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is tempted by immediate gratification and suffers from self-control problems. The
cost of self-control lowers the benefit from continuation or stopping and may erode
the option value of waiting. When applied to the investment and exit problems, the
model can generate the behavior of procrastination and preproperation. In addi-
tion, unlike the hyperbolic discounting model, the model here provides a unique
prediction.
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1 Introduction

Suppose you have a referee report to write today. You feel writing the referee report
is unpleasant and prefer to put off and do it tomorrow. But when tomorrow comes,
you tend to delay again. This behavior is often referred to as procrastination—wait
when you should do it. Suppose you have a coupon to see one movie over the next
several weeks, and your allowance does not permit you to pay for a movie. You
tend to see a movie in an earlier week even though there may be a better movie in
a later week. This behavior is often referred to as preproperation—do it when you
should wait.1

The procrastination and preproperation behavior is prevalent in many choice
situations. Motivated by this behavior, this paper studies a general environment
where an agent with time-consistent preferences makes irreversible binary choices
under uncertainty over an infinite horizon. I adopt the Gul and Pesendorfer (2001,
2004) self-control utility model and interpret that behavior as an agent’s struggling
with temptations.2 In this model, preferences are defined over a domain of sets of
alternatives or decision problems. Utility depends on the decision problem from
which current consumption is chosen. The interpretation is that temptation has to do
with not just what the agent has consumed, but also what he could have consumed.
The agent also seeks immediate gratification because an immediate benefit consti-
tutes a temptation to the agent, but not because it has a higher relative weight. The
agent may either succumb to temptations or exercise costly self-control to resist
temptations.

The Gul-Pesendorfer model is time consistent because utility satisfies recursiv-
ity under the domain of decision problems. Thus, the standard recursive methods
such as backward induction and dynamic programming can be applied. Impor-
tantly, the Gul-Pesendorfer model can explain time inconsistent behavior observed
in some experiments as illustrated in Gul and Pesendorfer (2001, 2004). In addi-
tion to its tractability, the Gul-Pesendorfer model has clear welfare implications
because it is based on the standard revealed preference principle. This is in contrast
to the hyperbolic discounting model in which there is no generally agreed welfare
criterion. In the hyperbolic discounting model, the agent at different dates is treated
as a separate self. An alternative or a policy may be preferred by some selves, while
it may make other selves worse off. The Pareto efficiency criterion and the long-run
ex ante utility criterion are often adopted.

In Sect. 2, I model an agent’s irreversible binary choice problem under uncer-
tainty as an option exercise problem, or more technically, an optimal stopping
problem. Irreversibility and uncertainty are important in many binary choice prob-
lems such as entry, exit, default, liquidation, project investment, and job search.
According to the standard theory (see Dixit and Pindyck 1994), all these problems
can be viewed as a problem where agents decide when to exercise an “option”
analogous to a financial call option—it has the right but not the obligation to buy

1 These examples and the term “preproperation” are borrowed from O’Donoghue and Rabin
(1999a). As there, the comparison is based on the standard time consistent preferences bench-
mark.

2 The Gul-Pesendorfer model has been applied to study taxation (Krusell et al. 2001), asset
pricing (Krusell et al. 2002), (DeJong and Ripoll 2006), and nonlinear pricing (Esteban et al.
2006).
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an asset at some future time of its choosing. This real options approach emphasizes
the positive option value of waiting.

Unlike the standard theory, I make the distinction according to whether rewards
and costs are immediate or delayed, as in O’Donoghue and Rabin (1999a) who first
analyze procrastination and preproperation using a hyperbolic discounting model
in a finite horizon setting.3 This distinction is important to explain procrastination
and preproperation in the hyperbolic discounting model since it makes present
bias critical. This distinction is also important in the present model since it makes
immediate temptation critical. After stating the model setup and assumptions, I
present the self-control utility model developed by Gul and Pesendorfer (2001,
2004) and compare it with the hyperbolic discounting model. I then present prop-
ositions to characterize the optimal stopping rules for the general infinite-horizon
model when the agent has self-control preferences. I describe the optimal stopping
rules as a trigger policy whereby the agent stops the first time the state process
hits a threshold value. I also explain the impact of temptation and self-control on
the optimal stopping rules. In particular, I show that the cost of self-control may
lower the benefit from both stopping and continuation and erode option value of
waiting. Moreover, it may outweigh this option value if the level of self-control is
sufficiently low.

In Sect. 3, I apply the results in Sect. 2 to investment and exit problems when
the decision maker has self-control preferences. I also conduct welfare analysis.
The investment and exit problems represent two different classes of option exer-
cise problems. The project investment decision is an example in which an agent
decides whether or not to exercise an option to pursue upside potential. Entry and
job search are similar problems. I show the following: When the investment cost
is immediate, the investor is tempted to delay investment. Thus, he procrastinates
and the welfare loss is the forgone project value, which is equal to the cost of self-
control. When the project value is immediate, the investor is tempted to invest early.
Thus, he preproperates and the welfare loss is the forgone option value of waiting.
If his level of self-control is sufficiently low, the investor may invest in negative net
present value (NPV) projects. This reflects the trade-off between investing now but
incurring financial losses and waiting but incurring self-control costs. When both
the project value and investment cost are immediate, the investor also preproperates
and the welfare loss is the forgone option value of waiting. In this case, he never
invests in negative NPV projects. If his level of self-control is sufficiently low, he
invests according to the myopic rule which compares the current period benefit and
cost only.

After analyzing the investment problem, I turn to the exit problem, in which an
owner/manager with self-control preferences decides when and if to terminate a
project. This problem represents an example in which an agent decides whether or
not to exercise an option to avoid downside losses. Other examples include default
and liquidation decisions. I show the following: When the profits are immediate,

3 Strotz (1956) first studies time-inconsistent preferences in economics. Akerlof (1991) ana-
lyzes procrastination, but frames his discussion very differently. The O’Donoghue and Rabin
model has been generalized by a number of papers, e.g., O’Donoghue and Rabin (1999b, 2001),
Brocas and Carrillo (2001, 2005). The hyperbolic discounting model has been applied to study
consumption-saving (Laibson 1994, 1997), job search (DellaVigna and Paserman 2005), so-
cial security (Imrohoroglu et al. 2003), retirement (Diamond and Koszegi 2003), investment
(Grenadier and Wang 2006), and general equilibrium (Herings and Rohde 2006).
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the owner is tempted to continue the project even when he should terminate. Thus,
he procrastinates. The welfare loss is equal to the cost of self-control. By contrast,
when the fixed cost of continuing the project is immediate, the owner is tempted to
avoid this cost and preproperates to terminate, even though he may make positive
net profits. The welfare loss is the forgone current and future profit opportunities.
When both the cost and profit are immediate, the owner also preproperates, but
never terminates the project at a time when he makes a negative net profits. If the
owner’s level of self-control is sufficiently low, the owner terminates the project
according to the myopic rule.

O’Donoghue and Rabin (2001) analyze a similar infinite horizon determinis-
tic task choice problem using the hyperbolic discounting model. They show that
their model typically has multiple equilibria using the “perception-perfect strat-
egy” solution concept. They also show that some equilibria are cyclic, with some
fixed intervals of length between action dates. I show that cyclic equilibria also
arise in the problem under uncertainty analyzed here. These cyclic equilibria are
counterintuitive and unappealing. By contrast, the Gul-Pesendorfer model admits
a unique prediction. The importance of uniqueness is emphasized by Fudenberg
and Levine (2006). Fudenberg and Levine provide a dual-self model which is also
motivated by time inconsistency issues. They show that their reduced-form model
is similar to the Gul-Pesendorfer model. They independently analyze an optimal
stopping problem which is a special case of my general setup. As here, they also
characterize the optimal stopping rule by a trigger policy and derive a unique solu-
tion. Their model differs from mine in that they assume the cost is stochastic and
the reward is constant. Moreover, they consider only the case of immediate costs
and future benefits.

I conclude the paper in Sect. 4 and relegate technical details to an appendix.

