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Abstract

The US bank holdings of long-term securities have increased in recent years. As is wit-

nessed by the recent bank failures including SVB, prices of long-term securities are sensitive

to interest rate hikes and can trigger bank runs. To study the role of bank holdings of long-

term bonds, we incorporate banks in a DSGE framework. We study how cost-push shocks and

the associated passive or active interest rate hikes affect the macroeconomy including infla-

tion, investment, and output. The procyclical bank balance sheets and long-term bond prices

amplify adverse shocks, which can trigger a bank run that would not exist if banks otherwise

hold short-term bonds. We introduce two types of macroprudential policies that can mitigate

or prevent banking crises: a permanent tax on bank holdings of long-term bonds and a cyclical

tax that responds to interest rate changes.
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1 Introduction

Since mid-2021, the US has witnessed a surge in inflation. This may be attributed to various

causes, including pandemic-related economic dislocation, supply chain problems, and the fiscal

and monetary stimuli provided in 2020 and 2021 by governments and central banks around the

world in response to the pandemic. To curb high inflation, the Fed has raised interest rates eleven

times since March 17, 2022. The current target rate range is 5.25-5.5%.

Since March 2023, we have also witnessed a few small- to mid-size US bank failures, triggering

a sharp decline in global bank stock prices and swift responses by regulators to prevent potential

global contagion. In particular, Silicon Valley Bank (SVB) failed after a bank run, marking the

third-largest bank failure in US history and the largest since the 2007–2008 financial crisis. The

cause is still under debate, but is often attributed to the fact that SVB had dramatically increased its

holdings of long-term bonds since 2021. The market value of these bonds decreased significantly

through 2022 and into 2023 as the Fed raised interest rates. As a result, bank profits dropped

significantly and eventually could not meet large deposit withdrawals.

Besides SVB, many other US commercial banks had also increased holdings of long-term se-

curities. Figure 1 presents the recent aggregate data of the portfolio shares of long-term securities

for all commercial banks weighted by bank total assets from 1997Q2 to 2021Q2 based on the US

bank-level call reports. We consider two measures of long-term securities: (i) Treasury bonds with

maturities more than 1 year, and (ii) the combined Treasury bonds, MBS, and agency debt, all

with maturities more than 1 year. Both measures increased in recent years and reached 12.2% and

25.8% respectively in early 2021.

Drawing lessons from the recent events, we develop a dynamic stochastic general equilibrium

(DSGE) model to address the following questions: What is the role of bank holdings of long-

term securities in banking crises? Can interest rate hikes cause a banking crisis? What are the

underlying economic mechanisms? What policies can prevent or mitigate banking crises?

Building on Gertler and Karadi (2011, 2013) and Gertler and Kiyotaki (2010, 2015), we incor-

porate a banking sector into a dynamic New Keynesian (DNK) model. As in Gertler and Karadi

(2011), we introduce a simple agency problem between banks and their respective depositors. The

agency problem generates endogenous constraints on bank leverage ratios, which have the effect

of tying overall credit flows to the equity capital in the banking sector. A deterioration of bank bal-

ance sheets will disrupt lending and borrowing in a way that raises credit costs, thereby reducing
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Figure 1: US bank holdings of long-term securities
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Note: This figure plots the bank portfolio share of different assets with maturities longer than 1 year. The red solid line
represents bank portfolio share in all types of long-term securities (e.g. Treasury securities, agency debt, MBS, etc.).
The blue dash line represents bank portfolio share in long-term Treasury securities. Assets are classified as long-term
if the remaining maturity is longer than 1 year. As we do not consider interbank transactions in the model, we define
bank-level total assets as the sum of loans/leases and security holdings so as to focus on the credit supply to the real
economy. The aggregate time series is the average of bank portfolio shares, weighted by bank total assets. The data is
from the US bank-level call reports.

firm investment.

Unlike Gertler and Karadi (2011), we allow banks to hold long-term government bonds as

assets. Households can also trade these bonds. To prevent frictionless arbitrage of different types

of assets, we introduce management costs. When inflation rises due to either a positive cost-push

shock or a negative technology shock, interest rates rise either passively by following a Taylor rule

or actively by a surprise hike. We show that long-term bond prices are sensitive to interest rate

changes. Long-term bonds amplify adverse shocks to the bank balance sheets and thus generate

a larger negative effect on bank lending than short-term bonds do.

Moreover, as bank profits decline following interest rate hikes, a bank run can occur when

depositors decide not to roll over their deposits. We show that multiple equilibria (a no-run equi-
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librium and a bank-run equilibrium) can coexist. The existence of a bank-run equilibrium depends

on the health of bank balance sheets. When bank balance sheets deteriorate, fears of a bank run

can become self-fulfilling even in the absence of any negative fundamental shock. Bank runs, in

turn, force banks to liquidate their assets at firesale prices, causing a sudden collapse in bank eq-

uity, and a deep and prolonged economic downturn. We also show that a bank run is more likely

to occur if banks hold longer-term government bonds as their prices decline more in response to

interest rate hikes. In a calibrated example, we find that a bank run occurs following interest rate

hikes when banks hold long-term bonds, but would not exist if banks otherwise hold short-term

bonds.

While we do not intend to explicitly model the recent bank failures discussed earlier, our model

does capture some key elements relevant to the understanding of bank failures and to the ques-

tions we are after. Moreover, our model can be used to understand what policies can mitigate the

impact of a banking crisis and reduce the likelihood of bank runs.

We introduce two types of macroprudential policies. First, we consider a permanent tax on

bank holdings of long-term bonds. Such a tax reduces bank’s exposure to long-term bonds and

hence can mitigate adverse shocks to the economy. On the other hand, it also reduces banks’

long-run holdings of long-term bonds, and thus banks’ balance sheets and capital intermediated

by banks. We show that there is an optimal tax rate conditional on cost-push shocks and surprise

interest rate hikes.

Second, we consider a cyclical tax on bank holdings of long-term bonds in the sense that the tax

rate responds to the interest rate change. We show that when the tax rate is a decreasing function

of the interest rate change, the adverse cost-push shock can be mitigated and the likelihood of

bank runs can be reduced. In particular, we show that the government should subsidize (tax)

bank holdings of long-term assets when interest rates rise (decline).

Our paper is related to two strands of the literature. First, it is related to a large literature that

studies the role of financial intermediaries in macroeconomic fluctuations. Much of this literature

builds on the financial accelerator model of Bernanke, Gertler, and Gilchrist (1999) and Kiyotaki

and Moore (1997). Gertler and Karadi (2011) and Gertler and Kiyotaki (2010) introduce finan-

cial intermediaries (banks) to the DSGE model and show how procyclical bank balance sheets

can amplify and propagate exogenous shocks. The literature along these lines typically studies

credit policy or unconventional monetary policy. See Curdia and Woodford (2011), Del Negro

et al. (2017), and Gertler and Karadi (2013), among others.
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Our paper is closely related to Gertler and Karadi (2013). Our paper differs from theirs in three

major respects. First, we study long-term bonds with a finite maturity that can better match the

data, while they study infinite maturity console bonds. Second, we allow for bank runs, absent in

their paper. Third, we study how macroprudential policies can prevent bank runs during interest

rate hikes to curb high inflation triggered by cost-push shocks, while they examine the impact of

large-scale asset purchases during a crisis triggered by capital quality shocks.

To overcome the limitation of the local linear solutions in the traditional literature,1 Gertler and

Kiyotaki (2015) and Gertler, Kiyotaki, and Prestipino (2016, 2020a, 2020b) model bank runs in the

DSGE framework as rollover panics following the Calvo (1988) and Cole and Kehoe (2000) models

of sovereign debt crises.2 Solving bank-run models needs global nonlinear solution methods. Like

Gertler, Kiyotaki, and Prestipino (2020a), we introduce variable capital and extend the model of

Gertler and Kiyotaki (2015) to the DSGE framework. Unlike them, we focus on cost-push shocks

that generate inflation and interest rate hikes. We also study new types of macroprudential policies

absent from their paper.

Next, our paper is related to the literature that studies the role of macroprudential policies in

preventing financial crises. Following Lorenzoni (2008), the main conceptual motive for macro-

prudential policies in this literature is the presence of a pecuniary externality, where individual

banks fail to take account of the impact of their leverage decisions or risk exposures on the dynam-

ics of asset prices. Recent papers in this literature include Gertler, Kiyotaki, and Queralto (2012),

Angeloni and Faia (2013), Aoki, Benigno, and Kiyotaki (2016), Jeanne and Korinek (2019), Gertler,

Kiyotaki, and Prestipino (2020b), and Begenau and Landvoigt (2022), among others. This litera-

ture typically focuses on the capital requirement policy or taxes/subsidies on certain variables in

the bank balance sheet. Unlike this literature, we introduce a new type of macroprudential policies

that tax or subsidize bank holdings of long-term securities. In our model banks fail to internalize

the impact of their leverage decisions and long-term bond holding decisions on the dynamics of

asset prices and the likelihood of a bank run.

1. See Mendoza (2010), He and Krishnamurthy (2019) and Brunnermeier and Sannikov (2014) for other models that
use global nonlinear solution methods.

2. We do not follow the traditional literature on bank runs originating from Diamond and Dybvig (1983), in which
sequential service constraints play an important role. See Allen and Gale (2009) for recent developments of this liter-
ature. See Miao and Wang (2015), Boissay, Collard, and Smets (2016), Quadrini (2017), Robatto (2019), Amador and
Bianchi (2021), Elenev, Landvoigt, and Van Nieuwerburgh (2021), Boissay et al. (2021), Bianchi and Bigio (2022), and
references therein for other recent macroeconomic models with banks.
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2 A Baseline Model

Our baseline model builds on Gertler and Karadi (2011, 2013) and does not incorporate bank

runs. Time is infinite and indexed by t = 0, 1, 2, · · · . The model economy consists of households,

financial intermediaries (banks), nonfinancial firms, and the fiscal/monetary authorities. Banks

transfer funds from households to nonfinancial firms subject to agency costs. The government is-

sues long-term bonds for households and banks to trade subject to management costs. The central

bank conducts monetary policy following an interest rate rule. As in the standard DNK model

(Woodford 2003; Galı́ 2015), we consider a cashless economy and model price stickiness follow-

ing Calvo (1983). For simplicity, we consider only three sources of independent disturbances: an

interest rate shock, a technology shock, and a cost-push shock.

