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1 Introduction

Finance is littered with puzzles; one prominent and persistent puzzle is the observation by Shiller

(1981) that aggregate stock prices are too volatile relative to the expected present value of divi-

dends. Several studies have identified resolutions to the puzzle, including nonstandard preferences

and nonstationary dividend processes, that argue the issue is with the inputs to the expectations

operator for future dividends.1 An alternative approach is the dispersed information environment

of Kasa, Walker, and Whiteman (2014). In their model the issue is that the wrong expectations

operator is used – the relevant expected value is taken using the average expectations operator,

which in general does not satisfy a law of iterated expectations.

Another aspect of the equity volatility puzzle is that macroeconomic quantities – aggregate out-

put, consumption, and dividends – are too smooth relative to equity prices. In actual economies all

these quantities are endogenous and respond to the same shocks that drive equity price movements.

The goal of our paper is to understand whether a simple production-based asset pricing model is

able to deliver both smooth macroeconomic dynamics and highly volatile equity prices, without

introducing complex exogenous shocks or nonstandard preferences. We provide a positive answer

to this question by developing a model of a dispersed-information island economy along the lines

of Lorenzoni (2009) and Angeletos and La’O (2010, 2013), extended to include a centralized stock

market.

Maintaining dynamic and persistent information frictions is crucial for our results. Such frictions

often lead to the technical problem of “forecasting the forecasts of others” (Townsend (1983)). That

is, the state space for the model solution contains an infinite number of higher-order expectations

so that the time-domain methods become largely intractable. Therefore we use the frequency-

domain methods to circumvent this obstacle after we log-linearize the equilibrium system. The

frequency domain methods have a long history in economics, and are particularly useful for deal-

ing with incomplete information models.2 Using tools from harmonic and complex analysis, we

obtain analytical solutions for the log-linearized equilibrium system and derive the volatility mea-

sures in closed-form. These tools also allow us to prove equilibrium existence and uniqueness in a

transparent manner.

The first main result of our paper is that higher-order expectations under dispersed information

always reduce the volatility of business cycle fluctuations in the real economy. We establish this

result by showing that the volatility of aggregate output (or consumption) under full information

gives an upper bound for that under dispersed information. The key assumption for this result

1See Campbell (1999) and Cochrane (2001) for surveys.
2Futia (1981), Hansen and Sargent (1980, 1981a, 1981b), Whiteman (1983, 1985), and Taub (1989) are among the

first generation of research that employ these methods. Recent developments include Kasa (2000), Walker (2007),
Bernhardt, Seiler, and Taub (2010), Makarov and Rytchkov (2012), Kasa, Walker, and Whiteman (2014), Rondina
and Walker (2015), Tan and Walker (2015), and Huo and Takayama (2015).
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is that agents in the economy are informationally small in the sense that there is a continuum of

agents with private information and the idiosyncratic shock component of the private information

washes out in the aggregate. Since aggregate output depends on the average forecast of aggregate

demand, there is no need for any agent to forecast the behavior of any other particular agent’s

action to predict aggregate output. The slow learning effect brought in by signal extraction leads

to dampened fluctuations, while the speculative effect of the forecasting the forecasts of others in

models with finitely many agents completely vanishes due to the law of large numbers.

Next we consider equity volatility under dispersed information. To illustrate our key mechanism

transparently, we adopt a univariate signal structure with aggregate and island-specific idiosyncratic

total factor productivity (TFP) shocks. Our second main result demonstrates that when the volatil-

ity of idiosyncratic shocks approaches infinity, an endogenous unit root appears in the stochastic

processes of investors’ shareholdings and the aggregate equity price. Thus the equity price becomes

infinitely volatile when the volatility of idiosyncratic shocks approaches infinity. This is the most

important result of our paper and may seem surprising because aggregate equity prices only re-

spond to aggregate shocks but not idiosyncratic shocks. The key is that the response coefficient

endogenously varies with the idiosyncratic shock volatility – as idiosyncratic volatility rises, a feed-

back loop emerges and raises the sensitivity of equity prices to aggregate shocks. Our theoretical

result has an appealing quantitative implication in that we can choose a relatively low volatility of

aggregate shocks to match the low volatility of aggregate consumption and choose a relatively high

volatility of idiosyncratic shocks to match the high volatility of equity prices as in the data.

The mechanism for equity volatility is through the confusion effect on the average forecast of the

individual stochastic discount factors (SDFs) when agents are unable to determine whether a given

change in the information signal is due to aggregate or idiosyncratic shocks. An agent’s SDF is equal

to the intertemporal marginal rate of substitution. Optimality of consumption and portfolio choices

implies that equity prices must satisfy Euler equations for agents on all islands with their individual

SDFs being used. Due to dispersed information, the average of the expected SDFs is not equal to the

expected average SDFs. Thus the variation in the distribution of individual consumption matters

to equity prices. Since individual shareholdings and labor supply affect individual consumption

and SDFs, their responses to idiosyncratic shocks affect equity volatility.3 As a result the effect

on the equity price is different from the effect on aggregate output, which depends on the average

forecast of aggregate demand instead of individual behavior.

Given the fixed supply of equity shares, equilibrium asset trading responds to idiosyncratic

shocks only: an aggregate shock to buy for all agents (properly interpreted) would simply lead

to a rise in equity prices, whereas an idiosyncratic shock would generate a transfer of assets be-

3This intuition is similar to that in the incomplete markets models of Mankiw (1986) and Constantinides and
Duffie (1996).
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tween individuals (those with good idiosyncratic shocks buy from those with bad ones). When

these idiosyncratic shocks are corrupted by aggregate shocks that cannot be filtered out, confusion

leads to idiosyncratic volatility bleeding into equity prices because individual errors are correlated

across individuals. Technically speaking, the cross-sectional integral of expectations of idiosyncratic

variables does not obey the law of large numbers under dispersed information. Hence responses of

individual shareholdings to idiosyncratic shocks are transmitted into aggregate equity prices via the

correlated signals. We show that the confusion effect by itself has a limited impact in a two-period

example. By contrast, in our dynamic model, equity prices depend on higher-order beliefs about

the average forecast of future individual shareholdings, which in turn depend on the individual fore-

cast of future equity prices due to an intertemporal hedging incentive. This dynamic interaction

causes equity prices and shareholdings to be highly persistent and the persistence varies with the

idiosyncratic shock volatility.

If the idiosyncratic shock volatility is very large, each agent mistakenly believes that any change

in the TFP is driven almost entirely by an idiosyncratic shock and hence he acts as if the source

of the shock is known, leading to trading behavior that resembles the choices under full informa-

tion. We show that individual consumption and shareholdings follow a random walk under full

information as in Graham and Wright (2010). Unlike the case under full information in which the

permanent shifts cancel out in the cross-sectional aggregation, correlated estimation errors under

dispersed information cause the permanent shifts in shareholdings to be transmitted into perma-

nent shifts in equity prices in the limit when the idiosyncratic shock volatility approaches infinity.

We decompose the equity price into a present-value component under a constant SDF (i.e, the

infinite sum of higher-order expectations about future aggregate dividends) and a component of

the infinite sum of higher-order expectations about individual SDFs. We find that it is the second

component that generates the unit root and hence a large equity volatility.

We establish our preceding results by assuming that agents use exogenous signals only to perform

forecasting in the baseline model. We extend our analysis to multivariate cases, in which agents

forecast using information learned from endogenous variables. Following Taub (1989) and Rondina

and Walker (2015), we suppose that agents also receive a noisy price signal for forecasting; the

noise prevents the revelation of the aggregate shock information. We prove that our key insights

and main results hold in this more general case.

In addition to the contributions above, we implement a two-step spectral factorization method

in Rozanov (1967) to find the Wold representation for the non-square signal system. Once we have

obtained the Wold representation, we can apply the Wiener-Hopf prediction formula to compute

conditional expectations. The rest of our solution method follows the classical approach to solving

linear rational expectations models (e.g., Whiteman (1983), Kasa, Walker, and Whiteman (2014),

Rondina and Walker (2015), and Tan and Walker (2015)). Our procedure extends the existing
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literature on models with private information to non-square environments with more underlying

shocks than signals, and we allow signals to follow arbitrary ARMA(p,q) processes. The restriction

that the numbers of signals and shocks are the same is quite limited in application. Given this

restriction, equilibrium will be fully revealing unless there is non-invertibility from signals to shocks.

If there are more shocks than signals, agents can never fully learn the true state of the economy

and prediction errors are typically persistent.

Huo and Takayama (2015) develop a state-space spectral decomposition approach to deal with

the non-square signal system. They first find a state-space representation of the signal process

and then use the resulting innovation representation and factorization identity matrix to find the

Wold representation. Their approach is computationally convenient since it can be solved using

fast Ricatti equation methods and the Kalman filter. One drawback is that it is difficult to find

an analytical solution because the Ricatti equation typically does not admit an analytical solution

for high-dimensional systems. By contrast, our approach is constructive and can deliver analytical

solutions in a much wider range of models.