2 The model

I model an agent’s option exercise decisions as an optimal stopping problem. Spe-
cifically, consider a discrete time and infinite horizon environment. In each period,
the agent decides whether to stop a process and take a termination payoff, or to
continue for one more period and make the same decision in the future. The deci-
sion is irreversible in the sense that if the agent chooses to stop, he makes no further
choices. Formally, time is denoted by t = 1, 2, . . . , and uncertainty is generated
by a state process (xt )t≥1. For simplicity, I assume that xt is drawn identically and
independently from a distribution F on [a, A], where A > a > 0. Continuation
at date t generates a payoff π (xt ) and incurs a cost cc, while stopping at date t
yields a payoff �(xt ) and incurs a cost cs, where π and � are continuous and
increasing functions. I will provide applications in Sect. 3 to show that this simple
model covers a wide rage of economic problems.

As in O’Donoghue and Rabin (1999a), I make an important distinction accord-
ing to whether costs and rewards are obtained immediately or delayed. The term of
immediate costs is used to refer to the situation where the cost is incurred immedi-
ately while the reward is delayed. The term of immediate rewards is used to refer
to the situation where the reward is incurred immediately while the cost is delayed.
For simplicity, I consider the case of one period delay only. In addition, I also
consider the case where both costs and rewards are immediate. This case is not
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explicitly analyzed by O’Donoghue and Rabin (1999a). O’Donoghue and Rabin
(1999a) give many examples to illustrate that the preceding distinction is mean-
ingful in reality. Moreover, this distinction is important to generate procrastination
and preproperation.

Unlike O’Donoghue and Rabin (1999a), I consider uncertainty and infinite
horizon. Uncertainty is prevalent in intertemporal choices and infinite horizon is
necessary to analyze long-run stationary decision problems. These two elements
are building blocks in many economic models, especially in macroeconomics and
finance. Incorporating them allows me to study some interesting applications in
macroeconomics and finance, as illustrated in Sect. 3.

2.1 Self-control preferences

O’Donoghue and Rabin (1999a) explain procrastination and preproperation by
adopting the time-inconsistent hyperbolic discounting model proposed by Phelps
and Pollak (1968). This model can be described as follows. Let Ut (ct , ..., cT ) rep-
resent an agent’s intertemporal preferences from a consumption stream (ct , ..., cT )
in period t. T could be finite or infinite. The hyperbolic discounting preferences
are represented by

Ut (ct , ..., cT ) = ut (ct ) + βE

[
T −t∑
k=1

δkut+k (ct+k)

]
, t ≥ 1,

where 0 < β, δ ≤ 1 and ut+k (·) represents period t + k utility function,
k = 0, . . . , T − t. In addition, δ represents long-run, time-consistent discount-
ing and β represents a “bias for the present.” The agent at each point in time is
regarded as a separate “self” who is choosing his current behavior to maximize
current preferences, while his future selves will control his future behavior. In this
model, an agent must form expectation about his future selves’ preferences. Two
extreme assumptions are often made. In one extreme, the agent is naive and believes
his future selves’ preferences will be identical to her current self’s, not realizing
changing tastes. In the other extreme, the agent is sophisticated and knows ex-
actly what his future selves’ preferences will be. The solution concept of subgame
perfect Nash equilibrium is often adopted. As typical in dynamic games, multiple
equilibria may arise (see Proposition 6 below, Fudenberg and Levine 2006; Krusell
and Smith 2003, and O’Donoghue and Rabin 2001).

The hyperbolic discounting model provides an intuitive explanation for pro-
crastination and preproperation. The key intuition relies on the following feature
of the hyperbolic discounting model. When β < 1, the agent gives more relative
weight to period t when he makes a choice in period t than he does when he makes
the choice in any period prior to period t . That is, the agent has a time-inconsistent
taste for immediate gratification. There seems to be ample experimental evidence on
the time-inconsistent behavior.4 In a typical experiment, subjects choose between
a smaller period t reward and a larger period t + 1 reward. If the choice is made
in period t then the smaller earlier reward is chosen. If the choice is made earlier,
then the larger later reward is chosen.

4 See, for example, Thaler (1981), Ainslie and Haslam (1992), Kirby and Herrnstein (1995).
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Gul and Pesendorfer (2001, 2004) propose an alternative interpretation of this
behavior based on time-consistent preferences. Their key insight is that the agent
finds immediate rewards tempting. When the agent makes the choice in period t ,
the period t reward constitutes a temptation to the agent. So he may choose a
smaller period t reward rather than a larger period t + 1 reward. However, if he
makes a choice prior to period t, neither period t reward nor period t +1 reward can
be consumed immediately and hence his decisions are unaffected by temptations.

To capture this intuition, Gul and Pesendorfer (2001, 2004) develop a model
of self-control based on a choice theoretic axiomatic foundation.5 They define
self-control preferences over sets of alternative consumption levels or decision
problems—a domain different from the usual one. The interpretation is that temp-
tation has to do with not just what the agent chooses, but what he could have
chosen. Specifically, let Bt be the agent’s period t decision problem and Wt rep-
resent his intertemporal utility in period t . Then the self-control preferences are
represented by

Wt (Bt ) = max
ct ∈Bt

{
ut (ct ) + vt (ct ) + δE

[
Wt+1 (Bt+1)

]} − max
ct ∈Bt

vt (ct ) , t ≥ 1.

(1)

If T is finite, since there is no continuation problem in period T,

WT (BT ) = max
cT ∈BT

{uT (cT ) + vT (cT )} − max
cT ∈BT

vT (cT ) . (2)

Here ut +δWt+1 represents the commitment utility in period t and vt is the tempta-
tion utility in period t. The expression ut (ct )+vt (ct )+δE

[
Wt+1 (Bt+1)

]
reflects

the compromise between commitment and temptation. The agent’s optimal choice
in period t maximizes this expression. When this choice is identical to the temp-
tation choice in the second maximum in (1) or (2), the agent succumbs to the
temptation and there is no self-control cost. However, when the two choices do
not coincide, the agent exercises costly self-control and vt (ct ) − maxct ∈Bt vt (ct )
represents the cost of self-control. If T = ∞, I consider a stationary model and
drop time subscripts,

W (B) = max
c∈B

{
u (c) + v (c) + δE

[
W

(
B ′)]} − max

c∈B
v (c) . (3)

Here B ′ denotes the choice problem in the next period and E [·] denotes the expec-
tation operator.

An important feature of the Gul–Pesendorfer model is that it is time consistent
since utility in (1)–(3) is defined recursively. Thus, the usual recursive method such
as backward induction and dynamic programming can be applied. Importantly, in
addition to this tractability, this model has clear welfare implications. That is, this
model follows the revealed preference tradition of standard economic models: if
the agent chooses one alternative over another, then he is better off with that choice.
By contrast, time inconsistent models do not have a universally agreed welfare cri-
terion. Some researchers such as Laibson (1994, 1997) adopt a Pareto efficiency
criterion, requiring all period selves weakly prefer one strategy to another. Other

5 See Gul and Pesendorfer (2001, 2004) for detailed axioms. The key axiom is set betweenness.
Their model is more general than the one presented in this paper.
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researchers such as O’Donoghue and Rabin (1999a) adopt an ex ante long-run util-
ity criterion. The problem of the welfare analysis of the time inconsistent models
is that the connection between choice and welfare is broken.

In the present paper, I adopt the Gul–Pesendorfer model to analyze the option
exercise problem. In this problem, the set B consists of two elements representing
the current period payoffs from stopping and continuation since the choice prob-
lems are binary. If the agent chooses to stop, then there is no continuation problem
so that B ′ = ∅ and W

(
B ′) = 0. If the agent chooses to continue, then he faces the

same decision problem in the next period so that B ′ consists of two elements repre-
senting the payoffs from stopping and continuation in the next period. To simplify
exposition, I assume risk neutrality throughout. That is, u (c) = c and v (c) = λc,
λ > 0. Here λ is the self-control parameter. An increases in λ raises the weight on
the temptation utility and leads to a decrease in the agent’s (instantaneous) self-
control.6 When λ = 0, the model reduces to the standard time-additive expected
utility model with exponential discounting.