2.1 Government

The government issues a portfolio of nominal zero-coupon bonds of different maturities. Because

the Ricardian equivalence does not hold in our model due to financial and real frictions, the ma-

turity structure matters for the macroeconomy. To model the maturity structure in a simple way,

we assume that the maturities of government bonds follow a geometric structure (Cochrane 2001;

Woodford 2001): one unit of the portfolio of government bonds purchased in period t pays ρj−1

dollars in period t + j for j ≥ 1, 0 < ρ < 1.

Denote by Ql
t the nominal price of one unit of the portfolio of government bonds in period t.

The real return of holding the portfolio of government bonds from period t to period t + 1 is

Rl
t+1 =

1 + ρQl
t+1

Ql
t

Π−1
t+1, (1)

where Πt+1 = Pt+1/Pt is the gross inflation and Pt is the price level.

Let Bn
t denote the face value of nominal government bonds outstanding in period t. The gov-

ernment’s budget constraint is given by

(1 + ρQl
t)Bn

t−1 = Sg
t Pt + Ql

tB
n
t ,

where Sg
t is the real primary surplus. Define the real face value of government bonds as Bt =
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Bn
t /Pt. We can rewrite the government’s budget constraint in real terms as

Ql
t−1Bt−1Rl

t = Sg
t + Ql

tBt. (2)

2.2 Households

There is a continuum of identical households of measure one. A fraction of the household mem-

bers are workers and the remaining fraction are bankers. The survival probability of each banker

is σ. The bankers who exit become workers. Then the same amount of workers become new

bankers and receive startup funds from households. Within each family, there is perfect consump-

tion insurance.

In each period t, households can make real deposits Dt into banks in the form of one-period

bonds with the nominal interest rate Rn
t from period t and t + 1. Then the real interest rate from

period t to period t + 1 is Rt+1 = Rn
t /Πt+1. Households can also purchase government bonds

and firm equity directly. Denote by Bht and Sht the household holdings of long-term government

bonds and firm equity. Following Gertler and Karadi (2013) and Gertler, Kiyotaki, and Prestipino

(2020a), we assume that households pay asset management costs for directly holding firm equity

and long-term government bonds. This assumption is important to generate firesale prices when

banks sell bonds and equities to households. For tractability, we specify the costs as

1
2

κ

(
Sht

St
− ηS

)2

Qk
t St and

1
2

κ

(
Bht

Bt
− ηB

)2

Ql
tBt,

where Qk
t is the real price of firm equity, St is the aggregate quantity of firm equity claims, and κ,

ηS, and ηB are positive parameters.

A representative household chooses processes of consumption {Ct} , labor supply {Lt} , long-

term bond holdings {Bht} , and equity holdings {Sht} to solve the following problem:

max E
∞

∑
t=0

βt
[

ln (Ct − hCt−1)−
χ

1 + φ
L1+φ

t

]
(3)

where E denotes an expectation operator, and h, χ, φ > 0 are parameters, subject to a sequence of
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budget constraints

Ct + Dt + Ql
tBht + Qk

t Sht +
1
2

κ

(
Sht

St
− ηS

)2

Qk
t St +

1
2

κ

(
Bht

Bt
− ηB

)2

Ql
tBt

= RtDt−1 + Rl
tQ

l
t−1Bh,t−1 + Rk

t Qk
t−1Sh,t−1 + WtLt + Φt − Ψt − Tt,

for t ≥ 0, where Wt is the real wage rate, Rk
t is the real return on firm equity, Φt is the profits from

banks and nonfinancial firms, Ψt is the total transfer to new bankers, and Tt is the lump-sum tax

net of transfer or rebate.

By the first-order conditions, we have the following pricing equations:

EtΛt,t+1Rt+1 = 1, (4)

EtΛt,t+1Rl
t+1 = 1 + κ

(
Bht

Bt
− ηB

)
, (5)

EtΛt,t+1Rk
t+1 = 1 + κ

(
Sht

St
− ηS

)
, (6)

where the household stochastic discount factor (SDF) between t and t + 1 is given by

Λt,t+1 ≡ β
uCt+1

uCt

, uCt =
1

Ct − hCt−1
.

The management costs generate differences in returns on the deposits, the long-term bonds, and

capital even in the absence of risk.

W require that parameter values satisfy

Bh

B
− ηB >

Sh

S
− ηS > 0,

so that Rk > Rl > R in the deterministic steady state, where a variable without a time subscript

denotes its steady-state value. In this case, we have Bh > ηBB > 0 and Sh > ηSS > 0. The

preceding ranking of returns also holds in a neighborhood of the steady state, which is consistent

with empirical evidence.

2.3 Banks

Banks take deposits from households, lend funds to firms, buy government bonds, and retain

earnings. Let nt denote the amount of equity capital—or net worth—that a banker has at the end
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of period t, dt the deposits the bank obtains from households, st the quantity of financial claims

on nonfinancial firms that the bank holds, and bt the quantity of long-term government bonds. To

prevent frictionless arbitrage between firm equity and long-term government bonds by banks, we

assume that each bank pays a management cost for holding firm equity, given by ψ
2

(
Qk

t st/nt
)2 nt,

where ψ > 0 is a parameter. Assuming that managing bonds is less costly for banks, we simply

set the cost to zero.

Banks are subject to the regulation of macroprudential policies. Assume that the macropru-

dential policy authority charges a tax on a bank’s holdings of the long-term bonds and rebates the

tax revenue to households. Let τl
t be the tax rate. It is possible that the macroprudential authority

taxes households to subsidize bank holdings of long-term bonds when τl
t < 0. We will determine

the optimal macroprudential policy in Section 5. In either case, a representative bank’s balance

sheet is given by

Qk
t st +

ψ

2

(
Qk

t st
)2

nt
+ Ql

tbt(1 + τl
t) = nt + dt. (7)

The bank’s real net worth is accumulated through retained earnings and thus satisfies

nt+1 = Rk
t+1Qk

t st + Rl
t+1Ql

tbt − Rt+1dt. (8)

When a bank exits with probability 1 − σ, it pays out its net worth as dividends. Each banker

is risk-neutral and consumes dividends. Thus a continuing banker’s objective is to maximize the

expected present value of net worth when exiting:

Vt = Et

∞

∑
i=1

(1 − σ)σi−1Λt,t+int+i, (9)

where Λt,t+i is the household stochastic discount factor between t and t + i.

To motivate a limit on the bank’s ability to obtain deposits, we introduce the following costly

enforcement problem: At the beginning of each period, the banker can choose to divert funds from

the assets it holds and transfers the proceeds to the household of which he or she is a member. The

cost to the banker is that the depositors can force the intermediary into bankruptcy and recover the

remaining fraction of assets. However, it is too costly for the depositors to recover the funds that

the banker diverted. For the banker not to divert assets, it faces the following incentive constraint

Vt ≥ θ
(

Qk
t st + Ql

tbt

)
, (10)
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where θ ∈ (0, 1) is the diverted fraction of assets.3 The banker chooses sequences of st, bt, and dt to

maximize (9) subject to its balance sheet (7), the law of motion of net worth (8), and the incentive

constraint (10).

Using the bank’s balance sheet (7) to replace dt in (8), we rewrite the net worth of a surviving

bank as

nt =

(
Rk

t − Rt

(
1 +

ψ

2
Qk

t−1st−1

nt−1

))
Qk

t−1st−1 +
(

Rl
t − Rt

(
1 + τl

t−1

))
Ql

t−1bt−1 + Rtnt−1.

Let Sbt be the total quantity of loans that banks intermediate, Bbt the total number of government

bonds they hold, and Nt the total net worth. In Appendix A, we show that Qk
t st/nt is the same

for each bank, making aggregation tractable. Then the law of motion of net worth of the whole

banking sector is given by

Nt =σ

[(
Rk

t − Rt

(
1 +

ψ

2
Qk

t−1Sb,t−1

Nt−1

))
Qk

t−1Sb,t−1 +
(

Rl
t − Rt

(
1 + τl

t−1

))
Ql

t−1Bb,t−1 (11)

+ RtNt−1

]
+ ωNt−1,

where we assume the transfer to each new banker as startup funds is proportional to its previous

net worth, i.e., Ψt = ωNt−1 for ω ∈ (0, 1).4

In Appendix A, we derive the first-order conditions:

EtΩt+1

(
Rk

t+1 − Rt+1

(
1 + ψ

Qk
t st

nt

))
= λtθ, (12)

EtΩt+1

(
Rl

t+1 − Rt+1

(
1 + τl

t

))
= λtθ, (13)

where Ωt+1 is the bank SDF and λt ≥ 0 is the Lagrange multiplier associated with the incentive

constraint (10). Thus, as long as the cost and tax adjusted conditional expected discounted excess

returns are positive, we have λt > 0 and the incentive constraint binds. The above two equations

3. Another way to generate the spread between equity returns and bond returns for banks is to remove the bank loan
management cost and assume that the diverted fraction of loans is higher than that of long-term bonds as in Gertler
and Karadi (2013).

4. The literature assumes several different forms of the transfer. For example, Gertler and Karadi (2011) take a
fraction of the value of the bank assets as the transfer, while Gertler and Karadi (2013) assume a constant transfer.
These alternative approaches will not change our key insights.
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also imply the following steady-state relation:

Rk − Rl = R
(

ψ
QkSb

N
− τl

)
.