Our paper is related to two strands of the literature. The first strand is on asset pricing under

dispersed information (e.g., Bacchetta and van Wincoop (2008), Kasa, Walker, and Whiteman

(2014), and Rondina and Walker (2015)).4 Bacchetta and van Wincoop (2008) argue that the

equity price volatility is reduced under dispersed information and higher-order expectations. Using

the frequency domain methods, Kasa, Walker, and Whiteman (2014) show that the equity price

volatility can be excessively high given two-types of agents. Their intuition is in a similar spirit of

Harrison and Kreps (1978) and Scheinkman and Xiong (2003), where higher-order beliefs lead to

speculative bubbles. Our paper differs from this literature in three important ways. First, in our

environment with a continuum of informationally small agents, higher-order beliefs do not lead to

high volatilities per se. In fact, they dampen aggregate output volatility rather than amplifying

it. It is the higher-order beliefs about the average forecast of individual SDFs that generates

massive fluctuations in the financial market. Second, all these papers study endowment economies

in which consumption and dividends are exogenously given. They cannot address the issue of why

macroeconomic quantities are too smooth relative to equity prices. Finally, many papers in this

literature assume constant exogenous SDFs, whereas our SDFs are endogenous, heterogeneous, and

time-varying; as noted already, this feature is key for our result.

Our paper is also related to the large literature that incorporates dispersed information into

macroeconomics.5 Important recent papers include Lorenzoni (2009), Angeletos and La’o (2010,

2013), and Benhabib, Wang, and Wen (2015). Angeletos and La’o (2013) point out that dispersed

4Our paper is also related to the literature on noisy rational expectations models, which is too large for us to cite
all related papers. Important contributions include Grossman and Stiglitz (1980), Hellwig (1980), Kyle (1985), Wang
(1994), Bernhardt and Miao (2004), Bernhardt, Seiler, and Taub (2010), Albagli, Hellwig and Tsyvinski (2015), and
Albuquerque and Miao (2015).

5See Angeletos and Lian (2016) for a survey.
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information on its own right may dampen output volatility as our model shows. Our contribution is

to formally prove this result under general assumptions in the frequency domain. To generate a large

volatility, they introduce an aggregate sentiment shock, which affects higher-order expectations.

Benhabib, Wang, and Wen (2015) show that endogenous information can arise when each firm

observes an endogenous private signal about its demand, which in turn depends on the behavior

of other firms. This literature typically focuses on business cycle dynamics instead of asset price

volatilities.

Three recent papers consider both business cycles and asset prices. Benhabib, Liu, and Wang

(2016) build an overlapping-generations model to show that exuberant financial market sentiments

of high output and high demand for capital increase the price of capital, which signals strong fun-

damentals of the economy to the real side and consequently leads to an actual boom in real output

and employment. Their model can also generate asymmetric nonlinear asset prices. Hassan and

Mertens (2014, 2016) introduce dispersed information into dynamic stochastic general equilibrium

models with physical capital. They use an approximation method in the time domain to solve their

models numerically. Hassan and Mertens (2014) introduce noise traders to prevent equilibrium from

fully revealing, while Hassan and Mertens (2016) replace noise traders with near rational traders

who make small correlated errors. They show numerically that an exogenous aggregate shock to the

conditional expectation can generate sizable variations in the equity market. Correlated mistakes in

our model arise endogenously from the signal extraction problem due to higher-order expectations

rather than extra exogenous shocks. Moreover, our novel analytical solutions and limiting results

are transparently derived in the frequency domain.

2 Basic Intuition

We use a simple two-period model of an endowment economy to illustrate the basic intuition behind

our analysis. Suppose that there is a continuum of agents indexed by i ∈ I = [0, 1] who trade a

single stock with a unit supply in period 1. The stock pays random dividends D in period 2. Each

agent i is endowed with one unit of the stock and random labor income Li in period 1. He derives

utility from consumption Ci1 and Ci2 in the two periods according to the function

Ei

[
C1−γ
i1

1− γ
+ β

C1−γ
i2

1− γ

]
,

where Ei denotes the conditional expectation operator, β ∈ (0, 1) is the subjective discount factor,

and γ is the risk aversion parameter. His budget constraints are given by

Ci1 +QSi = Q+ Li, Ci2 = DSi,

where Q and Si denote the stock price and shareholdings, respectively.
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Suppose that dividends and labor income satisfy

logD = log D̄ + xdεa, logLi = log L̄+ xlεi,

where D̄, xd, L̄, and xl are exogenous constants, and εa and εi are independent random normal

variables with means zero and variances σ2a and σ2i . Suppose that the labor income shock is purely

idiosyncratic in that
∫
I εidi = 0.

At the beginning of period 1, each agent i receives a signal Xi = εa+ εi, but does not observe εa

and εi separately. All agents do not communicate their signals with each other. To prevent infor-

mation revelation, we assume that agents do not use the price information to perform forecasting

even though they observe the stock price. Based on his own information signal Xi, each agent i

solves his utility maximization problem. We obtain the Euler equation

Q = Ei

[
β
Cγ
i1

Cγ
i2

D

]
.

In equilibrium
∫
I Sidi = 1. It is straightforward to show that the deterministic equilibrium when

εa = εi = 0 is given by

S̄i = 1, C̄i1 = L̄, C̄i2 = D̄, Q̄ = β
(
L̄/D̄

)γ
D̄.

Now we log-linearize the stochastic equilibrium around the deterministic equilibrium and use a

lower case variable to denote its log deviation from its deterministic equilibrium value. We then

obtain the log-linearized Euler equation

q = Ei[γ(ci1 − ci2) + d]. (1)

Next we substitute the log-linearized budget constraints into this Euler equation to get the log-

linearized trading strategy

si =
Ei[(1 − γ)d]− q

γ(1 + Q̄/L̄)
+

Ei[li]

1 + Q̄/L̄
. (2)

This expression is akin to Merton’s (1969) result: the trading strategy consists of a mean-variance

efficient component and a hedging component against idiosyncratic labor income.

Substituting the log-linearized budget constraints into (1) and aggregating the resulting equation

over i ∈ [0, 1] using the log-linearized market-clearing condition
∫
I sidi = 0, we can derive

q = (1− γ)Ēi[d] + γĒi[li], (3)

where Ēi [·] ≡
∫
Ei [·] di. By the Gaussian projection theorem,

Eiεi =
σ2i

σ2a + σ2i
Xi ≡ τ iXi, Eiεa =

σ2a
σ2a + σ2i

Xi ≡ τaXi.
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We can then show that

Ei[d] = xdτa(εa + εi), Ēi[d] = xdτaεa. (4)

This implies that, when agents are informationally small, the market average forecast of aggregate

fundamentals becomes smoother than the individual forecast in that V ar
(
Ēi[d]

)
< V ar (Ei[d]) . It

is also easy to check that V ar (Ei[d]) < V ar (d) . We will show that this dampening result applies

to our general dynamic model when aggregate fundamentals are endogenous (see Lemma 2). An

immediate implication is that dispersed information does not help generate a large equity volatility

when γ = 0. In this case equity volatility decreases with σi and approaches zero when σi → ∞,

because limσi→∞ τa = 0. Thus we need risk aversion γ > 0 and hence volatile SDFs.

Consider the second term on the right side of equation (3), which comes from the average

forecast of individual SDFs. If agents can communicate with each other so that information is

homogenous, this term will vanish Ēi[li] = Ei[
∫
I lidi] = 0. Under dispersed information without

communication, we have

Ei[li] = xlτ i(εa + εi), Ēi[li] = xlτ iεa. (5)

Thus the second term in (3) contributes additional aggregate volatility in the equity price. Using

(4) and (5), we obtain the equilibrium price and shareholdings

q = [(1− γ) xdτa + γxlτ i] εa, si =
xlτ i

1 + Q̄/L̄
εi.

This result implies that equilibrium stock prices only respond to aggregate shocks, while equilibrium

shareholdings only respond to idiosyncratic shocks. When agents are unable to distinguish between

the aggregate and idiosyncratic shocks, they make correlated mistakes in forecasts of idiosyncratic

labor income due to the aggregate shock εa. This correlated mistake does not average out and

therefore is transmitted into the aggregate price, as shown in equations (3) and (5). However,

this additional volatility only has a limited effect since τ i ∈ (0, 1). Even if idiosyncratic shocks

are arbitrarily volatile, aggregation cancels them out and τ i approaches the upper bound of one.

Unless we assume a very high value for xl, the quantitative effect on equity prices will be small.

In the next section we extend this simple example to an infinite-horizon setup. We will endoge-

nize labor income and dividends by introducing the production side of the economy so that xd and

xl are endogenous. In the infinite-horizon model the trading strategy will include intertemporal

hedging demand against future investment opportunities so that shareholdings today depend on

the forecasts of future shareholdings, labor income, and equity prices. On the other hand, equity

prices are forward-looking and depend on the higher-order beliefs about the average forecasts of

future individual shareholdings. Interpreted through the lens of the two-period model, this dy-

namic interaction makes shareholdings and equity prices highly persistent and generates a positive

connection between σi and xl that causes equity volatility to increase without bound as σi → ∞.
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3 Model

We consider a variation of the classical dispersed-information (real) business cycle models of Loren-

zoni (2009) and Angeletos and La’O (2010, 2013). The economy consists of a continuum of islands

with a Lebesgue measure of one. Information is dispersed across islands but identical within

each island. There is a representative household and a representative firm on each island. Each

firm is monopolistically competitive and produces a specialized good using labor input only, while

consumers have Dixit-Stiglitz preferences over varieties. Labor is immobile across islands, but con-

sumption goods of all varieties are freely mobile. The equity market is operated through a mutual

fund which owns the firms and issues equity shares to households. The stock price therefore reflects

the average valuation of firms in the economy. Normalize the aggregate stock supply to one.