2.2 Optimal stopping rules

I now adopt the Gul–Pesendorfer utility model (3) to solve the agent’s option
exercise problem by dynamic programming.7 The key is to formulate Bellman
equations. These Bellman equations are different for the cases of immediate costs,
immediate rewards, and immediate costs and rewards. They are described as fol-
lows:

1. Immediate costs

W (x) = max

{
δ�(x)−(1+λ) cs, δπ (x)−(1+λ) cc+δ

∫
W

(
x ′) dF

(
x ′)}

− λ max {−cc,−cs} . (4)

2. Immediate rewards

W (x) = max

{
(1+λ)�(x)−δcs, (1+λ) π (x)−δcc+δ

∫
W

(
x ′) dF

(
x ′)}

− λ max {π (x) , � (x)} . (5)

3. Immediate costs and rewards

W (x)=max

{
(1+λ) (�(x)−cs) , (1+λ) (π (x)−cc)+δ

∫
W

(
x ′) dF

(
x ′)}

− λ max {π (x) − cc, � (x)−cs} . (6)

6 See Gul and Pesendorfer (2004) for the definition and characterization of measures of self-
control. To distinguish between differences in impatience and differences in self-control, one
should fix intertemporal choices and consider instantaneous self-control only.

7 See Stokey and Lucas (1989) and Dixit and Pindyck (1994) for the theory of dynamic
programming. The existence of a bounded and continuous value function is guaranteed by the
contraction mapping theorem.
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I explain (4) in some detail. The interpretations for the other two equations
are similar. Suppose costs are immediate. In the current period, the agent faces
the decision problem of whether to continue or to stop after observing the current
state takes the value x . Stopping incurs an immediate cost cs and yields the payoff
� (x) . However, the agent obtains this payoff in the next period so that he gets a
discounted value δ� (x). After stopping, the agent has no further choice, and hence
the continuation value is zero. Because of the compromise between the temptation
and the commitment utilities, the total payoff of stopping is δ�(x) − (1 + λ) cs,
which is the first term in the first curly bracket in (4). Similarly, continuation incurs
an immediate cost cc and gets a discounted payoff from the next period δπ (x) .
The agent has to make the same choice of whether to stop or to continue in the next
period, and hence gets continuation value δ

∫
W

(
x ′) dF

(
x ′) . Thus, we have the

second term in the first curly bracket in (4). Finally, the agent is tempted by whether
to stop now and avoid the cost of continuation cc or to continue and avoid the cost
of stopping cs . Thus, the temptation choice is described by λ max {−cc, −cs} ,
which is the last term in (4). Note that the rewards � (x) and π (x) do not enter the
temptation utility since they are obtained with a one period delay and hence do not
tempt the agent.

Clearly, continuation is optimal for those values of x for which the maximum in
the first line of (4) is attained at the second expression in the curly bracket. Imme-
diate termination is optimal when the maximum is attained at the first expression.
Call the corresponding divisions of the range of x the continuation region and the
stopping region, respectively. A similar analysis applies to (5) and (6). In general,
for arbitrary payoffs π (x) and � (x) , the continuation and stopping regions could
be arbitrary. In most applications, these regions can be easily characterized. In
particular, there is a threshold value such that it partitions the state space into a
continuation region and a stopping region. Consequently, the optimal stopping rule
is characterized by a trigger policy. That is, the agent stops the first time the process
(xt )t≥1 hits the threshold value. Importantly, depending on the payoff structure,
the stopping region could be above the threshold value or below it. The former
case describes the problems of pursing upside potential such as investment and job
search. The latter case describes the problems of avoiding downside losses such as
exit and default. In the applications in Sect. 3, I will impose explicit assumptions
and provide a more complete and transparent analysis of these problems.

Here I do not provide general conditions for the structure of the continuation
and stopping regions.8 Instead, I provide explicit characterizations of the threshold
value for the case where the agent pursues upside potential only. That is, I consider
that the continuation region is below the threshold value. I characterize the optimal
stopping rule in the following proposition:

Proposition 1 Consider each problem in (4)–(6). If�(x)−π (x) is strictly increas-
ing in x, then the optimal stopping rule is described by one of the following cases:
(a) The agent never stops. (b) The agent stops immediately. (c) There is a unique
threshold value x∗ ∈ [a, A] such that the agent stops the first time the process
(xt )t≥1 hits x∗ from below.

In what follows, I will focus on the third case since it is the most interesting
case. To compare with the standard model, I denote by x the threshold value for an

8 See Dixit and Pindyck (1994) [pp. 128–130], for discussions for standard preferences.
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agent having standard preferences with λ = 0. Since the mean value of the option
exercise time increases with the threshold value, comparative static analysis for the
threshold value reveals properties of the average option exercise time.

Proposition 2 Let the assumption in Proposition 1 hold. Suppose costs are imme-
diate.

(i) The threshold value x∗ satisfies the equation

(1 − δ)
[
δ�(x∗) − cs

] + λ (1 − δ) [−cs − max {−cc, −cs}]

= δπ
(
x∗) − cc + δ

A∫
x∗

δ
[
�(x ′) − �(x∗)

]
dF

(
x ′)

+ δ

x∗∫
a

δ
[
π

(
x ′) − π

(
x∗)] dF

(
x ′)

+ λ [−cc − max {−cc, −cs}] . (7)

(ii) If cs ≥ cc, then x∗ ≥ x . If cs < cc, then x∗ < x .

The interpretation of (7) is as follows. The expression on the left side of Eq. (7)
describes the normalized per period benefit from stopping, while the expression
on the right side describes the benefit from continuation or the opportunity cost
of stopping. The agent optimally stops at the threshold value x∗ such that he is
indifferent between stopping and continuation.

Note that the benefit from continuation consists of not only the current period
value but also an option value of waiting when the agent waits for one more period
and gets a better draw x ′ > x∗ or a worse draw x ′ < x∗. The option value is
represented by the integration terms on the right side of (7).

Importantly, all terms containing λ represent the cost of self-control. Specifi-
cally, the term on the first line of (7) represents the normalize per period cost of
self-control if the agent chooses to stop. The term on the fourth line of (7) repre-
sents the cost of self-control if the agent chooses to continue. When λ = 0, the
model reduces to the one with standard preferences.

For part (ii), if the cost of stopping is higher than the cost of continuation,
i.e., cs ≥ cc, then the agent is tempted to continue. Thus, if the agent chooses to
continue, there is no self-control cost so that the term on the third line of (7) van-
ishes. By contrast, if the agent chooses to stop, then he has to exercise self-control
and incurs a cost given in the second term in the first line of (7 ). Consequently,
compared with the standard model, the benefit of stopping is lowered and the agent
procrastinates to exercise the option. The interpretation of the other case (cs < cc)
is similar.

Proposition 3 Let the assumption in Proposition 1 hold. Suppose rewards are
immediate.
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(i) The threshold value x∗ satisfies the equation

(1 − δ)
[
�(x∗) − δcs

] + λ (1 − δ)
[
�(x∗) − max

{
π

(
x∗) , �

(
x∗)}]

= π
(
x∗) − δcc + δ

x∗∫
a

[
π

(
x ′) − π

(
x∗)] dF

(
x ′)

+ δ

A∫
x∗

[
�(x ′) − �(x∗)

]
dF

(
x ′)

+ λ
[
π

(
x∗) − max

{
π

(
x∗) , �

(
x∗)}]

+ λδ

x∗∫
a

[
π

(
x ′)

− max
{
π

(
x ′) ,�

(
x ′)}−(

π
(
x∗)−max

{
π

(
x∗) , �

(
x∗)})] dF

(
x ′)

+ λδ

A∫
x∗

[
�(x ′) − max

{
π

(
x ′) , �

(
x ′)} − (

�
(
x∗)

− max
{
π

(
x∗) , �

(
x∗)})] dF

(
x ′) . (8)

(ii) If �(x) ≥ π (x) for all x, then x∗ ≤ x .

The interpretation of (8) is similar to that of (7). Unlike in the case of immediate
costs, the agent is tempted by stochastic rewards in each period. Thus, self-control
incurs not only a current period cost but also a future period cost. The former is
represented by the fourth line of (8). The latter is represented by the last two lines
of Eq. (8). In particular, in the next period the agent is tempted to stop or continue
depending on whether the state in the next period is better than x∗ (x ′ > x∗) or
worse than x∗ (x ′ < x∗). To resist this temptation, the agent must incur a future
self-control cost.