We focus on equilibria with Rk > Rl . This means Sb > 0 for τl ≥ 0 and ψ > 0. It follows from the

analysis in Section 2.2 that both banks and households provide funds to nonfinancial firms in the

steady state, i.e., Sh > 0 and Sb > 0, if Rk > Rl > R and 0 ≤ τl < ψQkSb/N. This is also true

in the neighborhood of the steady state. Clearly, the assumption of management costs with κ > 0

and ψ > 0 plays an important role.

2.4 Retailers

The production sector of the model is standard. There are three types of nonfinancial firms: mo-

nopolistically competitive retailers, competitive intermediate goods producers, and competitive

capital producers. We introduce nominal price rigidities through retailers. We describe each in

turn.

The retailers purchase intermediate goods j ∈ [0, 1] at the wholesale price Pwt from intermedi-

ate goods firms and sell it as the retail goods at price Pjt to final goods producers. The final output

is a CES composite of a continuum of retail goods of measure unity:

Yt =

[∫ 1

0
Y

ε−1
ε

jt dj
] ε

ε−1

.

The demand for retail goods j is given by

Yjt =

(
Pjt

Pt

)−ε

Yt, (14)

where Pjt is the intermediate good j’s price and the price index is given by

Pt ≡
[∫ 1

0
P1−ε

jt dj
] 1

1−ε

.

We follow Adam and Woodford (2012) to incorporate cost-push shocks by adding a random

tax/subsidy τc
t on each retailer’s sale revenue. The tax revenue is transferred to households. Each

retailer can adjust its prices with probability 1 − γ in each period. Following Erceg, Henderson,

and Levin (2000), we assume that whenever each retailer does not reset its price with probability
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γ, its price is automatically increased at the steady-state inflation rate. The retailer selling good j

chooses the nominal price P∗
jt in period t to maximize the discounted present value of real profits

max
P∗

t

∞

∑
k=0

γkEt

[
Λt,t+k

(
(1 − τc

t+k)Π
kP∗

jt

Pt+k
− Pw,t+k

)
Y∗

jt+k

]
,

subject to the demand curve

Y∗
jt+k =

(
ΠkP∗

jt

Pt+k

)−ε

Yt+k.

From the optimality conditions, we can derive the linearized new Keynesian Phillips curve

(NKPC)

Π̂t = βEtΠ̂t+1 + κπ P̂wt + µt,

where a variable with a hat denotes the log-linear deviation from its steady state, κπ = (1 −

βγ)(1 − γ)/γ, and

µt = −κπ log
(

1 − τc
t

1 − τc

)
.

The variable Pwt represents the marginal cost in the standard DNK model. The variable µt captures

a cost-push shock that moves the NKPC. Following Gelain and Ilbas (2017), we assume that µt

follows an ARMA(1,1) process

µt = ρµµt−1 + ε
µ
t + ρmaε

µ
t−1,

where ε
µ
t is an independently and identically distributed (iid) normal random variable with mean

zero and variance σ2
µ. Notice that while we use the linear NKPC to motivate µt as cost-push shocks,

we still adopt the same interpretation for our nonlinear solutions studied later.

2.5 Intermediate Goods Producers

There exists a continuum of intermediate goods producers indexed by j ∈ [0, 1]. Intermediate

goods producers acquire capital and hire labor to produce intermediate goods, which are then

sold to retailers at the real price of Pwt. They finance their capital acquisition each period by

obtaining funds from intermediaries and households. They issues St claims equal to the number

of total units of capital acquired Kt+1 and price each claim at the price of a unit of capital Qk
t .
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The production function of each firm j is given by

Yjt = AtKα
jtL

1−α
jt , α ∈ (0, 1) , (15)

where Kjt is capital, Ljt is labor, and At follows an AR(1) process

ln At = ρa ln At−1 + εa
t ,

and εa
t is an iid normal random variable with mean zero and variance σ2

a.

Solving the optimal labor hiring decision yields

Wt = Pwt(1 − α)
Yjt

Ljt
, (16)

suggesting all firms share the same ratio of Kjt/Ljt. It follows from (14) that aggregate output

satisfies

Yt = AtKα
t L1−α

t /∆t,

where Lt is aggregate labor and ∆t denotes the price dispersion

∆t =
∫ 1

0

(
Pjt

Pt

)−ε

dj.

By (16), the gross profits for each unit of capital is given by

Zt =
PwtYjt − WtLjt

Kji
= Pwt

αYjt

Kjt
. (17)

Integrating (17) over j and using (14), we have

Zt =
∆tPwtαYt

Kt
.

Given that each intermediate good firm earns zero profits, it simply pays out the ex post return

to capital Zt+1 and the undepreciated capital value to households and intermediaries. Thus the

real return on firm equity is defined as

Rk
t+1 =

Zt+1 + (1 − δ)Qk
t+1

Qk
t

, (18)
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where δ is the depreciation rate of capital.

2.6 Capital Goods Producers

Capital goods producers make new capital using input of final output subject to adjustment costs.

They buy undepreciated capital from intermediate goods firms and then sell new capital to them.

The objective of a capital producer is to choose a sequence of investment {It} to solve

max E
∞

∑
t=0

Λ0,t

{
Qk

t Kt+1 − It − Qk
t (1 − δ)Kt

}
,

subject to the law of motion for capital

Kτ+1 = (1 − δ)Kt + It − f (It, Kt),

where Λ0,t ≡ βuCt /uC0 and f denotes the adjustment cost function. Following Chari, Kehoe, and

McGrattan (2007), we take the following functional form:

f (It, Kt) =
Ωk

2

(
It

Kt
− δ

)2

Kt,

where Ωk > 0 is a parameter.

2.7 Monetary and Macroprudential Policies

For simplicity, we assume that the monetary authority is committed to the following interest rate

rule:

Rn
t = ρrRn

t−1 + (1 − ρr)

(
Rn + ϕπ log

Πt

Π
+ ϕy log

Yt

Y

)
+ vm

t , (19)

where Rn
t is the nominal interest rate from t to t + 1 and Rn denotes its steady-state value. Here

ρr ∈ (0, 1) is an interest-rate smoothing parameter. The response coefficients ϕπ and ϕy are impor-

tant for equilibrium determinacy. As in the NK literature, we focus on the monetary regime by

assuming that these parameters satisfy a generalized Taylor principle.

Assume that the monetary policy shock vm
t follows an AR(1) process

vm
t = ρmvm

t−1 + εm
t ,
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where εm
t is an iid normal random variable with mean zero and variance σ2

m.

We consider two types of macroprudential policy. First, a permanent policy specifies a constant

tax rate τl
t = τl on the holdings of long-term bonds for all t. Second, a cyclical policy allows the

tax rate τl
t to respond to the nominal interest rate according to the following rule

τl
t = ϕl(Rn

t − Rn), (20)

where ϕl is a parameter.

2.8 Equilibrium

An equilibrium with sticky prices is defined in the usual way. A full list of equilibrium condi-

tions can be found in Appendix B. Here we describe the resource constraint and market-clearing

conditions. The resource constraint is given by

Yt = Ct + It + Gt,

where Gt = Tt − Sg
t is the government spending. Following Gertler and Karadi (2011, 2013)

and Gertler, Kiyotaki, and Prestipino (2020a), we assume that the government fixes its spending

Gt = G for all t and fixes its supply of government bonds Bt = B for all t. Unlike them, we do

not consider credit policy or unconventional monetary policy. The government adjusts lump-sum

taxes to satisfy its budget constraints (2). We also assume that capital and bond management costs

are rebated to households so that they do not enter the resource constraint. Assuming that they

are a waste of resources does not change our key insights.

As each unit of firm equity claim finances one unit of capital, we have Kt+1 = St. The market-

clearing conditions for government bonds and firm equity are given by

Bt = Bht + Bbt,

St = Sht + Sbt.

3 Model Analysis

Because of the complexity of our baseline model, there is no analytical equilibrium solution. To

derive numerical solutions, we need to calibrate the model first. We then study impulse responses
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of the economy to shocks when the economy initially stays at the deterministic steady state. We

use Dynare ((Adjemian et al. 2022)) to derive nonlinear perfect foresight solutions and find they

are also close to the log-linear solutions.

3.1 Calibration

We calibrate the model without the macroprudential policy and one period in the model corre-

sponds to a quarter. There are 31 parameters in total listed in Table 1. We categorize all param-

eters into two groups. The parameters in the group {σ, θ, ψ, ω, ηS, ηB, κ, ρ} are specific to our

model. The rest are conventional. We first discuss the conventional parameters. For capital share

α, discount factor β, price adjustment probability γ, elasticity of substitution ε, and the capital

depreciation rate δ, we choose the standard values in the business cycle literature.

