. Response to Anticipated Temporary Decrease in τ k .

NOTES: The 10 percentage point tax cut lasts from periods 2 to 5. This policy is announced in period 1 and implemented in
period 2. In each panel, the vertical axis measures the percentage deviation from the initial steady state and the horizontal
axis measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value of Xt .

3.3 Permanent Changes in the Corporate Tax Rate

Figure 4 presents transitional dynamics following an unanticipated permanent 10
percentage point cut in the corporate tax rate τ k

t in period 1. This policy is announced
and implemented in period 1 and agents have perfect foresight about future tax rates.
The economy’s immediate response in this case is qualitatively similar to that in
the case of an announced but initially unanticipated temporary corporate tax cut via
the same channel of marginal Q (see Figure 1). However, the short-run impact is
larger because the response of Q is larger. In particular, in response to a permanent
corporate tax cut, the investment rate and the adjustment rate rise by about 14% and
7% on impact, respectively. In the long run, the economy moves to a new steady state
after a permanent tax cut, while the steady state does not change after a temporary
tax cut. In addition, the transition paths following an unanticipated permanent tax cut
are monotonic, rather than nonmonotonic.
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FIG. 4. Response to Unanticipated Permanent Decrease in τ k .

NOTES: The 10 percentage point tax cut lasts forever starting from period 1. This policy is announced and implemented in
period 1. In each panel, the vertical axis measures the percentage deviation from the initial steady state and the horizontal
axis measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value of Xt .

We emphasize that the impact of tax policy depends on the initial cross-sectional
distribution of firms. In our baseline calibration, 91.9% of firms have made capital
adjustments in the initial steady state. This high adjustment rate leaves less room
for more firms to make adjustments in response to a decrease in τ k . If the initial
adjustment rate is small, more firms will respond to a capital tax cut, making the
extensive margin effect large. To illustrate this point, we conduct a hypothetical
experiment with the initial steady-state adjustment rate equal to 0.2.14 Figure 5 plots
the economy’s responses to an announced permanent 10 percentage point decrease
in τ k enacted in period 1. We find that both the short- and long-run effects in this
case are much larger than the case in Figure 4. The main reason is due to the larger
extensive margin effect. In particular, the adjustment rate rises on impact by 10% in

14. We recalibrate ξmax in the lumpy investment model to match this adjustment rate, 0.2.
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FIG. 5. Response to Unanticipated Permanent Decrease in τ k When the Initial Adjustment Rate Is 0.2.

NOTES: The 10 percentage point tax cut lasts forever starting from period 1. This policy is announced and implemented in
period 1. In each panel, the vertical axis measures the percentage deviation from the initial steady state and the horizontal
axis measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value of Xt .

the model with the low initial adjustment rate as opposed to 7% in the model with
the high initial adjustment rate.

While the high initial adjustment rate constrains the effectiveness of an expan-
sionary tax policy, it makes a contractionary tax policy more effective. To illustrative
this point, Figure 6 presents the economy’s response to an announced permanent 10
percentage point increase in τ k enacted in period 1 for the parameter values with the
adjustment rate equal to 0.919. This figure reveals that the adjustment rate decreases
by about 8% immediately, causing the aggregate investment rate to fall by about 15%
immediately. Comparing Figure 6 with Figure 4, we find that the responses to the
tax increase and decrease are roughly symmetric for the standard growth and partial
adjustment models, but are highly asymmetric for the lumpy investment model. In
particular, the investment rate and the adjustment rate rise by about 13.4% and 6.7%,
respectively, in response to a 10 percentage point cut in τ k, but they decrease by
about 15.1% and 7.6% , respectively, in response to a 10 percentage point raise in τ k .
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FIG. 6. Response to Unanticipated Permanent Increase in τ k .

NOTES: The 10 percentage point tax increase lasts forever starting from period 1. This policy is announced and implemented
in period 1. In each panel, the vertical axis measures the percentage deviation from the initial steady state and the
horizontal axis measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value
of Xt .