Consider part (ii). When the rewards from stopping are always higher than the
rewards from continuation, �(x) ≥ π (x) , the agent is tempted to stop. Stopping
at x∗ means the agent succumbs to the temptation and hence there is no cost of
self-control. Thus, the second term in the first line of (8) vanishes. If the agent
decides to continue at x∗, he has to resist the temptation to stop and hence incurs
a cost of self-control represented by the third line of (8). Consider next the future
cost of self-control. In the next period, if x ′ > x∗, the agent stops and succumbs to
the temptation. There is no cost of self-control and hence the term in the last line of
(8) vanishes. If x ′ < x∗, the agent should continue and incur a cost of self-control
in the next period. This implies that the benefit from continuation is lowered, com-
pared with the standard model. Consequently, the agent preproperates to exercise
the option.

Proposition 4 Let the assumption in Proposition 1 hold. Suppose both costs and
rewards are immediate.
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(i) The threshold value x∗ satisfies the equation

(1 − δ)
[
�(x∗) − cs

] + (1 − δ) λ
[
�(x∗) − cs

− max
{
π

(
x∗) − cc, �

(
x∗) − cs

}]

= (
π

(
x∗) − cc

) + δ

x∗∫
a

[
π

(
x ′) − π

(
x∗)] dF

(
x ′)

+ δ

A∫
x∗

[
�(x ′) − �(x∗)

]
dF

(
x ′)

+ λ
(
π

(
x∗) − cc − max

{
π

(
x∗) − cc,�

(
x∗) − cs

})

+ λδ

x∗∫
a

[
π

(
x ′) − cc − max

{
π

(
x ′) − cc, � (x) − cs

}
− (

π
(
x∗) − cc − max

{
π

(
x∗) − cc, �

(
x∗) − cs

})]
dF

(
x ′)

+ λδ

A∫
x∗

[
�(x ′) − cs − max

{
π

(
x ′) − cc, �

(
x ′) − cs

}
− (

�
(
x∗) − cs − max

{
π

(
x∗) − cc, �

(
x∗) − cs

})]
dF

(
x ′) . (9)

(ii) If �(x) − cs ≥ π (x) − cc for all x, then x∗ ≤ x .

The interpretation of this proposition is similar to that of Proposition 3. So I
omit it.

Finally, when the continuation region is above the threshold value, the agent
tries to avoid downside losses. This happens in the exit problem as described in the
next section. One can provide characterizations for the threshold value similar to
Propositions 1–4.

3 Applications

This section applies the setup and results in Sect. 2 to study investment and exit
problems.

3.1 Investment

An important type of option exercise problems is the irreversible investment prob-
lem.9 Consider that a risk-neutral investor decides whether and when to invest in a
project with stochastic values xt in period t. Investment incurs a lump sum cost I at

9 The standard real options approach assumes that investment payoffs can be spanned by traded
securities so that preferences do not matter for investment timing (Dixit and Pindyck 1994). Here
we assume that these securities are not available to the decision maker.
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the time of the investment. This investment problem can be cast into the framework
laid out in Sect. 2 by setting10

�(x) = x, cs = I, π (x) = cc = 0.

In standard investment problems, costs and benefits come at the same time. In real-
ity, there are many instances where costs and benefits do not arrive at the same time.
For example, an important feature of real investment is time to build. It is often
the case that it takes time to complete a factory or develop a new product. This is
an instance of immediate costs and delayed rewards. As a different example, some
firms start investing in a project financed by borrowing. Debts may be gradually
repaid after the firms earn profits. This is an instance of immediate rewards and
delayed costs.

I now analyze these different cases by rewriting the Bellman equations (4)–(6)
as follows:

1. Immediate costs

W (x) = max

{
δx − (1 + λ) I, δ

∫
W

(
x ′) dF

(
x ′)}−λ max {0, −I } . (10)

2. Immediate rewards

W (x) = max

{
(1 + λ) x − δ I, δ

∫
W

(
x ′) dF

(
x ′)} − λ max {x, 0} . (11)

3. Immediate costs and rewards

W (x) = max

{
(1 + λ) (x − I ) , δ

∫
W

(
x ′) dF

(
x ′)} − λ max {x − I, 0} .

(12)

From the above equations, the effect of self-control is transparent. When
rewards are immediate, the investor is tempted to invest now. He may either suc-
cumb to temptation or exercise costly self-control. Self-control acts as if the benefit
of waiting is lowered by λx in utility value. Thus, the investor has an incentive to
preproperate. By contrast, when costs are immediate, the investor is tempted to
wait. Self-control acts as if the cost of investment is increased by an amount of
λI. This causes the investor to procrastinate. The interesting case is when both
costs and rewards are immediate. When x > I, the investor is tempted to invest
earlier. But when x < I, the investor is tempted to wait. Thus, the result seems
to be ambiguous. Using Propositions 1–4, I formalize the preceding intuition and
characterize the optimal investment rule for each case in the following:

Proposition 5 Under the conditions given in the appendix, there is a unique thresh-
old value x∗ ∈ [a, A] (x ∈ [a, A]) such that the investor with self-control prefer-
ences (standard preferences) invests the first time the process (xt )t≥1 reaches this
value.

10 The stopping problem analyzed in Fudenberg and Levine (2006) is a special case of my
general framework by setting π (x) = x, cc = cs = 0, and � (x) = δ

1−δ
v for some constant

v > 0. They analyze the case with immediate costs and future rewards only.
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(i) If costs are immediate, then x∗ satisfies

(
δx∗ − I

)
(1 − δ) − λI (1 − δ) = δ

A∫
x∗

δ
(
x − x∗) dF (x) , (13)

and x is the solution for λ = 0. Moreover, x∗ > x > I/δ and x∗ increases
with λ.

(ii) If rewards are immediate, then x∗ satisfies

(
x∗ − δ I

)
(1 − δ) = δ

A∫
x∗

(
x − x∗) dF (x) + λδ

x∗∫
a

(
x∗ − x

)
dF (x) − λx∗,

(14)
and x is the solution for λ = 0. Moreover, x∗ < x, x > δ I and x∗ decreases
with λ.

(iii) If both costs and rewards are immediate then x∗ satisfies

(
x∗ − I

)
(1 − δ) = δ

A∫
x∗

(
x − x∗) dF (x) − λ

(
x∗ − I

)

+ λδ

x∗∫
a

[(
x∗− I

)−max (0, x − I )
]

dF (x) , (15)

and x is the solution for λ = 0. Moreover, I ≤ x∗ < x and x∗ decreases
with λ.

The left and right sides of Eq. (13)–(15) describe the utility benefits from
investment and waiting, respectively. At the investment threshold x∗, the investor
is indifferent between investing and waiting. Before analyzing the impact of self-
control, I first discuss briefly the solution for the standard model corresponding to
λ = 0. As is well known, because of irreversibility and uncertainty, waiting has
positive option value. The option value in each case is represented by the first term
on the right side of the corresponding equations (13)–(15). Due to this option value,
the investor with standard preferences invests at the time when the threshold value
is higher than the cost (e.g., in part (i) of Proposition 5, δ x̄ > I ). Thus, the standard
net present value (NPV) rule leads to a non-optimal early investment time. This
result is well known in the finance literature (e.g., Dixit and Pindyck 1994).

I next turn to the case with self-control. Consider part (i) of Proposition 5.
If costs are immediate, the investor is tempted to wait. To resist this temptation,
investing now must incur a self-control cost λI (1 − δ), this lowers the benefit
from investment as revealed on the left side of (13). Thus, the investor chooses
to procrastinate in the sense that he invests at a time later than that when he has
standard preferences. Since x∗ increases with the self-control parameter λ, the
agent delays further as the self-control parameter becomes larger.11 When λ is

11 The mean value of the waiting time is given by (1 − F (x∗))−1 . It is increasing in the
threshold value x∗.
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sufficiently large, x∗ may exceed the upper bound A so that the investor never
undertakes the investment project.

By contrast, if rewards are immediate, then the investor is tempted to invest now.
This case is analyzed in part (ii) of Proposition 5. Waiting incurs a direct current
period self-control cost λx∗, which lowers the option value of waiting. Importantly,
self-control adds a positive option value of waiting to invest,λδ

∫ x∗
a (x∗−x) dF (x) .