Table 1: Calibrated Parameters at Quarterly Frequency

Parameter Value Description Target
Banks
σ 0.94 Survival rate of bankers Annual bank dividend payout ratio of 24%
θ 0.4988 Seizure rate of bank assets Annual excess return 4% on firm equity
ψ 0.0011 Bank’s management cost for firm equity Annual excess return 2% on long-term bonds
ω 0.0189 Transfers to new bankers Bank leverage of 6

Households
ηS 0.4667 Reference household share of firm equity claims 50% of firm equity held by banks
ηB 0.6690 Reference household share of long-term bonds Long-term bonds accounts for 22% of bank assets
κ 0.3 Households’ management cost parameter Responses of long-term yield to monetary policy shocks

Government bonds
ρ 0.96 Decay rate of maturity structure Average government bond maturity of 5 years
Ql B/Y 4 Long-term gov bonds to GDP ratio Public debt-to-GDP ratio of 100%

Conventional
α 0.33 Capital elasticity Capital income share
β 0.998 Discount factor Annual nominal rate of 2.81%
γ 0.75 Price adjustment probability Ave. duration of price adjustment of 1 year
ε 11 Elasticity of Substitution Price markup of 10%
τc 1/(1-ε) Revenue tax/subsidy No monopoly distortion Pw = 1
χ 8.2976 Labor disutility Numbers of hours worked of 0.33
δ 0.025 Capital depreciation rate Annual capital depreciation rate of 10%
Ωk 20 Investment adjustment cost Elasticity of capital price to investment capital ratio
G/Y 0.2 Government spending share Average government spending share
Π 1.005 Trend inflation Annual inflation of 2%
h 0.27 Habit parameter Gelain and Ilbas (2017)
φ 0.49 Inverse Frisch elasticity Gelain and Ilbas (2017)
ϕπ 1.98 Taylor rule parameter on inflation Gelain and Ilbas (2017)
ϕy 0.08 Taylor rule parameter on output gap Gelain and Ilbas (2017)
ρr 0.85 Monetary policy smoothing Gelain and Ilbas (2017)
ρa 0.9 AR parameter of productivity shocks Gelain and Ilbas (2017)
ρm 0.18 AR parameter of monetary policy shocks Gelain and Ilbas (2017)
ρµ 0.79 AR parameter of cost-push shocks Gelain and Ilbas (2017)
ρma 0.54 MA parameter of cost-push shocks Gelain and Ilbas (2017)
100 · σa 0.37 Standard deviation of productivity shocks Gelain and Ilbas (2017)
100 · σµ 0.10 Standard deviation of cost-push shocks Gelain and Ilbas (2017)
100 · σm 0.12 Standard deviation of monetary shocks Gelain and Ilbas (2017)
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We set the annual trend inflation rate (Π − 1) ∗ 4 = 2%, consistent with the Fed’s inflation

target. We choose β = 0.998 so that the implied steady-state nominal interest rate per annum is

4(Π/β − 1) = 2.81%, which roughly aligns with the Fed’s expectation of the policy rate in the

longer run.5

We set the labor disutility parameter χ such that the steady-state hours worked is 1/3. We

also set the revenue tax/subsidy for intermediate-good firms τc = 1/(1 − ε) such that Pw = 1

in the steady state to remove the distortion due to monopolistic competition. We set the invest-

ment adjustment cost parameter Ωk = 20 so that the elasticity of capital price with respect to the

investment-capital ratio equals 0.5 (Chari, Kehoe, and McGrattan 2007).

We set G/Y = 0.2 so that the government spending to GDP ratio is roughly consistent with

the average of the US data from 1950Q1 to 2020Q1. We set Ql B/Y = 4 so that the annualized

public debt to GDP ratio is 100%. There has been a rising trend of government indebtedness in

the US since WWII, especially during recent times after the 2008 Great Recession. We find that the

average public debt to GDP ratio is 100% in the US data from 2010Q1 to 2020Q1. According to the

CBO’s projections, the Federal debt held by the public will increase in each year and reach 118%

of GDP in 2033 and will reach 195% of GDP in 2053.6 Our target of Ql B/Y = 4 therefore reflects a

balance between the past and the future values of the public debt to GDP ratio.

For other conventional parameters, we use the estimates from Gelain and Ilbas (2017) based

on a model similar to Gertler and Karadi (2011). These parameters include the inverse Frisch

elasticity φ, the habit formation parameter h, the parameters describing the monetary policy rule

ρr, ϕπ, ϕy, and the parameters that characterize the exogenous shock processes.

We now discuss the calibration of the parameters in the first group. According to U.S. De-

partment of the Treasury (2020), the historical weighted average maturity of Treasury marketable

securities outstanding is around 5 years between 1980 and 2020. The weighted average ma-

turity (Macaulay duration) of the government bond portfolio in the frictionless steady state is

Rn/ (Rn − ρ). As Rn = Π/β, the weighted average maturity is 1/(1 − βΠ−1ρ). Although our

model features frictions, we use this formula to calibrate ρ for simplicity. We set ρ = 0.96 such that

the weighted average maturity is around 5 years.

Following Aoki, Benigno, and Kiyotaki (2016), we choose σ such that the annualized dividend

payout to bank net worth ratio is 4 ∗ (1 − σ) = 24%. As in Gertler and Karadi (2013), we choose

5. The average target level for the federal funds rate in the longer run is 2.76% in the FOMC’s dot plot in Sept 2023.
6. See the Budget and Economic Outlook (2023-2033) published by the CBO.
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the values of θ, ψ, and ω such that the steady-state bank leverage is 6 and the annualized excess

returns on firm equity and long-term government bonds over the short (deposit) rate are 4% and

2% . The bank leverage of 6 is in the middle range of the literature.7

The two reference shares ηB and ηS affect the steady-state asset holdings by the households,

which in turn affect the asset holdings by the banks given fixed supply. Hence, we calibrate ηB

and ηS to match the asset structure of the banking sector. The ratio of bank holdings of Treasury

securities (all maturities) over their assets is targeted at 22%, roughly matching the latest data of

2021Q2 we obtained from the US bank-level call reports.8 We set ηS so that 50% of all firm equity

is intermediated by the banking sector, which is consistent with the calibration chosen by Gertler

and Karadi (2013) and Gertler, Kiyotaki, and Prestipino (2020b).

Because the management cost parameter κ affects the long-term bond yield, we choose κ = 0.3

to match the responsiveness of long-term bond yield to monetary policy shocks. Nakamura and

Steinsson (2018) show that a monetary policy shock that raises the short-term nominal interest rate

by 67 basis points (bps) would increase the 5-year interest rate by 73 bps. Our choice of κ roughly

matches this target.

3.2 Amplification Effects

To understand our model mechanism, we shut down the macroprudential policy by setting τl
t = 0

for all t and study impulse responses of the economy to contractionary shocks to Rn
t , At, and µt.

We illustrate how bank holdings of long-term bonds can amplify contractionary shocks, compared

to holdings of short-term bonds.

Figure 2 plots the impulse response functions of the model economy to a positive one-standard-

deviation cost-push shock. It compares the case of long-term bonds (ρ = 0.96) with that of short-

term bonds (ρ = 0). Figure 2 shows that the positive cost-push shock pushes up inflation, lead-

ing the central bank to raise interest rates according to the monetary policy rule (19). The rise

of interest rates causes the price of government bonds Ql to decline. This causes bank assets to

decline and the balance sheet to shrink. Both the conditional expected excess returns on capital

Et
[
Rk

t+1 − Rt+1
]

and on long-term bonds Et
[
Rl

t+1 − Rt+1
]

over the short-term interest rate rise

7. Aoki, Benigno, and Kiyotaki (2016), Gertler and Karadi (2011), and Gertler, Kiyotaki, and Queralto (2012) target at
4. Gertler and Karadi (2013) target at 6. Gertler, Kiyotaki, and Prestipino (2020a) and Gertler, Kiyotaki, and Prestipino
(2020b) target at 10. See Gertler and Karadi (2011) and Gertler and Karadi (2013) for the empirical evidence for the
leverage ratios of investment banks and commercial banks in the US.

8. We compute this ratio in the data as the average of the ratios of bank Treasury holdings (all maturities) over the
sum of Treasury holdings (all maturities) and their total loans and leases, weighted by the bank assets.
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Figure 2: Long-term bonds amplify cost-push shocks
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Note: This figure plots the impulse responses of selected variables to a one-standard deviation positive cost-push shock
for ρ = 0 and ρ = 0.96. The total bank assets are denoted by Assett = Qk

t Sbt + Ql
tBbt. Nominal interest rate Rn

t , inflation
Πt, excess return on capital Et(Rk

t+1 − Rt+1), and excess return on long-term bond Et(Rl
t+1 − Rt+1) are in annualized

percentage points. The rest of variables are in percentage deviation from steady states.

sharply on impact. As the cost of capital rises, investment, output, and consumption all decline.

As the cost-push shock is quite persistent (ρµ = 0.79), inflation is above the target 2% for a long

time. It also takes a long time for the economy to recover from a recession because the bank has to

re-accumulate net worth slowly.

The key observation is that the decline of the long-term bond price is much larger than that of

the short-term bond price. The larger decline in the bond price generates a larger loss to the bank

assets, causing lower bank net worth and a smaller bank balance sheet. As a result, investment and

capital decline more than in the case of short-term bonds. The same amplification effect applies

to a negative technology shock as illustrated in Figure 3. We will not provide a discussion as it is

similar to that for Figure 2.

Figure (4) shows the impulse responses to a 25-bp positive interest rate shock to the Taylor

rule (19). A rise in the interest rate reduces aggregate demand and hence reduces inflation, in
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Figure 3: Long-term bonds amplify technology shocks
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Note: This figure plots the impulse responses of selected variables to a one-standard deviation negative technology
shock for ρ = 0 and ρ = 0.96. The total bank assets are denoted by Assett = Qk

t Sbt + Ql
tBbt. Nominal interest rate

Rn
t , inflation Πt, excess return on capital Et(Rk

t+1 − Rt+1), and excess return on long-term bond Et(Rl
t+1 − Rt+1) are in

annualized percentage points. The rest of variables are in percentage deviation from steady states.

contrast to the previous cases of a positive cost-push shock and a negative technology shock. But

the contractionary responses for other variables in Figure 4 are qualitatively the same as before.

Thus we omit a detailed discussion here.

To understand the intuition behind why long-term bonds generate larger responses to interest

rate changes, we use the bank’s first-order condition to derive

Ql
t = EtΩ̃t,t+1(1 + ρQl

t+1),

where Ω̃t,t+1 is the adjusted SDF for banks. The derivation is in Appendix A. We can rewrite the

above pricing equation as

Ql
t =

∞

∑
j=1

ρj−1Ω̃t,t+j. (21)

Due to the financial friction of the banking sector, a contractionary shock worsens the bank’s net
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Figure 4: Long-term bonds amplify monetary policy shocks
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Note: This figure plots the impulse responses of selected variables to a 25-bp positive monetary policy shock for ρ = 0
and ρ = 0.96. The total bank assets are denoted by Assett = Qk

t Sbt + Ql
tBbt. Nominal interest rate Rn

t , inflation Πt,
excess return on capital Et(Rk

t+1 − Rt+1), and excess return on long-term bond Et(Rl
t+1 − Rt+1) are in annualized

percentage points. The rest of variables are in percentage deviation from steady states.

worth and reduces the bank’s SDF Ω̃t,t+1 below its steady-state level for a considerable period of

time. From (21), we see that the longer the maturity (the larger ρ), the more reduction in the bank’s

future SDF is priced in and the lower the current bond price.