The intuition behind the asymmetry is the following. When the distribution of fixed
costs is such that the initial steady-state adjustment rate (equal to 0.919) is very large,
the cutoff ξ̄ triggering investment is very large. This implies that most firms have
already made investment when their fixed costs are below the cutoff. In response to
an unanticipated permanent cut in τ k, the cutoff rises inducing firms with fixed costs
lying between the initial and new cutoffs to make investment. However, since the
initial cutoff is already large, the increase in the cutoff is limited and may make the
new cutoff reach the upper bound of the fixed cost. This may happen when the tax cut
is large or when the steady-state elasticity of the adjustment rate with respect to the
investment trigger is large. By contrast, in response to an unanticipated permanent
increase in τ k , the cutoff falls, inducing firms with fixed costs lying between the
initial and new cutoffs not to invest. Since the initial cutoff is large, its fall can be
large and hence the fall in the adjustment rate and the investment rate can also be
large.
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FIG. 7. Response to Unanticipated Temporary Increase in τ i .

NOTES: Let τ i
t = 0.1 for t = 1, 2, 3, 4 and τ i

t = 0 for t ≥ 5. This policy is announced and implemented in period 1. In each
panel, the vertical axis measures the percentage deviation from the initial steady state and the horizontal axis measures
time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value of Xt .

When the permanent tax cut is initially anticipated to be enacted in the future,
marginal Q rises immediately for the same reason in the case of the anticipated
temporary tax cut discussed in Section 3.2. Thus, both the investment rate and the
adjustment rate must rise initially. They continue to rise until the enactment date of
the tax cut. After this date, the economy transits to the new steady state as in the case
presented in Figure 4. We omit a detailed discussion.

3.4 Temporary Changes in the ITC

Suppose that a 10% ITC is imposed from periods 1 to 4, that is, τ i
t = 0.1 for

t = 1, ..., 4. In period 5, this policy is repealed so that τ i
t = 0 for t ≥ 5. This tax

policy is announced and implemented in period 1 and agents have perfect foresight
about future tax rates. Figure 7 presents the economy’s dynamic responses. By
equation (26), the increase in the ITC has a direct positive impact on investment by
reducing the tax-adjusted price of capital Q̃t = Qt/(1 − τ i

t ), ceteris paribus. But it
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also has an indirect negative impact on marginal Q by (30) because the increase in the
investment rate raises the capital stock and reduces the marginal product of capital,
ceteris paribus. Our numerical results show that the positive direct effect dominates,
and thus Q̃t and the investment rate rise on impact. The investment rate then falls
until period 4. In period 5, it drops sharply below its steady-state level because the
ITC is removed in period 5. After period 5, investment gradually rises to its previous
steady-state level. Consumption follows the opposite pattern as resources are devoted
to investment.

Even though marginal Q falls immediately, the investment trigger rises on impact,
because the increase in the ITC dominates the fall in Q in equation (23). This rise is
so large that all firms make adjustments immediately (the investment trigger reaches
the upper support of fixed costs). In addition, almost all firms in the lumpy investment
model continue to make capital adjustments until period 4. The adjustment rate drops
below its steady-state level in period 5. After period 5, it gradually rises to its previous
steady-state level.

In contrast to the case of changes in the corporate income tax rate, the extensive
margin effect accounts for less of the increase in the aggregate investment rate in
the lumpy investment model in response to the increase in the ITC. In addition,
the initial rise of the investment rate is smaller in the lumpy investment model than
in the standard growth model. This result is also different from that in the case of
corporate income tax cuts. The intuition is that the decrease in marginal Q in the short
run reduces firms’ incentives to make large investment. Even though the extensive
margin effect in the presence of fixed costs raises firms’ responses to the increase in
the ITC, this effect is not large enough.