This is because, when the investor waits for one more period to invest at x∗
and gets a worse draw x < x∗, the cost of self control is less than the project
value measured by the temptation utility.12 One can show that this positive value
is dominated by the current self-control cost. Thus, compared with the standard
model with λ = 0, the benefit from waiting is lowered and the investor chooses to
preproperate.

Part (ii) of Proposition 5 also shows that x∗ decreases with the self-control
parameter λ. Thus, as λ gets larger and larger, the investor invests sooner and
sooner. When λ is sufficiently large, the investor invests at a threshold value lower
than that prescribed by the NPV rule. Under this rule, the threshold value is δ I .13

This result implies that the investor may obtain negative NPV at the time of invest-
ment. This result seems counterintuitive. In fact, tempted by investing now, the
investor may reason, “If I invest now, I get a reward and incur a cost in the future.
If I do not invest now, I have to exercise costly self-control. The cost of self-control
may outweigh the option value of waiting. Thus, I prefer to invest now even though
I get negative NPV.” In reality, we do observe the phenomena that investors rush to
embark on investments with negative NPV. For example, Rook (1987) finds empir-
ical evidence that the presence of credit opportunities results in present-oriented,
unplanned, and impulse buying.

I now consider part (iii) of Proposition 5 where both costs and rewards are
immediate. It is important to observe that the investor would never invest at a pro-
ject value less than the cost; that is, x∗ cannot be less than I. This is because
when x∗ < I, the investor has no temptation to invest and can choose cost-
lessly not to invest, thereby obtaining the outside value zero. Given x∗ ≥ I,
at the threshold value x∗ the investor is tempted to invest. Thus, there is no
self-control cost of investing at x∗. Consider now the self-control cost of wait-
ing. Waiting incurs a current period self-control cost λ (x∗ − I ) . Waiting also has
an option value (measured by the temptation utility) represented by the last term
in (15) when the investor gets a worse draw x < x∗. One can show that the cur-
rent self-control cost dominates so that the benefit from waiting is lowered. Thus,
compared with the standard model, the investor preproperates. Note that as in the
case of immediate rewards, x∗ decreases with the self-control parameter λ. As λ
is sufficiently large, the threshold value converges to the value I under the myopic
rule.

Since O’Donoghue and Rabin (1999a) seminal work, the behavior of procrasti-
nation and preproperation has been often analyzed using the hyperbolic discounting

12 When he gets a better draw x > x∗, the investor succumbs to the temptation of investing so
that there is no self-control cost.

13 Note that the risk-neutral agent discounts future cash flows according to the long-run discount
factor δ.
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model. To compare with this model, I consider only procrastination when costs are
immediate.14

Proposition 6 Suppose costs are immediate and the agent has the sophisticated
hyperbolic discounting preferences.

(i) If βδ (a − δE [x]) / (1 − βδ) < I < βδA, then there is a stationary equi-
librium where each self invests when xt is bigger than some threshold
x∗∗ ∈ (a, A) .

(ii) There is an open set of parameter values for which there are other equilib-
ria. In particular, there is a “2-cycle equilibrium” where the odd-numbered
selves never invest and even ones always invest.

This proposition demonstrates that the hyperbolic discounting model has
multiple equilibria. One equilibrium has a similar feature to Proposition 5. How-
ever, there is another equilibrium having cycles. Similar results are obtained by
Fudenberg and Levine (2006) and O’Donoghue and Rabin (2001) for the task
choice problem different from the one analyzed here. As in Fudenberg and Levine
(2006), I view that the cyclic equilibrium is counterintuitive and the multiplicity
of equilibrium is unappealing.

I now turn to welfare implications. I ask the question: How severely does the
self-control problem hurt a person? I compute the utility loss from investment for
an investor with self-control preferences, compared with an investor with standard
preferences. Let V (x) be the value function for the investor with standard prefer-
ences corresponding to λ = 0. The utility loss from self-control problems could
be measured as V (x) − W (x) . One can interpret V (x) as the commitment pref-
erence as in Gul and Pesendorfer (2001, 2004). Then V (x) − W (x) measures the
utility loss if the agent cannot precommit and suffers from self-control problems.
I evaluate this measure at the time when the agent with self-control preferences
invests. That is, this value is given by V (x∗) − W (x∗) .

The following proposition gives the utility loss.

Proposition 7 Let x∗ and x be given in Proposition 5. When costs are immediate,
the utility loss from investment is given by λI. When rewards are immediate or
both costs and rewards are immediate, the utility loss from investment is given by
x − x∗.

By Proposition 5, when costs are immediate, the investor with self-control
preferences procrastinates – he waits when he should invest if he had standard
preferences. The utility loss is the forgone project value. This loss is increasing in
the self-control parameter λ. However, it does not increase with λ without bound.
This is because as λ approaches the value δA/I − 1, the investment threshold x∗
approaches the upper bound of the project value A. When λ is increased further,
no investment is ever made and the agent gets zero. Thus, the upper bound of the
utility loss is δA − I. When rewards are immediate or both costs and reward are
immediate, the investor with self-control preferences preproperates — he invests

14 I also consider a sophisticated agent’s behavior only. A complete characterization for the
naive or partially sophisticated agent is not my focus and is beyond the scope of the present
paper.
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Table 1 This table presents solutions for the investment threshold values, the mean waiting time
until investment and the utility loss. The utility loss is measured as (V (x∗) − W (x∗)) /V (x∗)

λ Threshold Waiting time Utility loss

0 0. 96 22.5
Immediate costs 0.3 0. 97 36.0 0.40

0.6 0. 99 90.0 0.77

0 0. 74 4.0
Immediate rewards 0.3 0. 49 2.0 0.87

0.6 0. 32 1.5 1.44

Immediate costs 0 0. 76 4.2
and rewards 0.3 0. 69 3.2 0.29

0.6 0. 65 2.8 0.44

when he should wait if he had standard preferences. The utility loss is then the
forgone option value of waiting.

The following example illustrates Propositions 5 and 7 numerically.

Example 1 Let a = 0, A = 1, δ = 0.9, I = 0.5, and F (x) = x . Table 1
reports the solution. It reveals that even for small self-control problems, i.e. small
λ, the utility loss could be quite large. For example, when costs are immediate
and λ = 0.6, the investor procrastinates about 70 periods to invest. The utility loss
accounts for 77% of the project value. When rewards are immediate and λ = 0.6,
the investor preproperates to invest in negative NPV projects since the investment
threshold 0.32 is less than δ I = 0.45 according to the NPV rule. The utility loss
accounts for 144% of the option value. When both costs and rewards are immedi-
ate, the investor also preproperates. But the utility loss is less than that in the case
of immediate rewards.

3.2 Exit

Some researchers have found experimental evidence that people procrastinate to
terminate projects (see, for example, Staw 1976; Staw and McClane 1984, and
Statman and Caldwell 1987). While several explanations are available in the litera-
ture, the interpretation suggested here is simple. If owners/managers perceive that
the rewards of the projects are immediate, but the costs of continuation come with
delay, then they are tempted by the immediate benefits. To resist this temptation,
they must suffer from self-control costs. These self-control costs lower the benefit
from termination. Thus the owners/managers prefer to delay termination. While my
model can explain this procrastination behavior, it can also generate the behavior
of preproperation if the costs of continuation come earlier than the benefits from
the projects.

I now apply the general setup laid out in Sect. 2 to the project termination
problem or exit problem.15 I interpret the process (xt )t≥1 as the stochastic profit

15 The problem can be reinterpreted as one in which an owner/manager decides when to shut
down a firm.
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flows from a project. It incurs a fixed cost c f > 0 to continue the project. Normal-
ize the scrapping value of the project to zero. A risk-neutral owner/manager with
self-control preferences decides when and if to terminate the project. This problem
fits into our framework by setting

�(x) = 0, cs = 0, π (x) = x, cc = c f .

As in the investment problem described in the preceding subsection, there are many
instances that profits and costs may not come at the same time. Thus, I consider
three cases and rewrite the Bellman equations (4)–(6) as follows:

1. Immediate costs

W (x)=max

{
0, δx − (1+λ) c f +δ

∫
W

(
x ′) dF

(
x ′)}−λ max

(
0,−c f

)
.