Moreover, there is feedback between the price of long-term bonds and the bank net worth. A

worsening of bank net worth reduces the bank’s SDF, reducing the bond price especially when the

maturity is long. A low bond price in turn deteriorates the bank’s net worth.

An alternative way to understand the intuition is to use the households’ pricing equations (4)

and (5) and the definition (1). For simplicity, we consider the deterministic case and derive

Ql
t =

∞

∑
j=0

ρj

Rn
t zt · · · Rn

t+jzt+j
, (22)
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where we define

zt+j ≡ 1 + κ

(
Bh,t+j

Bt+j
− ηB

)
. (23)

It follows that, for a larger ρ, a change in the nominal interest rate Rn
t has a larger long-lasting

effect on the bond price Ql
t. In particular, for the one-period bond with ρ = 0, the impact lasts

only one period as Ql
t = 1/(Rn

t zt). Thus the price of longer-term bonds is more sensitive to interest

rate changes. Moreover, when the household share of long-term government bonds
(

Bh,t+j/Bt+j
)

increases when interest rates rise, the bond price Ql
t declines even more.

4 Bank Runs

In the previous section, we showed that contractionary shocks reduce bank net worth, making the

banking sector prone to bank runs. The impact on the net worth is larger if banks hold longer-term

assets. As a result, we expect that a bank run is more likely to occur for banks holding longer-term

assets. In this section, we adopt the approach of Gertler and Kiyotaki (2015) and extend our

baseline model to incorporate bank runs.

For simplicity, we only study the possibility of an unexpected bank run. In particular, we

assume that when households make deposits in period t − 1 that mature in period t, they attach

zero probability to the possibility of a run in period t. However, we allow for the chance of a run

ex post as deposits mature in period t and households must decide whether to roll them over for

another period.

Two types of equilibria may coexist. First, in a normal no-run equilibrium, households roll over

their deposits in banks and bank net worth is positive (i.e., nt > 0). Bank incentive constraints are

also satisfied. We have studied such an equilibrium in Section 2. Second, in a bank-run equilib-

rium, each household decides not to roll over its deposits and perceives that other households will

do the same, forcing banks into liquidation and this forced liquidation makes the banks insolvent

(i.e., nt = 0). Then households use their funds to acquire bank assets directly.

Since all banks in our model are identical, the conditions for a run on the banking system will

be the same for the depositors at each individual bank. As a result, runs in our model are on the

entire banking system, not on individual banks. We next derive the conditions for a bank run.
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4.1 Bank Run Conditions

At the beginning of period t, after the realization of shocks, depositors decide whether to roll over

their deposits with the bank. If they choose to “run”, the bank liquidates its assets (capital and

government bonds) and turns the proceeds over to households. Let Z∗
t be the firm profits, P∗

t the

aggregate price level, and Qk∗
t and Ql∗

t the liquidation prices of capital and bonds in the event of

a forced liquidation of the banking system. Then a run on the system is possible if the nominal

liquidation value of bank assets

P∗
t

(
Z∗

t + (1 − δ)Qk∗
t

)
Sb,t−1 +

(
1 + ρQl∗

t

)
Pt−1Bb,t−1

is smaller than its outstanding nominal liability to the depositors, Rn
t−1Pt−1Dt−1, in which case the

bank’s net worth would be wiped out.

Define the recovery rate in the event of a bank run xt as

xt =
P∗

t
(
Z∗

t + (1 − δ)Qk∗
t
)

Sb,t−1 +
(
1 + ρQl∗

t
)

Pt−1Bb,t−1

Rn
t−1Pt−1Dt−1

,

which can be rewritten as

xt =
Rk∗

t Qk
t−1Sb,t−1 + Rl∗

t Ql
t−1Bb,t−1

R∗
t Dt−1

,

where we define

Rk∗
t =

Z∗
t + (1 − δ)Qk∗

t

Qk
t−1

, Rl∗
t =

1 + ρQl∗
t

Ql
t−1Π∗

t
, R∗

t =
Rn

t−1

Π∗
t

, Π∗
t =

P∗
t

Pt−1
.

Then a sufficient condition for a bank run equilibrium is 0 ≤ xt < 1. If this condition is satisfied,

then a bank-run equilibrium and a no-run equilibrium may coexist. Of course, we also need other

usual conditions for the existence of a no-run equilibrium.

4.2 Liquidation Prices

To understand a bank run equilibrium, it is important to determine the liquidation prices Qk∗
t and

Ql∗
t . In the event of a bank run in period t, banks assets are liquidated and households acquire

them so that Sht = St and Bht = Bt. As banks are insolvent at t, they have zero net worth, Nt = 0.

For simplicity we assume that bank runs happen only once in some period t if possible.

The banking system then rebuilds itself over time as new banks enter. Following Gertler and
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Kiyotaki (2015), we assume that new banks cannot begin operating until the period after the panic

run. The banking system rebuilds its equity and assets as new banks enter at t + 1 onwards. We

also assume that bankers receive startup funds Nnew from households in period t + 1, Nt+1 =

Nnew. From t + 2 on, bank net worth follows the dynamics in equation (11).

We now use (1), (18), and the household Euler equations (5)-(6) to derive the liquidation prices.

In the event of a bank run at t, we have

1 + κ (1 − ηB) = EtΛt,t+1
1 + ρQl

t+1

Ql∗
t Πt+1

,

1 + κ (1 − ηS) = EtΛt,t+1
Zt+1 + (1 − δ) Qk

t+1

Qk∗
t

.

From t + 1 on, we have the usual Euler equations to determine the asset prices at normal times

Qk
t+j and Ql

t+j for j ≥ 1. As 0 < Bht < Bt and 0 < Sht < St at normal times, the liquidation prices

Qk∗
t and Ql∗

t of assets fall below their normal levels at t. In Appendix C, we provide the complete

system of equations for a bank run equilibrium and describe an algorithm to compute such an

equilibrium.

4.3 Simulations

In this subsection, we use simulations to study how cost-push shocks and the associated interest

rate hikes can generate a bank run. We compute global nonlinear perfect foresight solutions,

assuming that µt and vm
t follow deterministic dynamics after the adverse shock. We then check

the condition 0 ≤ xt < 1. If this condition is satisfied, then multiple equilibria may emerge, i.e., a

bank run equilibrium may coexist with a no-run equilibrium. In this case, we allow for a sunspot

which can shift the economy from the no-run to the run equilibrium.

To calculate the lead-up to the bank run, we compute the perfect foresight path up to the point

where the run occurs. For simplicity, we also assume that a bank run can occur only in one period.

After the run, we then compute a new perfect foresight path back to the no-run equilibrium steady

state, given the values of the state variables in the wake of the run. For multiple equilibria to exist,

we also need to check the Blanchard-Khan conditions such that the no-run equilibrium steady

state is a saddle point. In the exercises here, we only consider an unanticipated bank run by

assuming that individuals perceive zero probability of a run. We describe the detailed algorithm

in Appendix C.
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To compute numerical solutions, we need to assign a value to the new net worth Nnew for the

banks to restart one-period later after the bank run in some period t, Nt+1 = Nnew. We assume

that it is a fraction of the bank net worth before the period of the bank run: Nnew = ξNt−1. We set

ξ so that the additional output loss caused by the bank run relative to the case without bank run

roughly matches the estimation of Baron, Verner, and Xiong (2021). Using data for 46 countries

over the period of 1870 to 2016, they estimate that the additional reduction in the real GDP due

to a banking panic is averaged around 2.3% over the three-year period after the panic (Figure III

Panel A in their paper). In our model, the additional output loss caused by the bank run is 2.19%

averaging over 12 quarters after the run.

Suppose that the economy in period zero is at the no-run equilibrium steady state. Figure 5

plots the responses of the economy to a one-time positive cost-push shock in period 1 only. We

set the size of the shock to 10 standard deviations (εµ
1 = 0.01) so that the annualized inflation rate

rises to 7% on impact, which roughly matches the recent increase in the inflation rate in the US.

Following the monetary policy rule (19), the central bank passively responds to the rise of inflation

by raising the annual interest rate to 4.2%, which leads to a decline in the asset prices and bank

net worth. The impaired bank net worth makes bank run possible, as indicated by the recovery

rate xt less than one. As shown in the last panel of Figure 5, xt < 1 for 1 ≤ t ≤ 10. Thus a bank

run can happen in any period between periods 1 and 10.

We simply assume that a bank run occurs ex post in period 4. During the bank run, banks

liquidate all their assets and their net worth is zero. The capital price falls by 20% and the price

of long-term bonds falls by 14% in period 4. The bank run leads to a sharp decline in investment,

causing persistent low levels of capital and output. Starting from period 5 on, banks rebuild their

net worth and the economy gradually moves to the no-run equilibrium steady state.

Next, we assume that the central bank actively raises interest rates to control high inflation.

Figure 6 plots the responses of the economy to the same cost-push shock plus a sequence of 2

consecutive 25-bp monetary policy shocks. This figure shows that inflation rises to 4.8% on impact,

lower than 7% in Figure 5. Inflation drops to 1% during the bank run in period 4 and then rises

to 3.2%. It stays above the inflation rate in the no-run equilibrium for a long time and slowly

transition to the target rate of 2%.