3.1 Information Structure

Time is discrete and indexed by t = 0, 1, .... Uncertainty is generated by the TFP shock Ait in each

island i ∈ [0, 1] , which satisfies

Ait = At exp (εit) , (6)

where At represents the aggregate component that affects all firms in all islands and εit represents

the idiosyncratic component that is independent of At and affects the firm in island i only. All agents

observe Ait at time t, but cannot distinguish between the aggregate and idiosyncratic components.

Let

logAt = ρa logAt−1 + εat, (7)

where εat and εit are identically and independently distributed over time and drawn from the normal

distributions with means zero and variances σ2a and σ2i , respectively. Moreover, assume that the

law of large number (LLN) holds for εit so that

∫

I
εitdi = 0. (8)

Suppose that the representative household in each island i observes the current wage in its island

and the current prices of specialized goods in all islands when choosing consumption varieties and

labor supply. This household uses only the history of exogenous signals {Ait−n}∞n=0 to forecast

future equity prices and dividends when making shareholding decisions. The representative firm

in each island i observes the current wage in its island and makes production and employment

decisions before the current output price is realized. As with the household, the firm uses only

the history of exogenous signals {Ait−n}∞n=0 to form static expectations about output demand.

Admittedly, our assumption on the information structure is restrictive in the sense that we rule out

endogenous signals such as equity prices and aggregate dividends. But it is technically convenient

as it prevents equilibrium from being fully revealing and mitigates the algebraic burden without
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changing our main results.6 In Section 7 we extend our model to study the case with signals

generated by endogenous variables.

3.2 Households

A representative household on each island i ∈ I ≡ [0, 1] derives utility from the composite good

consumption {Cit} and labor supply {Nit} according to the utility function of Greenwood, Huffman,

and Hercowitz (1988):

E

[
∞∑

t=0

βt log

(
Cit −

N1+φ
it

1 + φ

)]
,

where β ∈ (0, 1) , φ > 0,

Cit =

[∫

I
Cit (j)

ς−1
ς dj

] ς
ς−1

,

and Cit (j) denotes the consumption of good j demanded by the household on island i. Here

ς > 1 denotes the inter-island elasticity of substitution that determines the degree of strategic

complementarity.

The household faces the following intertemporal budget constraint

∫

I
Cit (j)Pt (j) dj +QtS

h
it+1 = Sh

it (Qt +Dt) +WitNit, (9)

where Pt (j) , Qt, S
h
it, Dt, and Wit represent the price of good j, the stock price, share holdings,

aggregate dividends, and the wage rate in island i, respectively.

First-order conditions give

Wit = Nφ
it, (10)

Cit (j) =

[
Pt (j)

Pt

]−ς

Cit, (11)

Eit [Mit+1 (Qt+1 +Dt+1)] = Qt, (12)

where the SDF Mit+1 is given by

Mit+1 =
β
(
Cit −N1+φ

it / (1 + φ)
)

Cit+1 −N1+φ
it+1/ (1 + φ)

, (13)

and

Pt ≡
[∫

I
Pt (j)

1−ς di

] 1
1−ς

is the price index of the composite good satisfying

∫

I
Cit (j)Pt (j) dj = PtCit.

6See Angeletos and La’O (2013) and Huo and Takayama (2015) for similar assumptions.

9



Here Eit denotes the conditional expectation given the infinite history of signals {Ait−n}∞n=0 . Our

adopted utility function implies that the labor supply in (10) is independent of Cit and hence

simplifies our analysis, but it is not crucial for our main results.

We normalize the composite goods price Pt to one so that the budget constraint (9) becomes

Cit +QtS
h
it+1 = Sh

it (Qt +Dt) +WitNit. (14)

Aggregating (11) over i ∈ I yields the total demand for good j ∈ [0, 1] ,

Yjt =

∫

I
Cit (j) di = [Pt (j)]

−ς Yt, (15)

where Yt denotes aggregate consumption

Yt =

∫

I
Citdi ≡ Ct. (16)

3.3 Firms

The representative firm in island i ∈ [0, 1] has a production function

Yit = AitNi
α
t , α ∈ (0, 1) , (17)

where Ait satisfies (6). The firm solves the static profit maximization problem

πit = max
Nit

Eit [Pt (i)]Yit −WitNit

subject to the demand schedule in (15) for j = i. Since the production and labor demand choice is

made before observing the output price, the firm needs to form static conditional expectation about

the price Pt (i) given the infinite history of signals {Ait−n}∞n=0 . Since Yit and Nit are observable

choice variables, the firm essentially forms conditional expectations about the aggregate demand

Yt. Simple algebra yields the labor demand condition

α

(
1− 1

ς

) Y
(1− 1

ς )
it Eit

[
Y

1
ς

t

]

Nit
=Wit. (18)

3.4 Equilibrium Characterization in the Time Domain

There is one aggregate mutual fund that issues equity shares and collects dividends from individual

islands. The aggregate dividend satisfies Dt =
∫
I πitdi and aggregate output satisfies Yt =

∫
I Yitdi.

The mutual fund distributes the dividend to shareholders. The market-clearing condition for the

stock is given by ∫

I
Sh
it di = 1. (19)

10



A competitive equilibrium with dispersed information is characterized by a system of 9 equations

(10), (11), (12), (14), (15), (16) (17), (18), and (19) for 9 variables Wit, Nit, S
h
it, Cit, Cit (j) , Yt (j) ,

Pt (j) , Qt, and Yt, where Dt satisfies
∫

I
WitNitdi+Dt = Yt. (20)

This equation follows from aggregating (14) using (16) and (19).

Since the equilibrium system is nonlinear and does not admit an explicit solution, we derive a

log-linearized solution (see Appendix A). We use a lower case variable to denote the log deviation

from the non-stochastic steady state. We impose the following assumption on the parameters so

that there exists a unique deterministic steady-state equilibrium.

Assumption 1 The parameter values satisfy α, β ∈ (0, 1) , φ > 0, ς > 1.

We first use (10), (18), and (17) to eliminate Wit and Nit to derive

yit =
1

ξ
ait + θEit [yt] , (21)

and

yit = ait + αnit, (22)

where we define

ξ ≡ 1 + φ− α (1− 1/ς)

1 + φ
> 0, θ ≡ α

α+ (1− α+ φ) ς
∈ (0, 1) .

The parameter θ describes the degree of strategic complementarity (see Angeletos and La’O (2013)

and Huo and Takayama (2015)). Aggregating (21) over the continuum, we have

yt =
1

ξ

∫

I
aitdi+ θEit [yt] , (23)

where the average expectation operator is defined as

Eit [·] ≡
∫

I
Eit [·] di.

Log-linearizing (14) and (12) yields

α1s
h
it+1 = α2s

h
it + Eit

[
α3s

h
it+2 +∆bit+1

]
+ Eit [βqt+1 + (1− β) dt+1]− qt, (24)

where ∆bit+1 ≡ bit − bit+1 and

bit = α4dt + α5nit. (25)

Unlike the two-period model, agent i has an intertemporal hedging incentive so that his sharehold-

ings depend on his forecasts of his future shareholdings, labor income, and equity prices. Using

(10) and (20) we obtain

α6dt + α7nt = yt, (26)
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where nt =
∫
I nitdi. Here the coefficients α1, α2, ..., α7 are defined in Appendix A. Define the

parameter λs ≡ α2/α1. In Appendix A we show that λs ∈ (1/2, 1) and α1 = α2 + α3. These two

properties are important for our results and also hold for general utility functions.

Aggregating (24) and using (19), we show that equity prices satisfy

qt = Eit

[
α3s

h
it+2 +∆bit+1

]
+ Eit [βqt+1 + (1− β) dt+1] . (27)

The first term is the average forecast of the individual SDFs, which depend on shareholdings and

labor income. Iterating (27) forward, we find that the equity price is determined by an infinite

number of forward-looking higher-order expectations about aggregate dividends and individual

shareholdings and labor income.

In summary, we characterize the log-linearized equilibrium by a system of 6 equations (21),

(22), (23), (24), (26), and (27) for 6 variables yit, nit, yt, s
h
it, dt, and qt. We are looking for causal

covariance stationary equilibrium processes.