(16)
2. Immediate rewards

W (x)=max

{
0, (1 + λ) x − δc f + δ

∫
W

(
x ′) dF

(
x ′)} − λ max (x, 0) .

(17)
3. Immediate costs and rewards

W (x)=max

{
0, (1+λ)

(
x−c f

)+δ

∫
W

(
x ′) dF

(
x ′)}−λ max

{
x−c f , 0

}
.

(18)

The following proposition characterizes the solution.

Proposition 8 Under the conditions given in the appendix, there is a unique thresh-
old value x∗ ∈ [a, A] (x ∈ [a, A]) such that the owner with self-control preferences
(standard preferences) terminates the project the first time the process (xt )t≥1 falls
below this value.

(i) If costs are immediate, then x∗ satisfies

0 = δx∗ − c f + δ

A∫
x∗

δ
(
x − x∗) dF (x) − λc f , (19)

and x is the solution for λ = 0. Moreover, x∗ > x, x < c f /δ and x∗ increases
with λ.

(ii) If rewards are immediate, then x∗ satisfies

−λx∗ (1 − δ)−λδ

x∗∫
a

(
x∗ − x

)
dF (x) = x∗−δc f +δ

A∫
x∗

(
x − x∗) dF (x) , (20)

and x is the solution for λ = 0. Moreover, x∗ < x < δc f and x∗ decreases with λ.
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(iii) If both costs and rewards are immediate, then x∗ satisfies

0 = x∗ − c f + δ

A∫
x∗

(
x − x∗) dF (x)

+ λ
(
x∗ − c f

) + λδ

A∫
x∗

(
x − x∗ − max

{
x − c f , 0

})
dF (x) , (21)

and x is the solution for λ = 0. Moreover, c f ≥ x∗ > x and x∗ increases with λ.

One can interpret equations (19)–(21) as follows. Their left and right sides
represent the utility benefits from termination and continuation of the project,
respectively. At the threshold value x∗, the owner is indifferent between termina-
tion and continuation. In the standard model with λ = 0, because of irreversibility
and uncertainty, there is a positive option value of waiting in the hope of getting
better shocks. The owner will not terminate the project as soon as he incurs losses
since keeping it alive has an option value. The option value of waiting for each
case is represented by the third term on the corresponding right side of equations
(19)–(21). Only when the loss is large enough, will the owner terminate the project.

I next turn to the case where the owner has self-control preferences. When costs
are immediate, the owner is tempted to terminate the project. Exercising self-con-
trol is costly. The cost of self-control is represented by the last term in (19). It lowers
the benefit from continuation of the project by eroding the option value of waiting.
Thus, he preproperates to terminate early. Note that the termination threshold x∗ is
increasing in the self-control parameter λ.16 When λ is large enough, x∗ approaches
the upper bound of profits A. In this case, the owner succumbs to temptation and
terminates the project immediately even if the project can still make positive net
profits.

When rewards are immediate, the owner is tempted to continue the project
even though he may suffer from losses. To resist this temptation, he incurs a cur-
rent period self-control cost represented by the first term on the left side of equation
(20). He also incurs a future self-control cost represented by the second term on
the left side of (20). The latter cost arises when the value of future profits is less
then x∗. These two components of self-control cost lower the benefit from termi-
nation. Thus, the owner procrastinates to terminate the project. In particular, the
termination threshold x∗ is lower than the value x when the owner has standard
preferences. When λ is large enough, x∗ approaches zero and the owner will always
keep the project alive even though he makes no profits.

Consider the case where both costs and rewards are immediate. Since profits
are stochastic, the owner is tempted to continue the project if its profits are higher
than the fixed cost and is tempted to terminate the project if its profits are lower
than the fixed cost. It seems that there is no unambiguous conclusion. However,
it is important to note that the owner will never terminate the project at the profit
level higher than the fixed cost. Otherwise, at that profit level the owner has no
temptation to exit. Thus, stay for one more period incurs no self-control cost and

16 The mean value of the exit time is given by F (x∗)−1 , which decreases with the threshold
value.
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the owner can still make positive profits. Because of this fact, at the termination
threshold, the owner cannot make positive profits and has a temptation to terminate
the project. Exercising self-control is costly, which lowers the benefit from contin-
uation of the project. The cost of self-control is represented by the last two terms
in equation (21). Thus, the owner preproperates to terminate the project at a time
earlier than that in the model with standard preferences. Part (iii) of Proposition 8
also implies that the termination threshold x∗ increases with λ. In particular, when
λ is sufficiently large, x∗ approaches the fixed cost c f so that the project is ter-
minated according to the myopic rule. In this case, the cost of self-control erodes
completely away the option value of waiting.

I finally analyze welfare implications. Similarly to Proposition 7, the following
proposition gives the utility loss due to self-control problems.

Proposition 9 Let x∗ and x be given in Proposition 7. When costs are immediate,
the utility loss is given by δx∗ − δx . When rewards are immediate, the utility loss is
given by λx∗. When both rewards and costs are immediate, the utility loss is given
by x∗ − x .

By Proposition 8, when costs are immediate or both rewards and costs are
immediate, the owner preproperates — he terminates the project when he should
continue if he had standard preferences. The utility loss is the forgone profit oppor-
tunities. When rewards are immediate, the owner procrastinates — he continues
the project when he should terminate it if he had standard preferences. The utility
loss is the cost of self-control incurred from resisting the temptation to stay. As in
the investment model, this cost does not increases with λ without bound. When λ is
sufficiently large, the termination threshold approaches zero and the owner never
terminates the project. The maximal utility loss from keeping the project alive is
δ
(
c f − Ex

)
/ (1 − δ), which is the absolute value of the NPV of profits and is

positive by the assumption in the appendix.
The following example illustrates Propositions 8–9 numerically.

Example 2 Let a = 0, A = 1, δ = 0.9, c f = 0.6, and F (x) = x . Table 2 reports
the solution. It reveals the following: When costs are immediate, the owner termi-

Table 2 This table presents solutions for the exit threshold values, the mean waiting time until
exit and the utility loss. The utility loss is measured as the fraction of the profits at exit

λ Threshold Waiting time Utility loss

0 0. 59 1.7
Immediate costs 0.2 0. 78 1. 3 0.24

0.4 0. 93 1.1 0.36

0 0. 35 2.9
Immediate rewards 0.2 0. 31 3.2 0.2

0.4 0. 28 3.5 0.4

Immediate costs 0 0. 48 2.1
and rewards 0.2 0. 50 2.0 0.04

0.4 0. 51 1.9 0.07
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nates the project too early even if he suffers from very small self-control problems,
i.e., λ = 0.2. The project is terminated at the profit level 0.78, which is bigger than
the fixed cost 0.6. If the owner had standard preferences, he should terminate the
project at the value 0.59 less than the fixed cost because of the option value of wait-
ing. The utility loss accounts for 24% of the profits. When rewards are immediate,
the owner procrastinates. He suffers from a larger loss if he has a lower level of
self-control since the profit level at termination becomes smaller. The utility loss
is proportional to λ since it is equal to λx∗/x∗ = λ. When both costs and rewards
are immediate, the owner preproperates. However, the utility loss is less than that
when costs are immediate.

4 Conclusion

This paper adopts the Gul–Pesendorfer self-control utility model to analyze an
option exercise problem under uncertainty over an infinite horizon for an agent
who is tempted by immediate gratification and suffers from self-control problems.
Unlike the time-inconsistency approach which depends on the expectations about
future selves’ preferences, there is no multiplicity of predictions. When applied
to the investment and exit problems, the present model has a number of testable
implications. For example, the present model implies that overinvestment, excess
entry, procrastination to terminate a project or shut down a firm may be the rational
choices of those investors/managers/entrepreneurs having self-control preferences,
who are tempted by immediate profit opportunities. On the other hand, the oppo-
site phenomena can be caused by such decision makers who are tempted to avoid
immediate costs. Further, when both costs and rewards are immediate, the myopic
option exercise rule may be optimal for such decision makers, who have sufficiently
low levels of self-control.