The nominal interest rate rises to 4.3% on impact and continues to rise all the way to 5.8% in

period 4 and then starts to decline gradually to its steady state level. This more aggressive mon-

etary tightening generates a similar recession measured by investment, output, and consumption
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Figure 5: Ex post bank run after a cost-push shock
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Note: This figure plots compares the transition paths with and without a bank run. A cost-push shock hits the economy
in period 1 (εµ

1 = 0.01). The bank run occurs in period 4. The bank leverage is defined as Levt = Assett/Nt. Nominal
interest rate Rn

t and inflation Πt are in annualized percentage points. Bank recovery rate xt is in level. The rest of
variables are in percentage deviation from steady states.

to the case without monetary policy shocks. However, the larger interest rate hike significantly

reduces the asset prices and bank net worth by more. The capital price, bond price, and bank net

worth fall by 8%, 7%, and 45%, respectively, compared to 5%, 6%, and 25% in the case without

monetary policy shocks in Figure 5. As a result, the recovery rate is lower and remains less than 1

longer. The last panel of Figure 6 shows that xt is less than 1 until period 16. Thus bank runs are

more likely to occur when there are unexpected interest rate hikes.

What is the role of the maturity structure of bank assets? Figure 7 compares the recovery

rates and the impulse responses of selected variables in the no-run equilibrium to the same set of

shocks (a 10-standard-deviation cost-push shock followed by 2 consecutive 25-bp monetary policy

shocks) under different maturities ρ of government bonds. When all government bonds are one-

period with a maturity of 3 months (ρ = 0), the decline in the bond price is much smaller. Thus the
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Figure 6: Ex post bank run after cost-push shocks and monetary policy shocks
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Note: This figure plots compares the transition paths with and without a bank run. A cost-push shock hits the economy
in period 1 (εµ

1 = 0.01) followed by 2 consecutive 25-bp monetary policy shocks. The bank run occurs in period 4.The
bank leverage is defined as Levt = Assett/Nt. Nominal interest rate Rn

t and inflation Πt are in annualized percentage
points. Bank recovery rate xt is in level. The rest of variables are in percentage deviation from steady states.

losses of bank asset values and net worth are smaller. As a result, a bank run never happens when

bonds held by banks are short-term, as the recovery rate xt stays above 1 for all t. By contrast, in

the case of long-term bonds with a maturity of 5 years (ρ = 0.96), the decline of long-term bond

prices is much larger, although the impact on output is similar in the no-run equilibrium. We find

that xt < 1 until period 16, implying that a bank run may occur in any period between t = 1 and

t = 16. When a bank run occurs, the adverse impact on the macroeconomy is significant as we

discussed earlier.
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Figure 7: Longer maturity increases bank run likelihood
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tBbt. Bank recovery rate xt is in level. The

rest of variables are in percentage deviation from steady states.

5 Macroprudential Policies

When the economy is vulnerable to shocks, especially to shocks that generate interest rate hikes,

policies may be useful to stabilize the economy. It is critical to stabilize banks’ holdings of long-

term assets because their values are sensitive to changes of interest rates, causing bank balance

sheets to be sensitive too. Weakened bank balance sheets can cause a recession or bank runs. In

this section, we analyze two types of macroprudential policies introduced in Section 2.

5.1 Permanent Policy

Suppose that the government imposes a constant tax τl
t = τl for all t on bank holdings of long-

term government bonds and transfers the tax revenue to households. We hold the steady-state

debt/GDP ratio Ql B/Y = 4 fixed when we change τl . There are two major effects. First, there is

a steady-state effect in the sense that the permanent tax changes the steady state of the economy.
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The tax lowers a bank’s long-run holdings of long-term bonds and hence lowers its net worth. As

a result, it also lowers capital intermediated by the banking system.

Second, the tax on long-term bonds has a dynamic effect in the sense that it changes the dy-

namic responses of the economy to shocks. Figure 8 illustrates this point for τl = 0 and τl = 0.07

and for a cost-push shock (εµ
1 = 0.01) followed by two consecutive unexpected interest rate hikes

(εm
1 = εm

2 = 0.0025). The top-left panel plots the paths of the bond price in the no-run equilibrium.

The top-right panel plots the bond price in the bank-run equilibrium when a bank run happens in

period 4.

The tax on bank holdings of long-term bonds causes these bonds to shift from banks to house-

holds. In particular, the steady-state share of long-term bonds held by households (Bh/B) in-

creases from 70% to 90% when the tax rate τl increases from 0 to 0.07. In response to interest

rate hikes, long-terms bonds flow from banks to households, but the percentage increase in the

household share of long-term bonds relative to its larger steady-state base for τl = 0.07 is smaller

than that for τl = 0, as shown in the bottom-left panel in Figure 8. It follows from the household

pricing equation (5) or (22)-(23) that the decline in the price of long-term bonds for τl = 0.07 is

also smaller.

More importantly, since banks have fewer government bonds to liquidate during the bank run

in period 4, the liquidation price of long-term bonds falls only by 5% when τl = 0.07 instead of

14% when τl = 0. As a result, the recovery rate is higher and becomes greater than 1 sooner. In

particular, when τl = 0.07, a bank run is possible (xt < 1) in any period until t = 13 and is not

possible (xt > 1) for t > 13. But when τl = 0, a bank run is possible (xt < 1) in any period until

t = 16 and is not possible (xt > 1) for t > 16.

Next we study the welfare implications. Let V and V∗ denote the equilibrium life-time util-

ities before and after a macroprudential policy conditional on realized shocks. Let Θ denote the

consumption gain from the policy. Then given (3) we can compute

Θ = exp [(V∗ − V) (1 − β)]− 1.

We also study the impact on the likelihood of a potential bank run, though we only focus on

unanticipated bank run in this paper. For an anticipated bank run studied in Gertler and Kiyotaki

(2015), let pt denote the probability that households assign at t to a bank run happening at t + 1.

Following Gertler and Kiyotaki (2015), we assume that pt is related to the economic fundamental,
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Figure 8: Constant tax τl
t = τl mitigates bond price decline

0 5 10 15 20

-8

-6

-4

-2

0
%

0 5 10 15 20

-15

-10

-5

0

0 5 10 15 20

0

0.5

1

%

0 5 10 15 20

0.96

0.97

0.98

0.99

1

Note: This figure plots the impulse responses of selected variables under different levels of constant tax on government
bonds. A cost-push shock hits the economy at period 1 (εµ

1 = 0.01) followed by 2 consecutive 25-bp monetary policy
shocks (εm

1 = εm
2 = 0.0025). The recovery rate xt is in level. The rest variables are in percentage deviation from steady

states.

the aggregate recovery rate xt, in the following simple form:

pt = max{1 − Etxt+1, 0}.

Assume that the events of a bank run happen independently over time. Then the probability of

bank runs happening in any period over an infinite horizon is given by

1 −
∞

∏
i=0

(1 − pt+i).

Figure 9 plots the welfare gain Θ for various levels of the tax rate τl under the no-run equilib-

rium conditional on the shocks discussed above. It shows that the constant tax improves welfare

when the tax rate is small. This is because the constant tax reduces the bank’s exposure to long-

term bonds in the steady state. As a result, the bank is less affected by the decline in the bond price

upon contractionary shocks. On the other hand, the constant tax reduces the welfare when the tax
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rate is too high. This is because a higher constant bond tax also reduces the steady-state bank net

worth and hence the size of the bank balance sheet and capital intermediated by the bank. We

find that there is an optimal tax rate given by τl = 0.07. At this tax rate, the welfare gain is 0.009%

under the no-run equilibrium and the bank run probability is reduced by 4.9%. The welfare gain

is very small because we only consider conditional gains given a sequence of small shocks.

Figure 9: Welfare gain under constant tax
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Note: This figure plots the welfare improvements under different levels of constant tax τl . Welfare is measured in
consumption units. Welfare is calculated conditional on the cost-push shock in period 1 (εµ

1 = 0.01) and 2 consecutive
25-bp monetary policy shocks in period 1 and 2.

As the permanent bond tax policy can reduce the bank run probability, it is possible that a

bank run occurs without the bond tax (τl = 0), but it never occurs with the tax (τl = 0.07). This

is indeed the case at t = 15, because x15 < 1 when τl = 0 but x15 > 1 when τl = 0.07 as shown in

Figure 8. For a simple illustration, we suppose that a bank run never happens in any other periods

in both cases with and without the bond tax. We then compute that the welfare gain with the bond

tax that preventing a bank run is 0.068% in terms of the consumption equivalent. Thus preventing

a bank run raises the welfare gain by about 6 times more than that (0.009%) for the no-run case.
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5.2 Cyclical Tax

Since banks are vulnerable to interest rate hikes, we consider a cyclical tax policy that responds

to interest rate changes as in (20). Figure 10 studies the effects of this type of policy for ϕl =

−1.5, 0, 1.5. For ϕl < 0, an increase (decrease) in the interest rate causes the government to subsi-

dize (tax) bank holdings of long-term bonds. An opposite interpretation applies to ϕl > 0.

Figure 10 shows that the policy of ϕl = −1.5 can mitigate the adverse impact on the economy

in response to the cost-push shock and interest rate hikes. Intuitively, as the interest rate rises in

response to the shocks, subsidizing bank holdings of long-term bonds can reduce the banks’ loss

of long-term bonds. Thus it can mitigate the decline of bank net worth and asset prices in the no-

run equilibrium as shown in the left two panels of Figure 10. Moreover, the liquidation price also

declines by less in a bank run as shown in the top-right panel. The recovery rate xt for ϕl = −1.5

is higher along the transition path and returns to the steady state sooner than that without the

policy (ϕl = 0). A bank run for ϕl = −1.5 is not possible (xt > 1) after period 9. But a bank run

for ϕl = 0 is not possible (xt > 1) after period 16.