Next, we suppose that the 10% ITC is enacted in period 2 and lasts for four periods.
This tax policy is anticipated initially. Figure 8 presents the economy’s responses to
this tax policy. Contrary to the responses presented in Figure 7, investment and output
decrease immediately, but consumption increases immediately. The intuition comes
from the dynamics of marginal Q characterized in Proposition 2. Anticipating the fall
of Q in period 2 due to the enactment of the 10% ITC, Q falls immediately at date 1.
Because the investment rate is determined by equation (26) and τ i

t = 0 for t = 1, the
investment rate must decrease in period 1. In period 2, the 10% ITC makes the new
investment good cheaper, but Q̃2 = Q2/(1 − τ i

2) actually rises. Thus, the investment
rate jumps up in period 2. Starting from period 2, the economy’s responses are similar
to those in the case of the announced temporary increase in the ITC.

3.5 Permanent Changes in the ITC

We finally consider two experiments in which there is a permanent 10% ITC. First,
Figure 9 presents the economy’s responses when this tax change is unanticipated
previously. It is announced and enacted in period 1 and agents have perfect foresight
about the future tax rates. For all three models, the investment rate rises immediately,
but the increase is less than that if the ITC is temporary, as shown in Figure 7. This
is in sharp contrast to Abel’s (1982) result that a permanent ITC provides a greater
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FIG. 8. Response to Anticipated Temporary Increase in τ i .

NOTES: The 10 percentage point tax increase lasts from periods 2 to 5. This policy is announced in period 1 and
implemented in period 2. In each panel, the vertical axis measures the percentage deviation from the initial steady state
and the horizontal axis measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state
value of Xt .

stimulus to investment than a temporary ITC for a competitive firm with constant
returns to scale. The reason is that Abel (1982) uses a partial equilibrium model
rather than a general equilibrium model. As we point out in Section 3.2 in partial
equilibrium, Q can be determined independently of capital for competitive firms
with constant-returns-to-scale technology. We can then show that the initial rise of
the investment rate is independent of the duration of the ITC. By contrast, in general
equilibrium, Q and capital must be jointly determined as shown in Proposition 2.
In particular, the interest rate and the wage rate change over time in response to tax
changes. As shown in Figures 8 and 9, the initial fall in Q is larger in response to a
permanent increase in the ITC than in response to a temporary increase in the ITC.

A permanent increase in the ITC changes the economy’s steady state. For the three
models, the capital stock, output, consumption, and labor are higher in the new steady
state. But the steady-state adjustment rate in the lumpy investment model is lower
than its initial steady-state value discussed in Section 2.3.
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FIG. 9. Response to Unanticipated Permanent Increase in τ i .

NOTES: The 10 percentage point tax increase lasts forever starting from period 1. This policy is announced and implemented
in period 1. In each panel, the vertical axis measures the percentage deviation from the initial steady state and the
horizontal axis measures time. For any variable Xt , each panel plots ln Xt − ln X , where X is the steady-state value
of Xt .

In the second experiment, we solve the case in which the permanent increase in the
ITC is announced in period 1 and anticipated to be enacted in some future date, say in
period 2. We find that both the adjustment rate and the investment rate fall on impact
by the same intuition discussed for the case of the anticipated temporary increase in
the ITC. These rates then jump up at the enactment date of the increase in the ITC.
After this date, the transition paths are similar to those presented in Figure 9. We thus
omit a detailed discussion.