Appendix: Proofs

Proof of Proposition 1 I provide the proof for the problem in (4) only. The proof
for other cases is similar. Subtract δπ (x) from the two sides in Eq. (4) to obtain

W (x) − δπ (x)

= max

{
δ� (x) − δπ (x) − (1 + λ) cs, − (1 + λ) cc + δ

∫
W

(
x ′) dF

(
x ′)}

− λ max {−cc, −cs} . (A.1)

Note that the agent’s optimal choice is determined by the first max operator in
(A.1). Since the second term in this max operator is a constant independent of x
and since �(x) − π (x) is strictly increasing in x ∈ [a, A] , the following three
cases may arise. (a) The first term is larger than the second term for all x ∈ [a, A] .
In this case the agent stops immediately. (b) The first term is less than the second
term for all x ∈ [a, A] . In this case, the agent never stops. (c) There is a unique
threshold value x∗ ∈ [a, A] such that the first term is equal to the second term. In
this case, the agent stops when x ≥ x∗. That is, he stops the first time the process
(x)t≥1 hits x∗ from below. �	
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Proof of Proposition 2 (i) The value function W satisfies

W (x)

=
{

δ�(x) − (1 + λ) cs − λ max {−cc, −cs} if x ≥ x∗,
δπ (x)−(1 + λ) cc+δ

∫
W

(
x ′) dF

(
x ′)−λ max {−cc, −cs} if x < x∗.

(A.2)

Since W (x) is continuous at the threshold value x∗,

δ�(x∗) − (1 + λ) cs = δ

∫
W

(
x ′) dF

(
x ′) + δπ

(
x∗) − (1 + λ) cc

= δ

x∗∫
a

W
(
x ′) dF

(
x ′) + δ

A∫
x∗

W
(
x ′) dF

(
x ′) + δπ

(
x∗) − (1 + λ) cc.

(A.3)

Substituting (A.2) into this equation yields

δ�(x∗) − (1 + λ) cs

= δ

x∗∫
a

{
δ

∫
W (x) dF (x) + δπ

(
x ′) − (1 + λ) cc − λ max {−cc, −cs}

}

× dF
(
x ′)

+ δ

A∫
x∗

[
δ�(x ′) − (1 + λ) cs − λ max {−cc, −cs}

]
× dF

(
x ′) + δπ

(
x∗) − (1 + λ) cc.

Using (A.3) to substitute δ
∫

W (x) d F (x) delivers

δ�(x∗) − (1 + λ) cs

= δ

x∗∫
a

[
δ�(x∗)−(1 + λ) cs −δπ

(
x∗)+δπ

(
x ′)−λ max {−cc, −cs}

]
dF

(
x ′)

+ δ

A∫
x∗

[
δ�(x ′) − (1 + λ) cs − λ max {−cc, −cs}

]
dF

(
x ′)

+ δπ
(
x∗) − (1 + λ) cc.
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Subtracting
[
δ�(x∗) − (1 + λ) cs

]
δF (x∗) on each side of the above equation

yields

[
δ�(x∗) − (1 + λ) cs

] [
1 − δF

(
x∗)]

= δ

x∗∫
a

[
δπ

(
x ′) − δπ

(
x∗) − λ max {−cc, −cs}

]
dF

(
x ′)

+ δ

A∫
x∗

[
δ�(x ′) − (1 + λ) cs − λ max {−cc, −cs}

]
dF

(
x ′)

+ δπ
(
x∗) − (1 + λ) cc.

Subtracting
[
δ�(x∗) − (1 + λ) cs

]
δ
[
1 − F (x∗)

]
on each side of the above equa-

tion and simplifying yield the desired result.
(ii) If cs ≥ cc, then

λ [cs (1 − δ) − δ max {−cc, −cs} − cc] = λ (1 − δ) (cs − cc) ≥ 0.

If cs < cc, then

λ [cs (1 − δ) − δ max {−cc, −cs} − cc] = λ (cs − cc) < 0.

�	

Proof of Proposition 3 (i) The value function W satisfies

W (x)

=
{

(1+λ)�(x)−δcs −λ max {π (x) , � (x)} if x ≥ x∗,
(1+λ) π (x)−δcc+δ

∫
W

(
x ′) dF

(
x ′) − λ max {π (x) , � (x)} if x < x∗.

(A.4)

Since W (x) is continuous at the threshold value x∗, it follows that

(1 + λ)�(x∗) − δcs = (1 + λ) π
(
x∗) − δcc + δ

∫
W

(
x ′) dF

(
x ′)

= δ

x∗∫
a

W
(
x ′) dF

(
x ′) + δ

A∫
x∗

W
(
x ′) dF

(
x ′)

+ (1 + λ) π
(
x∗) − δcc. (A.5)
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Substitute (A.4) into this equation to deduce

(1 + λ)�(x∗) − δcs

= δ

x∗∫
a

{
(1 + λ) π (x) − δcc + δ

∫
W

(
x ′) dF

(
x ′) − λ max {π (x) , � (x)}

}

× dF (x)

+ δ

A∫
x∗

[(1 + λ)�(x) − δcs − λ max {π (x) ,� (x)}]

× d F (x) + (1 + λ) π
(
x∗) − δcc.

Using (A.5) to substitute δ
∫

W
(
x ′) d F

(
x ′) yields

(1 + λ)�(x∗) − δcs

= δ

x∗∫
a

{
(1 + λ) π (x) + (1 + λ)�(x∗) − δcs − (1 + λ) π

(
x∗)

− λ max {π (x) , � (x)}} dF (x)

+ δ

A∫
x∗

{(1 + λ)�(x) − δcs − λ max {π (x) , � (x)}}

× dF (x) + (1 + λ) π
(
x∗) − δcc.

Subtract
[
(1 + λ)�(x∗) − δcs

]
δF (x∗) on each side of the above equation to de-

rive

[
(1 + λ)�(x∗) − δcs

] [
1 − δF

(
x∗)] = δ

x∗∫
a

{
(1 + λ) π (x) − (1 + λ) π

(
x∗)}

dF
(
x ′) − λδ

∫
max {π (x) , � (x)} dF (x) + δ

A∫
x∗

{
(1 + λ)�(x ′) − δcs

}

dF
(
x ′) + (1 + λ) π

(
x∗) − δcc.
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Finally, subtract
[
(1 + λ)�(x∗) − δcs

]
δ
[
1 − F (x∗)

]
on each side of the above

equation and rearrange to deduce

[
(1 + λ)�(x∗) − δcs

]
(1 − δ) = δ

x∗∫
a

(1+λ)
[
π (x)−π

(
x∗)] dF

(
x ′)

+δ

A∫
x∗

(1+λ)
[
�(x ′)−�(x∗)

]
dF

(
x ′) + π

(
x∗)−δcc+λπ

(
x∗)−λδ

×
∫

max {π (x) , � (x)} dF (x) .

Rearranging yields the desired result.
(ii) If � (x) ≥ π (x) for all x, then

λδ

x∗∫
a

[π (x) − max {π (x) , � (x)}] dF (x)

+ λδ

A∫
x∗

[�(x) − max {π (x) , � (x)}] dF (x)

− λ
[
1 − δF

(
x∗)] [

�(x∗) − π
(
x∗)]

= λδ

x∗∫
a

[π (x) − � (x)] dF (x) − λ
[
1 − δF

(
x∗)] [

�(x∗) − π
(
x∗)] < 0.

Thus, x∗ ≤ x . �	
Proof of Proposition 4 (i) Rewrite the value function as follows

W (x)

=
{

(1+λ) (�(x)−cs)−λ max {π (x) − cc, � (x) − cs} if x ≥ x∗,
(1+λ) (π (x)−cc)+δ

∫
W

(
x ′) dF

(
x ′)−λ max {π (x)−cc, � (x) − cs} if x < x∗.

(A.6)

Since W (x) is continuous at the threshold value x∗, it follows that

(1 + λ)
(
�(x∗) − cs

)
= (1 + λ)

(
π

(
x∗) − cc

) + δ

∫
W

(
x ′) dF

(
x ′)

= δ

x∗∫
a

W
(
x ′) dF

(
x ′) + δ

A∫
x∗

W
(
x ′) dF

(
x ′) + (1 + λ)

(
π

(
x∗) − cc

)
.