Figure 10: Cyclical tax τl
t = ϕl(Rn

t − Rn)
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Note: This figure plots the impulse responses of selected variables under different cyclical tax on government bonds.
A cost-push shock hits the economy in period 1 (εµ

1 = 0.01) followed by 2 consecutive 25-bp monetary policy shocks
(εm

1 = εm
2 = 0.0025). The recovery rate xt is in level. The rest variables are in percentage deviation from steady states.
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Unlike the permanent tax policy, the cyclical tax policy does not change the steady state. The

cyclical tax policy with ϕl < 0 is like an automatic stabilizer. To find an optimal policy, we search

for ϕl in the interval [−2, 0]. We do not consider positive values because they amplify shocks to

the economy and reduce welfare as shown in Figure 10. We find that the optimal value is at the

corner (ϕl = −2). To have an interior solution, we need to add costs of the cyclical policy. For

example, we may assume that the government raises distortionary taxes on household incomes to

subsidize bank bond holdings. Such an analysis is beyond the scope of this paper.

Table 2: Run probability under combinations of cyclical taxes and monetary policies

Macroprudential policy
ϕl = −1 ϕl = −1.5 ϕl = −2

Monetary policy
ϕπ = 1.5 −10.64% −12.95% −14.37%
ϕπ = 1.98 −6.12% −8.39% −10.08%
ϕπ = 2.2 −5.21% −7.32% −8.93%

Note: This table lists the bank run probability reduction for various macroprudential and monetary policy combinations
relative to the baseline case (ϕπ = 1.98, ϕl = 0). The bank run probability is conditional on a cost-push shock in period
1 (εµ

1 = 0.01) followed by 2 consecutive 25-bp monetary policy shocks (εm
1 = εm

2 = 0.0025).

We finally study the interaction between macroprudential and monetary policies. Table 2

presents the reduction in the bank run probability under different combinations of monetary pol-

icy and macroprudential policy rules relative to the baseline case (ϕπ = 1.98, ϕl = 0). This table

shows that when monetary policy is more dovish (a smaller ϕπ), bank run probabilities are smaller

for a given macroprudential policy rule. On the other hand, given a monetary policy rule, a more

aggressive macroprudential policy rule (a larger |ϕl |) to stabilize long-term bond prices is more

effective to reduce bank-run probabilities.

6 Conclusion

In response to high inflation, central banks often raise interest rates aggressively. As values of

long-term securities are sensitive to interest rate changes, bank holdings of long-term securities

can amplify the impact of interest rate hikes on the macroeconomy. In this paper we have in-

corporated a banking sector in a DNK model to study the role of bank holdings of long-term

government bonds. We show that shocks that trigger high inflation and the associated interest

rate hikes can cause a recession and bank runs. We also introduce two types of macroprudential

policies that can mitigate or prevent a banking crisis.
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Appendix

A Banker’s Optimization Problem

In this appendix, we derive the first-order conditions from a representative banker’s optimization

problem. The banker chooses deposits dt, the quantity of financial claims on nonfinancial firms st,

and the quantity of long-term government bonds bt to solve the following dynamic programming

problem:

Vt = max
{dt,st,bt}

EtΛt,t+1 [(1 − σ)nt+1 + σVt+1] ,

subject to the following constraints

nt + dt = Qk
t st

(
1 +

ψ

2
Qk

t st

nt

)
+ Ql

tbt(1 + τl
t), (A.1)

nt+1 = Rk
t+1Qk

t st + Rl
t+1Ql

tbt − Rt+1dt, (A.2)

Vt ≥ θ
(

Qk
t st + Ql

tbt

)
. (A.3)

Conjecture that the bank value is given by

Vt = ϕtnt,

where ϕt is a coefficient to be determined. Substituting this conjectured value function into the

above optimization problem, using (A.2) to eliminate nt+1, and using (A.1) to eliminate dt, we can

rewrite the banker’s problem as

max
{st,bt}

EtΩt+1

[
(Rk

t+1 − Rt+1(1 +
ψ

2
Qk

t st

nt
))Qk

t st + (Rl
t+1 − Rt+1(1 + τl

t))Q
l
tbt + Rt+1nt

]
s.t. ϕtnt ≥ θ

(
Qk

t st + Ql
tbt

)
where Ωt+1 = Λt,t+1(1 − σ + σϕt+1).

Denote by λt ≥ 0 the Lagrangian multiplier associated with the bank’s incentive constraint.

The Lagrangian can be written as:

L = EtΩt+1

[
(Rk

t+1 − Rt+1(1 +
ψ

2
Qk

t st

nt
))Qk

t st + (Rl
t+1 − Rt+1(1 + τl

t))Q
l
tbt + Rt+1nt

]
+ λt

(
ϕtnt − θQk

t st − θQl
tbt

)
.

38



Then the first-order conditions for st and bt are given by

EtΩt+1

(
Rk

t+1 − Rt+1

(
1 + ψ

Qk
t st

nt

))
= λtθ, (A.4)

EtΩt+1

(
Rl

t+1 − Rt+1(1 + τl
t)
)
= λtθ. (A.5)

Eliminating λt yields a no-arbitrage condition

EtΩt+1

(
Rk

t+1 − Rt+1

(
1 + ψ

Qk
t st

nt

))
= EtΩt+1

(
Rl

t+1 − Rt+1(1 + τl
t)
)

.

Since Rk
t+1, Rl

t+1, Rt+1 and τl
t are aggregate variables, we conclude that all banks choose the same

ratio of firm equity to net worth Qk
t st/nt.

Using Vt+1 = ϕt+1nt+1, (A.1), (A.2), (A.4), and (A.5), we can derive that the value function

satisfies

Vt = λt(θQk
t st + θQl

tbt) + EtΩt+1Rt+1nt + EtΩt+1Rt+1
ψ

2

(
Qk

t st

nt

)2

nt

= λtntϕt + EtΩt+1Rt+1nt + EtΩt+1Rt+1
ψ

2

(
Qk

t st

nt

)2

nt

where the second equality follows from the complementary slackness condition

λt

(
ϕtnt − θQk

t st − θQl
tbt

)
= 0.

Using (A.5) to substitute for λt, we obtain

Vt =
EtΩt+1(Rl

t+1 − Rt+1(1 + τl
t))

θ
ϕtnt + EtΩt+1Rt+1nt

+EtΩt+1Rt+1
ψ

2

(
Qk

t st

nt

)2

nt.

As Vt = ϕtnt, matching coefficients of nt yields

ϕt =

θEtΩt+1Rt+1

(
1 + ψ

2

(
Qk

t st
nt

)2
)

θ − EtΩt+1(Rl
t+1 − Rt+1(1 + τl

t))
.

We can also derive an asset pricing equation for long-term bonds. From (A.5), we have

Ql
t = EtΩ̃t,t+1(1 + ρQl

t+1),
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where

Ω̃t,t+1 =
Ωt+1Π−1

t+1

EtΩt+1Rt+1(1 + τl
t) + λtθ

.

We can thus derive that

Ql
t =

∞

∑
j=1

Ω̃t,t+jρ
j−1

where Ω̃t,t+j = ∏
t+j−1
k=t Ω̃k,k+1.

B No-Run Equilibrium System

The no-run equilibrium is characterized by the following 29 equations in 29 variables {Rn
t , Rt, Rl

t,

Rk
t , Ql

t, Qk
t , Bt, Bht, Bbt, St, Sht, Sbt, Nt, ϕt, Wt, Zt, Sg

t , Yt, Ct, Kt, Lt, It, p∗t , Πt, Pwt, ∆t, Γa
t , Γb

t , τl
t} for

t ≥ 0. Here {Nt, Bbt, Bt, St, Sbt, Ql
t, Qk

t , Ct, ∆t, Rn
t , At, vm

t , µt, τl
t} are predetermined variables and

{N−1, B−1, Bb,−1, S−1, Sb,−1, Ql
−1, Qk

−1, C−1, ∆−1, Rn
−1, A−1, vm

−1, µ−1, τl
−1} are exogenously given.

The shock innovations {εa
t , ε

µ
t , εm

t } are exogenously given.

1. Monetary policy,

Rn
t = ρrRn

t−1 + (1 − ρr)

(
Rn + ϕπ log

Πt

Π
+ ϕy log

Yt

Y

)
+ vm

t , (B.1)

where

vm
t = ρmvm

t−1 + εm
t .

2. Supply of long-term bonds,

Bt = B. (B.2)

3. Macroprudential policy tax on long-term bonds,

τl
t = τl ,

or

τl
t = ϕl(Rn

t − Rn). (B.3)

4. Government budget constraint,

Ql
t−1Bt−1Rl

t = Sg
t + Ql

tBt. (B.4)
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5. Real return on long-term government bonds,

Rl
t =

1 + ρQl
t

Ql
t−1

Π−1
t . (B.5)

6. Labor supply,

uCtWt = χLφ
t , (B.6)

where

uCt =
1

Ct − hCt−1
.

7. Household’s first-order condition for deposit,

EtΛt,t+1Rt+1 = 1, (B.7)

where

Λt,t+1 ≡ β
uCt+1

uCt

.

8. Household’s first-order condition for long-term bonds,

1 + κ

(
Bht

Bt
− ηB

)
= EtΛt,t+1Rl

t+1. (B.8)

9. Household’s first-order condition on firm equity,

1 + κ

(
Sht

St
− ηS

)
= EtΛt,t+1Rk

t+1. (B.9)

10. Real interest rate,

Rt =
Rn

t−1

Πt
. (B.10)

11. Real return on equity,

Rk
t =

Zt + (1 − δ)Qk
t

Qk
t−1

. (B.11)
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12. Law of motion of bank net worth,

Nt =σ

[ (
Rk

t − Rt

)
Qk

t−1Sb,t−1 − Rt
ψ

2

(
Qk

t−1Sb,t−1

Nt−1

)2

Nt−1

+
(

Rl
t − Rt(1 + τl

t−1)
)

Ql
t−1Bb,t−1 + RtNt−1

]
+ ωNt−1. (B.12)

13. Bank’s no-arbitrage condition,

EtΩt+1

(
Rk

t+1 − Rt+1

(
1 + ψ

Qk
t Sbt

Nt

))
= EtΩt+1

(
Rl

t+1 − Rt+1(1 + τl
t)
)

, (B.13)

where

Ωt,t+1 = Λt,t+1
[
(1 − σ) + σϕt+1

]
.