3.5 Full Information Benchmark

Before we solve for the equilibrium under dispersed information, we present the equilibrium under

full information. In this case all agents have rational expectations using all available information

and hence equations (23) and (27) become

yt =
1

ξ
at + θEt [yt] , (28)

qt = Et [∆bt+1] + Et [βqt+1 + (1− β) dt+1] , (29)

where bt = α4dt + α5nt. It follows that

yFI
t =

1

(1− θ) ξ
at, (30)

where a variable with a superscript “FI” denotes its full information value. We then use (21) and

(26) to derive

nFI
t =

1− (1− θ) ξ

α (1− θ) ξ
at, d

FI
t =

α− α7 [1− (1− θ) ξ]

αα6 (1− θ) ξ
at.

Applying the method of undetermined coefficients to (29) yields qt = yt = ct. Thus the model under

full information cannot simultaneously generate smooth output and highly volatile equity prices.

A subtle but important observation in the full information case is that the processes of indi-

vidual consumption and shareholdings contain a unit root. Applying the method of undetermined

coefficients to (24) under full information yields

sh,F I
it+1 = sh,F I

it + χsεit, χs ≡
α5(1/ξ − 1)

α(α1 − α2)
.

12



This in turn implies that individual consumption possesses contain a random walk component using

the log-linearized budget constraint:

cFI
it = cFI

it−1 + yFI
t − yFI

t−1 + χcεit +

(
D

C
χs − χc

)
εit−1,

where χc ≡ WN
C (1 + φ)1/ξ−1

α − χs
Q
C , and W , N , Q, D, and C are steady state values given in

Appendix A. This result is similar to that in Graham and Wright (2010), while the LLN condi-

tion (8) and the full-information assumption ensure that such permanent shifts in idiosyncratic

consumption and shareholdings cancel out in the aggregate. In particular,

∫

I
Et

[
α3s

h
it+2

]
di = Et

∫

I

[
α3s

h
it+2

]
di = 0.

Under dispersed information, however, such interchange of integration operators is invalid because

agents have different information sets, and the interconnection between shareholding choices and

the equity price leads to our key results for the financial market.

4 Computing Expectations in the Frequency Domain

To solve the log-linearized equilibrium system under dispersed information, we need to deal with

the problem of forecasting the forecast of others as revealed by equations (23) and (27). We use

equation (23) to illustrate this issue. Iterating (23) yields

yt =
1

ξ

∞∑

k=0

θk E
(k)
it

[∫

I
aitdi

]
+ lim

k→∞
θkE

(k)
it [yt] ,

where the k-order average expectation is the repeated integral

E
(k)
it [·] =

∫

I
Eit

∫

I
Eit · · ·

∫

I︸ ︷︷ ︸
k

Eit [·] di · · · di︸ ︷︷ ︸
k

.

Under homogeneous information, higher-order expectations collapse to first-order expectations.

Under dispersed information, aggregate output depends on an infinite number of higher-order

expectations. Solving these higher-order expectations in the time domain is challenging. Therefore

we adopt the frequency domain approach.

We present this approach and our extension in a general framework. In the model of Section

3 the information used for forecasting is the history of one dimensional signals {Ait−n}∞n=0 . Now

suppose that the signal is an `-dimensional variable Xt, defined in terms of infinite-order moving

average processes.7 Let C denote the complex plane, T denote the unit circle {z ∈ C : |z| = 1} ,
and D denote the open unit disk {z ∈ C : |z| < 1} .

7We can extend the definition to contain information about future innovations (e.g. Bachetta and Wincoop, 2008).
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Definition 1 (signal representation) The `−dimensional real-valued signal process {Xt} is linearly

regular and admits representation

Xt
`×1

= H (L)
`×k

ηt
k×1

, ` ≤ k,

where L denotes the lag operator, {ηt} represents structural Gaussian innovations with mean zero

and covariance matrix Ση, and H (z) is an `× k matrix analytic function defined on the open unit

disk D in the matrix-valued Hardy space H2 (D).8

We call H (·) the signal matrix or the transfer function as in the mathematics literature. In our

model of Section 3, ` = 1, k = 2, Xt = ait,

ηt =

[
εat
εit

]
, and H (L) =

[
1

1−ρaL
1
]
, (31)

for agents on island i. A key step in the solution procedure involves finding the conditional expec-

tations in the signal extraction problem. In classical forecasting problems, conditional expectations

are computed using the Wiener-Kolmogorov prediction formula, or the Hansen-Sargent formula

for geometrically discounted processes. The corresponding frequency domain space for H (·) is

H2
(√
β
)
, which consists of all functions that are analytic in the domain |z| < √

β < 1 and square

integrable on the boundary. This restriction allows some non-stationary processes provided they

do not explode too quickly. In our model with dispersed information, the computation of condi-

tional expectations is more involved in the sense that our problem involves non-forward-looking

projections as in (23). Moreover, the model’s endogenous processes are not necessarily geometri-

cally discounting. Therefore we restrict our attention to the Hardy space H2 (D) which ensures

stationarity and resort to the well-known Wiener-Hopf prediction theory.

To simplify the signal extraction problem, it is useful to assume a maximal rank condition for

the signal process so that no redundant information is contained in Xt.

Assumption 2 The `−dimensional signal process Xt has maximal rank, i.e. the rank of its asso-

ciated spectral density fx (ω) equals its dimension:

rank (fx (ω)) = `

for almost all ω ∈ [−π, π].

An important methodological contribution of our paper is that we study a non-square signal

representation in that ` < k. The existing literature focuses on the case of square signal represen-

tations with ` = k (e.g., Kasa, Walker, and Whiteman (2014), and Rondina and Walker (2015)).

To use the Wiener-Hopf prediction formula, we need the Wold fundamental representation for the

signal process. For the case of non-square signal representation, finding the Wold representation is

non-trivial. We use spectral factorization techniques to solve this problem.

8See online Appendix G for the definition of the Hardy space.
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4.1 A Two-Step Spectral Factorization Method

Our goal is to find a Wold representation for {Xt}. Formally, we are looking for an analytic matrix

function Γ (·) in the Hardy space H2 (D) such that

Xt
`×1

= Γ (L)
`×`

vt
`×1

, fx (ω) = Γ
(
e−iω

)
Γ∗
(
e−iω

)
, ω ∈ [−π, π] , (32)

where asterisk denotes the conjugate transpose, {vt} is some mutually uncorrelated Wold (funda-

mental) innovation process with mean zero and an identity covariance matrix, fx is the spectral

density, and Γ (·) is an outer analytic function.9 In the mathematics literature Γ (·) is also called

the outer spectral factor.

For the square signal case with ` = k, we can directly apply the Beurling-Blaschke factorization

method to derive the Wold representation as in Kasa, Walker, and Whiteman (2014) and Rondina

and Walker (2015). However, this method does not apply to the non-square case with ` < k. We

propose a two-step spectral factorization procedure. In step 1 we apply the covolution theorem

to find the spectral density fx (ω) of the signal process {Xt}. Then we use the Rozanov (1967)

theorem to find a lower triangular decomposition of fx (ω) . In step 2 we apply the Beurling-Blaschke

factorization method to the lower triangular matrix.

We start with the following result.

Lemma 1 Suppose that Xt is the vector of signals defined in Definition 1 and Assumption 2 holds.

Moreover, the transfer function H(z) is a non-square rational matrix function with dimension k > `.

Then the spectral density fx(ω) is an `× ` rational matrix function defined on [−π, π] and

fx (ω) = H
(
e−iω

)
ΣηH

∗
(
e−iω

)
= H (z) ΣηH

T

(
1

z

)
, z = e−iω,

where the superscript T denotes the transpose of a matrix. Furthermore, fx (ω) is a Hermitian

normal matrix that is non-negative definite for almost all ω ∈ [−π, π]. If we extend the definition

of z to the entire complex plane C, then the autocovariance generating function is given by Sx (z) =

H (z) ΣηH
T (1/z), but without the Hermitian non-negativeness property for general z ∈ C.

Lemma 1 allows us to transform the non-square signal transfer matrix function into the square

spectral density matrix fx (ω). Based on this lemma, the first step of the spectral factorization

method is to decompose fx (ω) into triangular matrix functions using Rozanov’s (1967) analytical

method.

9Note that the Wold fundamental innovations can have non-diagonal, non-normalized covariance matrices. Using
the unitary eigen-decomposition of the covariance matrix, we can obtain the orthonormal Wold representations with
an identity covariance matrix.
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Proposition 1 Given an `× ` rational spectral density matrix fx (ω) with full rank almost every-

where, there exists an `× ` lower triangular matrix function Γ̃
(
e−iω

)
whose elements are rational

functions such that

fx (ω) = Γ̃
(
e−iω

)
Γ̃∗
(
e−iω

)
.

All elements of the matrix function

Γ̃ (z) =




Γ̃11 (z) 0 ... 0

Γ̃21 (z) Γ̃22(z) ... 0
...

...
. . .

...

Γ̃`1 (z) Γ̃`2 (z) ... Γ̃`` (z)




are analytic in the closed unit disk T ∪ D and hence in the H2 (D) space. Moreover, Γ̃
(
e−iω

)
has

full rank in D except for at most a finite number of points.