(A.7)
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Substitute (A.6) into this equation to deduce

(1 + λ)
(
�(x∗) − cs

)

= δ

x∗∫
a

{
(1 + λ) (π (x) − cc) + δ

∫
W

(
x ′) dF

(
x ′)

− λ max {π (x) − cc, � (x) − cs}
}

dF (x)

+ δ

A∫
x∗

{(1 + λ) (�(x) − cs) − λ max {π (x) − cc, � (x) − cs}}

× dF (x) + (1 + λ)
(
π

(
x∗) − cc

)
.

Use (A.7) to substitute δ
∫

W
(
x ′) dF

(
x ′) to deduce

(1 + λ)
(
�(x∗) − cs

)

= δ

x∗∫
a

{
(1 + λ)

(
π (x) − π

(
x∗)) + (1 + λ)

(
�(x∗) − cs

)
− λ max {π (x) − cc,� (x) − cs}} dF

(
x ′)

+ δ

A∫
x∗

{(1 + λ) (�(x) − cs) − λ max {π (x) − cc, � (x) − cs}}

× dF (x) + (1 + λ)
(
π

(
x∗) − cc

)
.

Subtract (1 + λ) (�(x∗) − cs) δF (x∗) on each side of the above equation to derive

(1 + λ)
(
�(x∗) − cs

) [
1 − δF

(
x∗)]

= δ

x∗∫
a

{
(1 + λ)

(
π (x) − π

(
x∗))} dF (x) − λδ

∫
max {π (x) − cc, � (x) − cs} dF (x)

+ δ

A∫
x∗

{(1 + λ) (�(x) − cs)} dF (x) + (1 + λ)
(
π

(
x∗) − cc

)
.
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Finally, subtract
[
(1 + λ)�(x∗) − cs

]
δ
[
1 − F (x∗)

]
on each side of the above

equation and rearrange to deduce

(1 + λ)
(
�(x∗) − cs

)
(1 − δ)

= δ

x∗∫
a

(1 + λ)
[
π (x)−π

(
x∗)] dF (x)+δ

A∫
x∗

(1+λ)
[
�(x) − �(x∗)

]
dF (x)

+ (1 + λ)
(
π

(
x∗) − cc

) − λδ

∫
max {π (x) − cc,� (x) − cs} dF (x) .

Rearranging yields the desired result.
(ii) The proof is similar to that of Proposition 3. �	

Proof of Proposition 5 The Eqs. (13)–(15) determining x∗ are derived from Prop-
ositions 2–4. One can verify that the left sides of these equations are increasing
functions of x∗, while the right sides are decreasing functions of x∗. To show that
there is a unique interior solution to these equations, one need only show that there
is a unique intersection point for each pair of curves implied by those functions.
To guarantee this, the following conditions are necessary and sufficient so that one
can apply the intermediate value theorem:

• For part (i),

δ (a − δE [x])

(1 − δ) (1 + λ)
≤ I ≤ δA

(1 + λ)
.

• For part (ii),

a (1 + λ) − δE [x]

1 − δ
≤ δ I ≤ A (1 + λ) + λδE [x]

1 − δ
.

• For part (iii),

a (1 + λ) − δE [x]

1 − δ + λ
≤ I ≤ A + λδE [max (0, x − I )]

(1 − δ) (1 + λ)
.

Figure 1 illustrates part (i). As λ is increased, the curve implied by the left side
of (13) shifts down so that x∗ increases. Thus, x∗ > x̄, where x̄ corresponds to the
solution for λ = 0. Parts (ii) and (iii) are proved similarly. �	
Proof of Proposition 6 The proof adapts that of Theorem 4 in Fudenberg and
Levine (2006).

(i) Consider a dynamic game between selves. The date t-self has payoff δβxt − I
if he invests at date t, payoff βδτ+1 E [x]−βδτ I if a future self invests at date t +τ,
and payoff 0 if no self ever invests.17 To construct the stationary equilibrium, I will
solve for the threshold value x∗∗ ∈ (a, A) . Let W ∗∗ be the expected discounted
sum of payoffs from tomorrow on if the agent does not invest. Then by dynamic
programming,

W ∗∗ = F
(
x∗∗) δW ∗∗ + (

1 − F
(
x∗∗)) [

δE
(
x |x > x∗∗) − I

]
.

17 Note that rewards are obtained in the next period.
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Fig. 1 The determination of the threshold value x∗. The upward sloping line and the downward
sloping curve represent the left and right sides of Eq. (13), respectively, as functions of x∗. The
intersection point determines the optimal threshold value

A self is indifferent between investing and waiting at x∗∗ if

δβx∗∗ − I = δβW ∗∗.
Using the preceding two equations, one can show that x∗∗ satisfies

δβx∗∗ − I − βδ (1 − F (x∗∗))
(
δE

[
x |x > x∗∗] − I

)
1 − F (x∗∗) δ

= 0.

Let g (x∗∗) be the expression on the left side of this equation. Then it suffices to
show that there is an x∗∗ such that g (x∗∗) = 0. In fact, by assumption, g (a) =
δβa − I (1 − βδ) − βδ2 E [x] < 0 and g (A) = δβ A − I > 0. The intermediate
value theorem yields the desired result.

(ii) I construct an equilibrium where the odd-numbered selves never invest
and even ones always invest. The equilibrium payoff of an even-numbered self is
δβxt − I, and his payoff if he waits is δ3βE [x] − δ2β I. The even self’s strategy
is a best response for all xt if

δβa − I > δ3βE [x] − δ2β I.

The equilibrium payoff of an odd-numbered self is δ2βE [x] − βδ I and his
payoff if he deviates to invest is δβxt − I. Thus, waiting is a best response for all
xt if

δ2βE [x] − βδ I > δβ A − I.

Simplifying the preceding two equations yields the condition

δβ (A − δE [x])

1 − βδ
< I <

δβ
(
a − δ2 E [x]

)
1 − βδ2 .

Clearly there is an open set of parameter values satisfying this condition. �	
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Proof of Proposition 7 When costs are immediate, the agent with standard
preferences has already made the investment at x∗ since his investment thresh-
old x < x∗. Thus, V (x∗) = δx∗ − I and the welfare loss is V (x∗) − W (x∗) =
(δx∗ − I ) − (δx∗ − (1 + λ) I ) = λI. When rewards are immediate, the agent
with standard preferences does not invest at x∗ since his investment threshold
x > x∗. Thus, V (x∗) = δ

∫
V

(
x ′) dF

(
x ′) = x − δ I and the welfare loss is

V (x∗) − W (x∗) = (x − δ I ) − (x∗ − δ I ) = x − x∗. The case with both immedi-
ate costs and rewards is similar to the case with immediate rewards. �	
Proof of Proposition 8 The proof is similar to that of Propositions 1–5. In partic-
ular, one can show that the expressions on the right sides of equations (19)–(21)
are increasing functions of x∗ and the expressions on left sides of these equations
are decreasing functions of x∗. I omit the detailed argument. The conditions for
the existence and uniqueness of the threshold value are given below:

• For part (i),

δA ≥ (1 + λ) c f ≥ δ (1 − δ) a + δ2 E [x] .

• For part (ii),

δE [x] + a (1 − δ) (1 + λ) ≤ δc f ≤ A (1 + λ) − λδE [x] .

• For part (iii),

a (1 − δ) + λδ
(
E [x] − E

[
max

(
x − c f , 0

)])
1 + λ

≤ c f ≤ A.

�	
Proof of Proposition 9 The proof is similar to that of Proposition 7. When costs
are immediate, since x∗ > x, an agent with standard preferences will not exit
at x∗. V (x∗) = δx∗ − c f + δ

∫
V

(
x ′) dF

(
x ′) = δx∗ − c f − (

δx − c f
) =

δx∗ − δx . Since W (x∗) = 0, the utility loss is V (x∗) − W (x∗) = δx∗ − δx .
When rewards are immediate, since x∗ < x, V (x∗) = 0. Since W (x∗) = −λx∗,
V (x∗) − W (x∗) = λx∗. Finally, when both costs and rewards are immediate,
V (x∗) = x∗ − c f + δ

∫
V

(
x ′) dF

(
x ′) = x∗ − c f − (

x − c f
) = x∗ − x . Since

W (x∗) = 0, V (x∗) − W (x∗) = x∗ − x . �	
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