4. CONCLUSIONS

In this paper, we have studied the impact of corporate tax policy on the economy
in the presence of both convex and nonconvex capital adjustment costs in a dy-
namic general equilibrium model with firm heterogeneity. Our model permits exact
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aggregation and is analytically tractable. Our main results are as follows. First, corpo-
rate tax policy generates both intensive and extensive margin effects via the channel
of marginal Q. At the micro level, it affects a firm’s decision on the size and timing
of investment. At the macro level, it affects each adjusting firm’s investment size and
the number of adjusting firms. Second, the impact of corporate tax policy depends
on the cross-sectional distribution of firms. If most firms have not made capital ad-
justments initially, an expansionary corporate tax policy is more effective, while a
contractionary corporate tax policy is less effective. The opposite result holds true
if most firms have made capital adjustments initially. Third, introducing convex ad-
justment costs in the standard growth model smooths the economy’s responses to tax
changes. Introducing nonconvex adjustment costs on top of it raises the economy’s
responses to tax changes and brings the equilibrium outcome closer to that in the
standard growth model. The responses can be larger than those in the standard growth
model for a permanent change in the corporate tax rate, but smaller for a permanent
or temporary change in the ITC.

Fourth, a permanent increase in the ITC raises the steady-state tax-adjusted price
of capital, but reduces the steady-state adjustment rate. In addition, an unanticipated
temporary increase in the ITC has a larger short-run stimulative impact than a per-
manent increase in the ITC, even for competitive firms with constant-returns-to-scale
technology. This finding contrasts with Abel’s (1982) result in a partial equilibrium
model. Finally, we extend Judd’s (1987) and Auerbach’s (1989) results on antici-
pation effects of tax policy to a general equilibrium model with both convex and
nonconvex capital adjustment costs. In particular, an anticipated decrease in the fu-
ture corporate income tax rate raises investment and adjustment rate immediately,
while an anticipated increase in the future ITC reduces investment and adjustment
rate initially.

Our model may be useful for empirical work and some of our results have novel
testable implications. For example, our predictions regarding the impact of corporate
tax policy on the adjustment rate can be tested empirically. One limitation of analysis
is the constant-return-to-scale assumption. Under this assumption, all firms choose to
make either zero investment or identical positive investment. This assumption allows
us to conduct exact aggregation and simplifies model analysis significantly. But it
also comes with a cost in the sense that our model can match the inaction rate but
not the spike rate as in the micro level evidence. This feature is similar to the Calvo
(1983) model of the pricing decision in which all firms either do not adjust price or
adjust to the same price level. Sveen and Weinke (2007) follow the Calvo approach
to model lumpy investment. Unlike this approach, the probability of adjustment for
a firm in our model is given by

∫ ξmax

ξ t
φ (ξ ) dξ , which is state dependent. Note that the

main goal of our paper is to study the aggregate implications of tax policy, but not
to fit all dimensions of the micro level evidence. To fit all dimensions of the micro
level evidence, one has to assume decreasing return to scale and introduce other
assumptions as in Khan and Thomas (2008) and Bachmann, Caballero, and Engel
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(2008). This extension will make the model complicated and increase computation
burden significantly. We leave it for future research.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1. From (22), we can show that the target investment level i j
t

satisfies the first-order condition

1 − τ i
t = g′(i j

t

)β�t+1

�t
V̄t+1. (A1)

By equations (3), (18), and (21), we can derive equation (24). Using this equation,
we define V a

t (ξ j
t ) as firm value per unit of capital when the firm chooses to invest. It

is given by

V a
t

(
ξ

j
t

) = (
1 − τ k

t

)
Rt + τ k

t δ − (
1 − τ i

t

)
i j
t − ξ

j
t + g

(
i j
t

)
Qt (A2)

= (
1 − τ k

t

)
Rt + τ k

t δ + (1 − δ + ς ) Qt

+ θ

1 − θ
(ψQt )

1
θ

(
1 − τ i

t

) θ−1
θ − ξ

j
t .

Define V n
t as firm value per unit of capital when the firm chooses not to invest. By

(22), (18), and (3), it satisfies

V n
t = (

1 − τ k
t

)
Rt + τ k

t δ + (1 − δ + ς ) Qt , (A3)

which is independent of ξ j
t . We can then rewrite problem (22) as

Vt
(
ξ

j
t

) = max{V a
t

(
ξ

j
t

)
, V n

t }. (A4)

Clearly, there is a unique cutoff value ξ ∗
t given in (23) satisfying the condition

V a
t

(
ξ ∗

t

) = V n
t , (A5)

V a
t

(
ξ

j
t

)
> V n

t if and only if ξ j
t < ξ ∗

t . (A6)

Because the support of ξ j
t is [0, ξmax] , the investment trigger is given by ξ̄t ≡

min
{
ξ ∗

t , ξmax
}
.