The proof is constructive and relies on the reciprocal symmetry property of the univariate

rational polynomial roots. We employ a LDU decomposition as the key intermediate step. Although

the matrix operations involved are lengthy, the method is almost entirely analytical so that the

resulting decomposition has a closed-form expression. Note that the matrix decomposition in

Proposition 1 is similar to a Cholesky decomposition except that the diagonal elements may not

be real and positive. Importantly, we need all elements in the triangular matrix Γ̃ (z) to be in the

Hardy space.

The resulting analytic matrix Γ̃ (z) is not the Wold outer spectral factor as its determinant

vanishes at finitely many points inside the unit disk. Without loss of generality, let {z1, z2, ....zn}
be the finite set of distinct points such that det

(
Γ̃ (zj)

)
= 0, |zj | < 1, j ∈ {1, 2, ...n}. Let zj denote

the conjugate of zj . We assume that all zeros are of order 1 (this property is generic).

The second step of our spectral factorization method employs a multivariate version of the

Beurling-Blaschke inner-outer factorization theorem to remove any zeros inside the unit disk.

Proposition 2 The Wold outer spectral factor Γ (z) is given by the inner-outer factorization for

Hardy space functions

Γ (z) = Γ̃ (z)
n∏

j=1

V −1
j Bj (z) ,

where the `× ` Blaschke matrices Bj (z) are (inverse) inner matrix functions of the form

Bj (z) =




1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 .....
1−z̄jz
z−zj


 ,
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and the constant unitary matrix Vj is given by the singular value decomposition of Γ̃ (z) evaluated

at the zeros

Γ̃ (zj) = UjDVj ,

where D is a diagonal matrix containing the singular values.

The constant unitary matrices Vj remove the unwelcome poles brought in by the Blaschke fac-

tors. There are different ways of computing these matrices, and we use the eigen-decomposition

method. In particular, the orthonormal column vectors of Vj can be directly picked from nor-

malized linear independent eigenvectors of the Hermitian matrix Gj (zj) = Γ̃∗ (zj) Γ̃ (zj), which

are automatically pairwise-orthogonal for distinct eigenvalues. For more complicated systems, the

eigenvectors can be found easily using symbolic toolboxes in Matlab or Mathematica. In the online

appendix, we provide a working example of a 2× 3 signal system.

As an alternative to our approach, the spectral factorization can also be obtained using a state-

space approach. Bart et al. (2007) and Lindquist and Picci (2015) contain extensive treatments

of the state-space spectral factorization methods. Taub (2010) and Huo and Takayama (2014)

apply this method to economics. In particular, any finite dimensional linear stochastic system with

rational transfer matrix functions admits a state-space representation. Finding the outer spectral

factor then involves solving an algebraic Riccati equation that links to the state space system.

The Riccati equation approach has numerical advantages with fast recursive iteration algorithms,

but closed-form expressions are rarely available. Moreover, the state-space representation is not

unique, so any such representation will be arbitrary. Our analytical spectral factorization method

is constructive and has the advantage of admitting a closed-form solution for many problems,

especially for low-dimensional systems where explicit formulas exist for the roots of polynomials.

4.2 Wiener-Hopf Prediction Formula

Using the Wold representation for the signal process, we can compute the conditional expectations

given the history of signals. Since in our model agents need to perform optimal linear filtering to

estimate unobserved shocks, we use the Wiener-Hopf prediction formula, a generalization of the

Wiener-Kolmogorov forecasting formula.

Consider any random vector Θt satisfying Θt = G (L) ηt, where G (z) is a matrix analytic

function in some matrix-valued Hardy space, we wish to compute the conditional expectation

E [LmΘt| {Xt−n}∞n=0] given the history of signals {Xt−n}∞n=0 , where m is any integer. The Wiener-

Hopf prediction formula gives

E [LmΘt| {Xt−n}∞n=0] = Ξ (L)Xt, (33)
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where the analytic matrix function Ξ (z) is given by

Ξ (z) =

[
zmSΘx(z)Γ

−1

(
1

z

)T
]

+

Γ−1 (z) . (34)

Here Γ (z) is the Wold outer spectral factor derived in the previous subsection and SΘx(z) =

G (z) ΣηH
T (1/z) is the covariance generating function. The annihilation operator [·]+ is linear

and is used to remove the principal part of the Laurent series expansion of the analytic functions

around a common region of convergence.10 This formula reduces to the Wiener-Kolmogorov formula

when Θt = Xt so that Ξ (z) = [zmΓ (z)]+ Γ−1 (z) . If the forecasted objects follow geometrically

discounted processes, the formula reduces to the Hansen-Sargent optimal prediction formula.

So far we have assumed that the signal system admits known rational transfer functions with

ARMA(p,q) processes. The signal extraction problem becomes more involved if we introduce

endogenous information when agents learn from endogenous variables. In this case H (L) contains

unknown endogenous coefficients (see Section 7). The prediction formula (33) implies that the

orthogonal projection is in general a non-linear operator in the functional space of analytic functions.

Due to the non-linearity in projection, the equilibrium fixed point may not be represented by

rational analytic functions. In other words, model equilibria may not admit finite-dimensional

Markovian dynamics. This result is akin to previous findings by Makarov and Rytchkov (2011),

but is independent of the forecasting the forecast of others problem. In this case one may use

the functional space techniques to determine equilibrium existence and uniqueness and resort to

numerical methods for equilibrium computation.11

5 Business Cycle Volatility

In this section we show that the output volatility under dispersed information is lower than that

under full information. This result may seem counterintuitive because speculation due to dispersed

information might be expected to generate high volatility. We will show that our result is quite

general and can be established without explicitly solving the model.

Conjecture that the solution for output in island i takes the following form

yit =My (L) εat +M i
y (L) εit, (35)

where My (z) and M i
y (z) are some analytic functions in H2 (D). As a convention we use Mx (·)

to denote the frequency domain decision rule of any endogenous variable x with respect to the

10See Kailath, Sayed, and Hassibi (2000) for a textbook proof of the Wiener-Hopf prediction formula. Hansen and
Sargent (1980) provide a practical method of computing the annihilation operator using elementary complex analysis.

11The previous literature circumvents this non-linearity problem by designing a square signal system with designated
zeros structure such that the Blaschke matrices and the Wold fundamental matrices are independent of the functional
form of the endogenous information. In that case the orthogonal projection is linear in the signal and the model has
a finite-state representation.
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aggregate shock εat, and use M i
x (·) to denote the decision rule with respect to the idiosyncratic

shocks εit. Then aggregate output satisfies

yt =

∫

I
yitdi =My (L) εat. (36)

We first present a lemma summarizing the behavior of higher-order expectations in our model,

which is central for determining business cycle volatility when information is dispersed.

Lemma 2 We have

V ar
(
Eit [yt]

)
< V ar (Eit [yt]) ≤ V ar (yt) .

The second inequality is merely the orthogonality condition associated with the conditional

expectation. The nontrivial part is the first inequality, whose proof is outlined here. By the

Wiener-Hopf prediction formula,

Eit [yt] = ay (L) ait = ay (L) (at + εit) ,

where ay (z) can be computed using (34). By the LLN (8),

Eit [yt] = ay (L)

(
at +

∫

I
εitdi

)
= ay (L) at.

By the Parseval theorem,

V ar
(
Eit [yt]

)
= ‖ay (z)‖2H2 σ

2
a < ‖ay (z)‖2H2

(
σ2a + σ2i

)
= V ar (Eit [yt]) , (37)

where ‖·‖
H2 denotes the norm in the Hardy space. The intuition is that variance of the average

expectations about aggregate output is smaller than the variance of individual expectations about

aggregate output, when individual agents’ effect on the aggregate equilibrium is infinitesimal so that

the LLN can be applied. This feature is in sharp contrast with models that assume finitely-many

uninformed agents, such as Kasa, Walker, and Whiteman (2014).

Using the preceding lemma, we show that the business cycle volatility is dampened under

dispersed information relative to a full-information environment.

Theorem 1 If idiosyncratic shocks satisfy the LLN (8), then the variance of output under dispersed

information is bounded above by the variance under full information

V ar
(
yFI
t

)
> V ar (yt) .

The proof is a simple application of the triangle inequality in Hilbert spaces. Note that this

theorem is applicable to general information structures, exogenous or endogenous, univariate or

multivariate. Adding confidence, noise, or higher-order sentiment shocks would also not change the
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results. This is because the critical step in the proof is Lemma 2, which applies to general high-

dimensional non-square signals (see Section 7). Bacchetta and van Wincoop (2008) and Angeletos

and La’O (2013) infer similar results based on the variance bound in the time domain, but our

theorem is the first formal statement of the result and its proof uses the frequency domain methods.

Contrary to the common intuition, here the presence of higher-order beliefs and the forecasting

the forecasts of others problem dampens business cycle fluctuations. To understand the economic

rationale behind this result, we can decompose the effect of dispersed information and higher-order

expectations into two mechanisms. The first mechanism is associated with slow learning of the

unobserved states. Slow learning creates inertia in endogenous variables, and more importantly

in the higher-order average expectations of endogenous and exogenous variables, which leads to

low volatility. The second mechanism is associated with the forecasting the forecasts of others.