14. Marginal value of bank net worth,

ϕt =

θEtΩt+1Rt+1

(
1 + ψ

2

(
Qk

t Sbt
Nt

)2
)

θ − EtΩt+1(Rl
t+1 − Rt+1(1 + τl

t))
. (B.14)

15. Borrowing constraint for banks,

θQk
t Sbt + θQl

tBbt ≤ ϕtNt, (B.15)

with equality holds if EtΩt,t+1
(

Rl
t+1 − Rt+1(1 + τl

t)
)
> 0.

16. Production function,

∆tYt = At(Kt)
αL1−α

t , (B.16)

where

log At = ρa log At−1 + εa
t .

17. Labor demand,

Wt = Pwt(1 − α)
Yt

Lt
∆t. (B.17)

18. Profits of capital,

Zt = Pwtα
Yt

Kt
∆t. (B.18)
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19. Capital price,

1 = Qk
t

[
1 − Ωk

(
It

Kt
− δ

)]
.

20. Optimal pricing of retailers,

p∗t =
ε

ε − 1
Γa

t

Γb
t

. (B.19)

21. Numerator of the pricing rule,

Γa
t = PwtYt + EtγΛt,t+1Π−εΠε

t+1Γa
t+1. (B.20)

22. Denominator of the pricing rule,

Γb
t = (1 − τc

t)Yt + EtγΛt,t+1Π1−εΠε−1
t+1Γb

t+1, (B.21)

where

τc
t = 1 − exp

[
− µt

κπ
+ log

(
ε

ε − 1

)]
,

κπ = (1 − βγ)(1 − γ)/γ, and

µt = ρµµt−1 + ε
µ
t + ρmaε

µ
t−1.

23. Inflation and the pricing rule,

1 =

[
γ

(
Π
Πt

)1−ε

+ (1 − γ)p∗1−ε
t

] 1
1−ε

. (B.22)

24. Price dispersion,

∆t = (1 − γ)p∗t
−ε + γ

(
Π
Πt

)−ε

∆t−1. (B.23)

25. Resource constraint,

Yt = Ct + It + G. (B.24)

26. Law of motion of capital,

Kt+1 = (1 − δ)Kt + It −
Ωk

2

(
It

Kt
− δ

)2

Kt. (B.25)
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27. Issuance of equity claims,

Kt = St−1. (B.26)

28. Market clearing for firm equity,

St = Sht + Sbt. (B.27)

29. Market clearing for long-term bonds,

Bt = Bht + Bbt. (B.28)

C Algorithm to Compute Bank-Run Equilibrium

This section describes the numerical method to compute the transition dynamics of the economy

subject to bank runs. We study the following experiment. Suppose that the economy is at the no-

run equilibrium steady state at t = 0. A one-time positive cost-push shock innovation ε
µ
1 = 0.01

hits the economy at t = 1, followed by two monetary policy innovations εm
1 = εm

2 = 0.0025. We

assume that there is no technology shock through out the experiment. Thus µt and vm
t follow

deterministic processes that converge to the steady state in period T + 1 where T is a large enough

number.

Suppose that a bank run occurs only in one period if possible. We suppose that it occurs in

period J and check xJ < 1 is satisfied. After the cost-push shock and interest rate hikes, the

economy moves along the transition path until a bank run occurs in period J. After the bank run,

the economy starts a new transition path from period J + 1 until it converges back to the no-run

equilibrium steady state in period T + 1.

We compute the equilibrium path in the following steps:

1. Compute the transition path of the economy after the cost-push and monetary shocks when

no bank run ever happens, denoted as {Xt}T
t=1 where Xt stands for the vector of all endoge-

nous variables.

2. Compute the transition path of the economy recovering from a bank run. Suppose that a

bank run occurs in period J, 1 ≤ J ≤ T. New banks restart in period J + 1. We denote the

transition path after a period-J bank run as {JX∗
t }T

t=J+1.

3. Using the equilibrium conditions in period J, we solve for the endogenous variables X∗
J .

4. Finally, the transition path when a bank run takes place in period J is the combination of
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three pieces: {
{Xt}J−1

t=1 , X∗
J , {JX∗

t }T
t=J+1

}
.

We use the usual nonlinear deterministic simulation in Dynare to compute the transition path

without a bank run {Xt}T
t=1 using the equilibrium conditions in Appendix B. We next describe the

method for computing the transition path after the bank run {JX∗
t }T

t=J+1 and the variables during

the bank run X∗
J .

C. 1 Transition Path after Bank Run

The transition path after the bank run {JX∗
t }T

t=J+1 solves the deterministic version of the equilib-

rium conditions in Appendix B with one modification: the bank starts with net worth NJ+1 =

Nnew. We need to determine the proper boundary conditions for t = J.

In addition to exogenous shocks, the model has 10 endogenous predetermined state variables.

We need to determine their values at time J, {Ql
J , Qk

J , Sb,J , Bb,J , NJ , BJ , SJ , CJ , Rn
J , ∆J}. First, we

have Sb,J = Bb,J = NJ = 0 since banks do not operate during the period of the bank run. We

also have BJ = B by our assumed fiscal policy. We are left with the vector of six values, S =

{Qk
J , Ql

J , SJ , CJ , Rn
J , ∆J}, to be determined. We use the following iterative procedure to compute S

together with other variables in X∗
J .

Step 1. Take the vector of the steady-state values S0 ≡ {Qk, Ql , S, C, Rn, ∆}, as an initial guess

for S .

Step 2. Given the values for the endogenous state variables in the i-th iteration S i, i ≥ 0, we

compute the transition path after the bank run: {JX∗i
t }J+T

t=J+1. Using the equilibrium conditions at

t = J, we can solve for the vector of endogenous variables X∗i
J . In the next subsection we describe

the detailed procedure. We then update the values for the state variables in the (i + 1)-th iteration

S i+1 using the solution in X∗i
J .

Step 3. We repeat the above two steps until convergence according to the criterion |
∣∣S i − S i+1

∣∣ | <
10−6. After convergence, we obtain X∗

J from the last iteration.

C. 2 Computing the Updated Values

In this subsection we describe the procedure to compute the updated value of the state vector

S+ = {Qk+
J , Ql+

J , S+
J , C+

J , Rn+
J , ∆+

J } given the value from the previous iteration S = {Qk
J , Ql

J , SJ , CJ , Rn
J , ∆J}.

For simplicity, we suppress the number of iteration superscript i. As described above, we can

solve for the transition path after the bank run in period J given state S , {JX∗
t }

J+T
t=J+1. We can also

compute the transition path before the bank run {Xt}J−1
t=1 . We now use the following equilibrium

conditions at t = J to compute S+ as well as other variables in X∗
J .
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1. Compute C+
J using

C+
J =

ΛJ,J+1CJ+1 + βhCJ−1

β + ΛJ,J+1h
,

where ΛJ,J+1 = 1/RJ+1.

2. Compute Qk+
J and Ql+

J using

Qk+
J = ΛJ,J+1(ZJ+1 + (1 − δ)Qk

J+1)

[
1 + κ

(
ShJ

SJ
− ηS

)]−1

,

Ql+
J = ΛJ,J+1(1 + ρQl

J+1)Π
−1
J+1

[
1 + κ

(
BhJ

BJ
− ηB

)]−1

,

where ShJ = SJ , KJ = SJ−1 and BhJ = BJ = B.

3. Compute S+
J using

S+
J = (1 − δ)KJ + IJ −

Ωk

2

(
IJ

KJ
− δ

)2

KJ .

where

IJ =

[
1

Ωk

(
1 − 1

Qk+
J

)
+ δ

]
KJ .

4. Compute the following variables recursively

YJ = C+
J + IJ + G,

LJ =

(
∆JYJ

AJKα
J

) 1
1−α

,

WJ = χLφ
J (C

+
J − hCJ−1),

PwJ =
WJ LJ

(1 − α)YJ∆J
,

Γa
J = PwJYJ + γΛJ,J+1Π−εΠε

J+1Γa
J+1,

Γb
J = (1 − τc

J)YJ + γΛJ,J+1Π1−εΠε−1
J+1Γb

J+1,

p∗J =
ε

ε − 1

Γa
J

Γb
J
,

ΠJ =

[
1 − (1 − γ)p∗1−ε

γ

] 1
ε−1

Π.
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5. Compute Rn+
J using

Rn+
J = ρrRn

J−1 + (1 − ρr)

(
Rn + ϕπ log

ΠJ

Π
+ ϕy log

YJ

Y

)
+ vm

J .

6. Compute ∆+
J using

∆+
J = (1 − γ)p∗J

−ε + γ

(
Π
ΠJ

)−ε

∆J−1.

7. We can determine the remaining variables in X∗
J :

RJ = Rn
J−1/ΠJ , ZJ = PwJαYJ∆+

J /KJ ,

Rk
J =

ZJ + (1 − δ)Qk+
J

Qk
J−1

,

Rl
J =

1 + ρQl+
J

Ql
J−1

1
ΠJ

,

Sg
J = Ql

J−1BJ−1Rl
J − Ql+

J BJ ,

where BJ−1 = BJ = B.

8. We have NJ = SbJ = BbJ = 0, and ϕJ and τl
J are invalid as all banks fail in period J.

In sum, we have computed the updated state vector S+ = {Qk+
J , Ql+

J , S+
J , C+

J , Rn+
J , ∆+

J } to-

gether with the updated vector of endogenous variables X∗
J .
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