We can show that

V̄t =
∫ ξmax

0
Vt (ξ )φ(ξ )dξ
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=
∫ ξmax

ξ̄t

V n
t φ(ξ )dξ +

∫ ξ̄t

0
V a

t (ξ )φ(ξ )dξ

= V n
t +

∫ ξ̄t

0

[
V a

t (ξ ) − V n
t

]
φ(ξ )dξ.

We use equations (A2), (A3), and (23) to derive

V a
t (ξ ) − V n

t = θ

1 − θ
(ψQt )

1
θ

(
1 − τ i

t

) θ−1
θ − ξ (A7)

= ξ ∗
t − ξ.

Using the above two equations, (A3), and (21), we obtain (25). �

PROOF OF PROPOSITION 2. From (13), we deduce that all firms choose the same labor-
capital ratio nt . We thus obtain Nt = nt Kt . We then derive

Yt =
∫

Y j
t d j =

∫
F
(
K j

t , N j
t

)
d j =

∫
F
(
1, n j

t

)
K j

t d j

= F (1, nt )
∫

K j
t d j = F (1, nt ) Kt = F (Kt , Nt ) ,

which gives the first equality in equation (28). The second equality in equation
(28) follows from a law of large number, the market clearing condition (12), and
Proposition 1. We use equation (13) and n j

t = nt to show

F2(Kt , Nt ) = (
1 − τ n

t

)
wt . (A8)

By the constant return to scale property of F, we also have

Rt = F1(Kt , Nt ). (A9)

We next derive aggregate investment

It =
∫

I j
t d j =

∫
i j
t K j

t d j = Kt

∫ ξ̄t

0

(
ψQt

1 − τ i
t

) 1
θ

φ (ξ ) dξ,

where the second equality uses the definition of i j
t , and the third equality uses a law

of large numbers and Proposition 1. We thus obtain (26). By definition

Kt+1 =
∫ 1

0

[
(1 − δ) +�

(
i j
t

)]
K j

t d j.

Substituting the optimal investment rule in equation (24) and using equation (26), we
obtain (27).
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Finally, equation (30) follows from substitution of equations (9) and (A9) into
equation (25). Equation (29) follows from equations (9), (10), and (A8). �
PROOF OF PROPOSITION 3. In an interior steady state, ξ ∗ = ξ̄ and equations 26 and (23)
imply that

I

K
=
(
ψQ

1 − τ i

) 1
θ
∫ ξ̄

0
φ(ξ )dξ, (A10)

ξ̄ = θ

1 − θ
(ψQ)

1
θ

(
1 − τ i

) θ−1
θ . (A11)

From these two equations, we obtain

I

K
= ξ̄

1 − τ i

1 − θ

θ

∫ ξ̄

0
φ(ξ )dξ. (A12)

In steady state, equation (27) becomes

δ − ς = ψ

1 − θ
(I/K )1−θ

[∫ ξ̄

0
φ(ξ )dξ

]θ
. (A13)

Substituting equation (A12) into the above equation yields equation (33). The ex-
pression on the right-hand side of this equation increases with ξ̄ . The condition in
this proposition guarantees a unique interior solution ξ̄ ∈ (0, ξmax) exists.

Equation (34) follows from (A11). Equations (A12) and (A13) imply that

δ − ς = ψ

1 − θ

I

K

(
ξ ∗ (1 − θ )(
1 − τ i

)
θ

)−θ
. (A14)

From this equation and equation (34), we obtain (35). The other equations in the
proposition follow from the steady-state versions of equations (29) and (30). �
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