Agents have a speculative motive if other agents overreact to news. This mechanism is strong

for informationally-influential participants in models with finitely many agents (Kasa, Walker,

Whiteman (2014)). It is also at work in the heterogeneous prior setup (Scheinkman and Xiong

(2003)). When each agent is informationally negligible as in our model, the second mechanism

completely vanishes since there is no need to forecast any particular agent’s forecast. What matters

is the forecast of the average. Thus the first mechanism dominates and leads to the volatility bounds

we deliver above.

6 Equity Price Volatility

We now turn to the financial side of the model. The main result of this section is that equity

volatility will converge to infinity as the variance of the idiosyncratic TFP shock converges to

infinity. In contrast to the previous section, we need to derive an explicit model solution to establish

this result. We will also prove the existence and uniqueness of equilibrium by extensively using the

methods developed in Section 4.

6.1 Equilibrium Solution

Conjecture that the aggregate equity price qt can only depend on aggregate innovations,

qt =Mq (L) εat, (38)

and individual shareholdings can only depend on idiosyncratic innovations,

shit+1 =M i
s (L) εit, (39)

where Mq (z) ,M
i
s (z) ∈ H2 (D) . The intuition for these conjectures is as follows. Suppose that qt

depends on the idiosyncratic innovations; since the asset-pricing equation (27) implies that idiosyn-

cratic innovations will be averaged out by the LLN, we have a contradiction. Similarly, suppose
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that shit+1 depends on aggregate innovations; then aggregate shareholdings will be stochastic, con-

tradicting the assumption of a constant stock supply. The following result delivers the link between

equity prices and individual shareholdings.

Proposition 3 In equilibrium we have

Mq (z) = α1
1− λsz

1− ρaz
M i

s (z) . (40)

This proposition shows how the equity price is endogenously determined by the trading behavior

of individual investors under dispersed information. In particular, it indicates the connection

between the trading volume and the equity price volatility. If investors frequently adjust their

shareholding positions, the equity price will become more volatile. However, this relation vanishes

under full-information, as the cross-sectional aggregation results in an equilibrium equity price that

is close to the representative agent case.

Theorem 2 There is a unique equilibrium under dispersed information in which individual output,

aggregate output, equity prices, and shareholdings admit rational function representations in the

frequency domain given in equations (35), (36) (38), and (39).

In Appendix C we provide an explicit solution to the equilibrium. In particular we prove that

Mq (z) =
(1− λsz)Nq (z)

σmρaPq (z)
, (41)

where σm is some constant, Pq (z) = (1−m1z) (1−m2z) (1−m3z) (1−m4z) is a polynomial

function satisfying |m1| ≥ |m2| > 1 > |m3| ≥ |m4| , and Nq (z) is a real rational analytic function in

the closed unit disk. Despite the presence of the infinite number of higher-order expectations formed

by agents, the ARMA(p,q) representation of (41) allows us to compute the equity price volatility

in closed-form via the integral method using the Parseval theorem. More importantly, the explicit

expression also highlights some crucial analytical properties of the equity price fluctuations under

dispersed information. We are particularly interested in the limit property as σi → ∞.

6.2 Limiting Result

In Appendix C we prove the following result.

Theorem 3 For any finite σa ∈ (0,∞) , we have

lim
σi→∞

V ar (qt) = σ2a lim
σi→∞

‖Mq (z)‖2H2 → ∞.

This theorem is somewhat surprising. Although idiosyncratic shocks have no effect on the

movement of the equity price, the equity price becomes arbitrarily volatile as the volatility of the
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idiosyncratic shock approaches infinity given any finite aggregate TFP volatility. This result is

independent of the values of ρa and σa. Therefore, our model is able to generate a highly volatile

equity price, while the aggregate shock variance σ2a can be chosen to match the low volatility of

aggregate consumption.

To illustrate the quantitative implication of this result, we calibrate our model at quarterly

frequency. We set β = 0.99, α = 0.67, ς = 9 (implying a steady-state markup of 12.5%), φ = 1

(implying a unitary Frisch elasticity of labor supply), σa = 0.7%, and ρa = 0.9. Panel A of

Figure 1 plots the four roots in modulus of Pq (z) against σi. The panel shows that the two roots

inside the unit circle are real numbers for all σi > 0, but the two roots outside the unit circle are

complex conjugates for small σi. As σi approaches infinity, the smaller root (1/m3) outside the

unit circle converges to a unit root. Panels B and C of Figure 1 plot equity volatility and output

volatility against σi. We already showed that equity volatility and output volatility are the same

and independent of σi under full information. But equity volatility rises with σi and approaches

infinity as σi → ∞ under dispersed information, while output volatility decreases with σi and

approaches to a finite number. Thus our model under dispersed information can match the low

output volatility and the high equity volatility observed in the data by choosing a suitable value for

σi. For example, output volatility and equity volatility are equal to 2.3% and 13% when σi = 10%.
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Figure 1: This figure plots the root distribution, equity volatility, and output volatility as functions
of σi.
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To understand the economic mechanism generating the high equity price volatility, we rewrite

(27) as

qt =

∫

I
Eit [βqt+1 + (1− β) dt+1] di+

∫

I
Eitmit+1di. (42)

where we can show that

∫

I
Eit [mit+1] di =

∫

I
Eit

[
α3s

h
it+2 +∆bit+1

]
di,

bit = α4dt + α5nit, and ∆bit+1 = bit − bit+1. Iterating forward gives

qt =
(
Ēit [mit+1] + βĒitĒit+1 [mit+2] + β2

ĒitĒit+1Ēit+2 [mit+3] + ...
)

+(1− β)
(
Ēit [dt+1] + βĒitĒit+1 [dt+2] + β2ĒitĒit+1Ēit+2 [dt+3] + ...

)
.

Thus the equity price consists of a present-value component under a constant SDF (i.e, the infinite

sum of higher-order expectations about future aggregate dividends) and a component of the infinite

sum of higher-order expectations about individual SDFs. Panel D of Figure 1 shows the volatility

of the present-value component and indicates that it decreases with σi and approaches zero. Thus

higher-order expectations about aggregate dividends and the failure of law of iterate expectations

do not lead to excess volatility per se. The intuition is similar to that described in Sections 2 and 5.

We now turn to the component of higher-order expectations about individual SDFs, which depend

on the average forecast of individual shareholdings and labor income.

Unlike in the case of full information studied in Section 3.5, the average forecast of individual

shareholdings is not equal to the forecast of the average shareholdings,

∫

I
Eit

[
shit+2

]
di 6= Eit

∫

I

[
shit+2

]
di = 0, ∀i ∈ [0, 1] .

Thus individual shareholding choices affect aggregate equity prices.

Since the equity shares are in constant supply, investors respond to idiosyncratic TFP shocks

instead of aggregate TFP shocks. Due to incomplete information, they interpret the innovation

in the signal of the (composite) TFP as a change in their private opportunities. This confusion

induces investors to adjust their shareholdings accordingly. When the volatility of the idiosyncratic

TFP shock is large relative to the volatility of the aggregate TFP shock, the volatility of individual

shareholdings is also large. By Proposition 3, the individual responses to the idiosyncratic TFP

shock are transmitted to the aggregate stock prices, causing a large equity volatility. By Lemma

8, an endogenous unit root arises when σi → ∞. This channel accounts for the autoregressive

component in the equity price process. On the other hand, since bit contains an idiosyncratic

component nit, the volatility of
∫ 1
0 Eit [∆bit+1] di does not converge to zero as σi → ∞. In other

words, this component ensures a positive lower bound for the moving average component in the

equity price process. Combining the preceding autoregressive and moving average components
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delivers the result in Theorem 3. We should emphasize that there is a key assumption for our

result. That is, the elasticity of labor supply 1/φ > 0 must be finite so that α5 6= 0. If φ = 0, then

α5 = 0 by appendix A. In this case, the moving average component approaches zero as σi → ∞, so

that the limiting result in Theorem 3 is not valid.

7 Extension with Endogenous Information

In this section we will show that the striking results we obtained previously do not hinge on the

simplified assumption of univariate exogenous signal structure by extending our analysis to the case

of multivariate signals with endogenous information. A natural endogenous information signal is the

equity price. One key issue of incorporating the additional information contained in the equity price

is that the equity price will reveal the aggregate shock information so that the representative agent

in each island will not face the signal extraction problem. One way to prevent equilibrium from

revealing such information is to impose assumptions such that the signal matrix is non-invertible

as in Rondina and Walker (2015). The other way is to introduce an additional shock so that the

number of signals remains smaller than the number of shocks. We will adopt the second approach

and follow Taub (1989) and Rondina and Walker (2015) by introducing an aggregate noise shock

with a particular structure that allows us to still solve the model analytically.

Following Lorenzoni (2009) and Rondina and Walker (2015), we suppose that the agent in each

island i observes noisy equity prices so that his signal system is given by

Xit =

[
εat + εit
qt + ut

]
,

where the first signal is the sum of aggregate and idiosyncratic TFP innovations and the second

is a noisy signal of the equity price. Here ut represents an additional aggrgegate shock. In the

literature on rational expectations equilibria with private information, there are various ways of

engineering additional noises that serve the same purpose of preventing full information revelation

(e.g. introducing additional structural shocks, noise traders, or random matching processes). Our

formulation ensures a tractable spectral factorization that can be implemented using the analytical

method we derived earlier.

We assume that the aggregate TFP shock at and the noise shock ut have the general represen-

tation

at = a (L) εat, ut = u(L)εut,

where a(z) and u(z) are (rational) analytic functions in H2(D) space and {εut} is an IID Gaussian

process with mean zero and variance σ2u. The AR(1) process in (7) is a special case. As discussed

in Section 3.1, we also assume that there are other endogenous information that are observable to

agents but not used in the signal extraction problem.
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To solve the model, we first define the conditional expectations that form agents’ forecasts of

discounted future returns in the stock market

χit ≡ Eit

[
α3s

h
it+2 +∆bit

]
+ Eit [βqt+1 + (1− β) dt+1] .

Using the Wiener-Hopf prediction formula, we can write

χit = π(L)Xit = π1(L) (εat + εit) + π2(L) (qt + ut) , (43)

where π1(z) and π2(z) are endogenous rational functions to be determined. Since qt =
∫
I χitdi, we

have

qt =
π1(L)

1− π2(L)
εat +

π2(L)

1− π2(L)
u(L)εut. (44)

We can then write the signal representation as

Xit = H(L)ηit ≡
[

1 1 0
π1(L)

1−π2(L)
0 u(L)

1−π2(L)

]

εat
εit
εut


 . (45)

We apply our method in Section 4 to derive the Wold representation for the preceding non-square

signal system. To simplify the computation of spectral factorization, we will impose an assumption

on u(z) such that u (z) = π1 (z) , originally suggested by Taub (1989) and applied by Rondina

and Walker (2015). We can then establish an equilibrium existence and uniqueness result formally

stated in online Appendix D.

Do our two main results, Theorems 1 and 3, also hold in the model of this section? Consider

Theorem 1 first, whose proof relies critically on Lemma 2. To see this lemma also holds in the

extended model, we apply the Wiener-Hopf prediction formula and (45) to derive that

Eit [yt] =My (L) ηit =Ma
y (L) εat +M i

y (L) εit +Mu
y (L) εut,

where My (z) , M
a
y (z) , M i

y (z) , and Mu
y (z) are some functions to be determined in Appendix

D. As long as the LLN (8) holds, we can apply the previous argument as in (37) to show that

V ar
(
Eit [yt]

)
< V ar (Eit [yt]) . Thus Lemma 2 and Theorem 1 still hold in our extended model in

this section.

Next consider Theorem 3. Since we have introduced an additional aggregate noise shock ut into

the model, we decompose the equity price in (44) as qt = qft + qnt , where

qft ≡ π1(L)

1− π2(L)
εat and qnt =

π2(L)

1− π2(L)
u(L)εut

represent the components driven by the fundamental TFP shock and by the aggregate price noise,

respectively. In online Appendix D we formally prove that

lim
σi→∞

||π1(z)||H2 = ∞ and lim
σi→∞

V ar(qft ) = σ2a lim
σi→∞

∥∥∥∥
π1(z)

1− π2(z)

∥∥∥∥
2

H2

= ∞.
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This result says that the volatility of the fundamental-driven equity price component explodes

to infinity as σi → ∞. But due to the assumption of u(z) = π1(z), the volatility of the noise

component of the equity price also approaches infinity. To isolate the effect of the exogenous price

noise, we assume that u(L) = π1(L)
σi

. This normalization ensures that the price noise volatility

remains positive and finite in the limit as σi → ∞. In this case the previous results still hold except

that we replace σu with σu

σi
. Then we can decompose the equity price volatility using the Parseval

theorem as

V ar(qt) =

∥∥∥∥
π1(z)

1− π2(z)

∥∥∥∥
2

H2

σ2a +

∥∥∥∥
π2(z)π1(z)

1− π2(z)

∥∥∥∥
2

H2

σ2u
σ2i
.

While the fundamental-driven equity price volatility explodes as σi → ∞, the volatility of the noise-

driven component approaches to a finite limit. Thus the arbitrarily large equity price volatility in

our model as σi → ∞ is not driven by the exogenous aggregate price noise.

The intuition for the model in this section is similar to that for the model in Section 3. The

equity price depends on higher-order expectations about the average forecasts of individual SDFs

and hence individual shareholdings. As long as the equity price does not reveal aggregate shocks so

that each agent faces the signal extraction problem, the higher expectations about shareholdings

cannot be averaged out. Thus the persistent movement of shareholdings is transmitted into the

persistent movement of equity prices due to the confusion mechanism. As σi → ∞, the shareholding

process contains a unit root, which is transmitted into the unit root in the equity price process, so

that equity volatility approaches infinity.

8 Conclusion

We have developed a model of a production economy with dispersed information that features

smooth aggregate consumption dynamics and highly volatile equity prices. The key elements of our

model are not assumptions on nonstandard preferences, bubbles, or sentiments, but the introduction

of dispersed information and the endogeneity of SDFs that are time-varying and heterogeneous

across population. The key for our model result is due to the different impact of the higher-order

beliefs about the average forecasts of aggregate demand and the individual SDFs, together with

the dynamic interaction between shareholdings and equity prices. As a technical contribution, our

two-step spectral factorization methodology can be applied to many other contexts that involves

solving signal extraction problems with non-square systems.

26



References

Albagli, Elias, Christian Hellwig, and Aleh Tsyvinski, 2015, A Theory of Asset Prices Based on
Heterogeneous Information, working paper, Yale University.

Albuquerque, Rui, and Jianjun Miao, 2014, Advance Information and Asset Prices, Journal of
Economic Theory 149, 236-275.

Angeletos, George-Marios, and Lian Chen, 2016, Incomplete Information in Macroeconomics:
Accommodating Frictions in Coordination, Handbook of Macroeconomics 2A, 1065-1231, El-
sevier B.V.

Angeletos, George-Marios, and Jennifer La’O, 2010, Noisy Business Cycles, in NBER Macroeco-
nomics Annual 2009, Volume 24, pp. 319–378. University of Chicago Press.

Angeletos, George-Marios, and Jennifer La’O, 2013, Sentiments, Econometrica 81, 739–779.

Bacchetta, Philippe, and Eric van Wincoop, 2006, Can Information Heterogeneity Explain the
Exchange Rate Determination Puzzle?, American Economic Review 96, 552–576.

Bacchetta, Philippe, and Eric van Wincoop, 2008, Higher Order Expectations in Asset Pricing,
Journal of Money, Credit and Banking 40, 837-866.

Benhabib, Jess, Xuewen Liu, and Pengfei Wang, 2016, Sentiments, Financial Markets, and Macroe-
conomic Fluctuations, Journal of Financial Economics 120, 420-443.

Benhabib, Jess, Pengfei Wang, and Yi Wen, 2015, Sentiments and Aggregate Demand Fluctua-
tions, Econometrica 83, 549-585.

Benhardt, Dan, and Jianjun Miao, 2004, Informed Trading when Information Becomes Stale,
Journal of Finance 59, 339-390.

Bernhardt, Dan, Peter Seiler, and Bart Taub, 2010, Speculative Dynamics, Economic Theory 44,
1–52.

Brockwell, Peter J., and Richard A. Davis, 2002, Time Series: Theory and Methods, Springer
Series in Statistics, 2 edn

Brown, James W., and Ruel V. Churchill, 2004, Complex Variable and Applications, the McGraw-
Hill Companies, Inc. 8 end

Campbell, John Y., 1999, Asset Prices, Consumption and the Business Cycle, in John B. Taylor,
and Michael Woodford, eds.: Handbook of Macroeconomics, vol. 1 (Elsevier Science, North-
Holland, Amsterdam).

Cochrane, John, H., 2011, Discount Rates, Journal of Finance 66, 1047-1108.

Constantinides, George M., and Darrell Duffie, 1996, Asset Pricing with Heterogeneous Con-
sumers, Journal of Political Economy 104, 219-240.

Conway John B. 1990, A Course in Functional Analysis, Springer-Verlag, New York Inc. 2 edn.

Futia, Carl A., 1981, Rational Expectations in Stationary Linear Models, Econometrica 49, 171–
92.

27



Graham, Liam, and Stephen Wright, 2010, Information, Heterogeneity and Market Incomplete-
ness, Journal of Monetary Economics 57, 164-174.

Greenwood, Jeremy, Zvi Hercowitz,, and Gregory W. Huffman, 1988, Investment, Capacity Uti-
lization, and the Real Business Cycle, American Economic Review 78, 402-17.

Grossman, Sanford J., and Joseph E. Stiglitz, 1980, On the Impossibility of Informationally Effi-
cient Markets, American Economic Review 70, 393-408.

Hansen, Lars P., and Thomas J. Sargent, 1980a, Linear Rational Expectations Models for Dy-
namically Interrelated Variables, Discussion paper, University of Chicago.

Hansen, Lars P., and Thomas J. Sargent, 1980b, Formulating and Estimating Dynamic Linear
Rational Expectation Models, Journal of Economic Dynamics and Control 2, 7–46.

Hansen, Lars P., and Thomas J. Sargent, 1981, A Note on Wiener–Kolmogorov Prediction For-
mulas for Rational Expectation Models, discussion paper, University of Chicago.

Harrison, J. Michael. ,and David. M. Kreps, 1978, Speculative Investor Behavior in a Stock
Market with Heterogeneous Expectations, Quarterly Journal of Economics 92, 323-336.

Hassan, Tarek, and Thomas M. Mertens, 2014, Information Aggregation in a Dynamic Stochastic
General Equilibrium Model, NBER Macroeconomics Annual, 159-207.

Hassan, Tarek, and Thomas M. Mertens, 2016, The Social Cost of Near-Rational Investment,
forthcoming in American Economic Review.

Hellwig, Martin, 1980, On the Aggregation of Information in Competitive Markets, Journal of
Economic Theory 22, 477-498.

Huo, Zhen, and Naoki Takayama, 2015, Rational Expectations Models with Higher Order Beliefs,
working paper, University of Minnesota.

Kailath, Thomas, Ali H. Sayed, and Babak Hassibi, 2000, Linear Estimation, Prentice Hall, Inc.

Kasa, Kenneth, 2000, Forecasting the Forecasts of Others in the Frequency Domain, Review of
Economic Dynamics 3, 726–756.

Kasa, Kenneth, Todd B. Walker, and Charles H. Whiteman, 2014, Heterogeneous Beliefs and
Tests of Present Value Models, Review of Economic Studies 81, 1137-1163.

Kyle, Albert.S, 1985, Continuous Auctions and Inside Trading, Econometrica 53, 1315-1336.

Lindquist, Anders, and Giorgio Picci, 2015, Linear Stochastic Systems: A Geometric Approach to
Modeling, Estimation and Identification, Springer-Verlag Berlin Heidelberg

Lippi, Marco, and Lucrezia Reichlin, 1994, VAR Analysis, Non-fundamental Representations, and
Blaschke Matrices, Journal of Econometrics 63, 307-325

Lorenzoni, Guido, 2009, A Theory of Demand Shocks, American Economic Review 99, 2050–84.

Makarov, Igor, and Oleg Rytchkov, 2012, Forecasting the Forecasts of Others: Implications for
Asset Pricing, Journal of Economic Theory 147, 941–966.

28



Mankiw, Gregory N. 1985, The Equity Premium and the Concentration of Aggregate Shocks,
Journal of Financial Economics 17, 211-219.

Merton, Robert. C., 1969, Lifetime Portfolio Selection under Uncertainty: The Continuous-Time
Case, Review of Economics and Statistics 51, 247-257.

Pearlman, Joseph G., and Thomas J. Sargent, 2005, Knowing the Forecasts of Others, Review of
Economic Dynamics 8, 480–497.

Rondina, Giacomo, and Todd B. Walker, 2015, Dispersed Information and Confounding Dynamics,
working paper, Indiana University.

Rozanov, Yu A., 1967, Stationary Random Processes, San Francisco: Holden-Day.

Rudin, Walter, 1987, Real and Complex Analysis, McGraw-Hill Companies, Inc. 3 edn

Tan, Fei, and Todd B. Walker, 2015, Solving Generalized Multivariate Linear Rational Expecta-
tions Models, Journal of Economic Dynamics and Control 60, 95–111.

Sargent, Thomas J., 1987, Macroeconomic Theory, Academic Press, New York, 2 edn.

Sargent, Thomas J., 1991, Equilibrium with Signal Extraction from Endogenous Variables, Journal
of Economic Dynamics and Control 15, 245–273.

Scheinkman, Jose A., and Wei Xiong, 2003, Overconfidence and Speculative Bubbles, Journal of
Political Economy 111, 1183-1220.

Shiller, Robert, 1981, Do Stock Prices Move Too Much to Be Justified by Subsequent Changes in
Dividends? American Economic Review 71, 421-436.

Taub, Bart, 1989, Aggregate Fluctuations as an Information Transmission Mechanism, Journal of
Economic Dynamics and Control 13, 113–150.

Townsend, Robert M., 1983, Forecasting the Forecasts of Others, Journal of Political Economy
91, 546–88.

Walker, Todd B., 2007, How Equilibrium Prices Reveal Information in a Time Series Model with
Disparately Informed, Competitive Traders, Journal of Economic Theory 137, 512–537.

Wang, Jiang, 1994, A Model of Competitive Stock Trading Volume, Journal of Political Economy
102, 127–168.

Whiteman, Charles H., 1983, Linear Rational Expectations Models: A User’s Guide. University
of Minnesota Press.

Whiteman, Charles H., 1985, Spectral utility, Wiener–Hopf Techniques, and Rational Expecta-
tions, Journal of Economic Dynamics and Control 9, 225–240.

29



Appendix

A Steady State and Log-linearized System

We can easily show that the (symmetric) deterministic steady state is given by

Ni = N =

(
α

(
1− 1

ς

)) 1
φ−α+1

,

Yi = Ci = C = Y =

(
α

(
1− 1

ς

)) α
φ−α+1

,

D =

(
1−

(
1− 1

ς

)
α

)(
α

(
1− 1

ς

)) α
φ−α+1

,

Q =
β

1− β
D, Sh

i = 1,

Wi = W =

(
1− 1

ς

)
αNα−1.

Given Assumption 1, all equilibrium variables are positive and

C − N1+φ

1 + φ
> 0.

Thus a unique deterministic steady-state equilibrium exists.

Log-linearizing equation (10) yields wit = φnit. Using this equation and log-linearizing the

budget constraint, we obtain

Ccit +Qshit+1 = (Q+D) shit +Ddt +WN (nit + wit)

= (Q+D) shit +Ddt +WN (1 + φ)nit. (A.1)

Log-linearizing the Euler equation (12) yields

qt = Eit [βqt+1 + (1− β) dt+1] + Eitmit+1. (A.2)

Log-linearizing the SDF yields
(
C − N1+φ

1 + φ

)
mit+1 = C (cit − cit+1)−Nφ+1 (nit − nit+1) .

Substituting cit from the budget constraint (A.1) into the preceding equation yields
(
C − N1+φ

1 + φ

)
mit+1 = (Q+D) shit +Ddt +WN (1 + φ)nit −Qshit+1

− (Q+D) shit+1 −Ddt+1 −WN (1 + φ)nit+1 +Qshit+2

−Nφ+1 (nit − nit+1)

= (Q+D) shit − (2Q+D) shit+1 +Qshit+2

+
[
WN (1 + φ)−Nφ+1

]
(nit − nit+1) +D (dt − dt+1) .
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Plugging this equation into (A.2) yields

2Q+D

C − N1+φ

1+φ

shit+1 =
Q+D

C − N1+φ

1+φ

shit + Eit

[
Q

C − N1+φ

1+φ

shit+2 +∆bit+1

]
+ Eit [βqt+1 + (1− β) dt+1]− qt

where ∆bit+1 = bit − bit+1 and

bit =
D

C − N1+φ

1+φ

dt +

[
WN (1 + φ)−Nφ+1

]

C − N1+φ

1+φ

nit.

We define

α1 =
2Q+D

C − N1+φ

1+φ

> 0, α2 =
Q+D

C − N1+φ

1+φ

> 0,

α3 =
Q

C − N1+φ

1+φ

> 0, α4 =
D

C − N1+φ

1+φ

> 0,

α5 =
(1 + φ)WN −Nφ+1

C − N1+φ

1+φ

.

Log-linearizing (17) yields

yit = ait + αnit =⇒ nit =
1

α
(yit − ait) .

Aggregating leads to nt =
1
α (yt − at) . Log-linearizing (20) yields yt = α6dt + α7nt, where

α6 =
D

Y
, α7 =

(1 + φ)WN

Y
.

We can show that α1 = α2 + α3 and

λs ≡
α2

α1
=

Q+D

2Q+D
∈
(
1

2
, 1

)
.

We have shown that this result also holds for general utility functions. The analysis is available

upon request.

B Proofs of Results in Section 5

Proof of Lemma 2: By the Weiner-Hopf prediction formula,

Eit [yt] = ay (L) ait = ay (L) (at + εit) ,

where ay (z) can be computed using (34). Thus

Eit [yt] = ay (L)

(
at +

∫

I
εitdi

)
= ay (L) at.
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By the Parseval theorem,

V ar
(
Eit [yt]

)
= ‖ay (z)‖2H2 σ

2
a < ‖ay (z)‖2H2

(
σ2a + σ2i

)
= V ar (Eit [yt]) .

We can write Eit [yt] + et = yt, where et is uncorrelated with Eit [yt] . Thus

V ar (yt) ≥ V ar (Eit [yt]) .

Combining the two inequalities above gives us the desired result. Q.E.D.

Proof of Theorem 1: By equation (23),

V ar (yt) = V ar

(
at
ξ

+ θEit [yt]

)
.

Using the triangular inequality and Lemma 2, we have

√
V ar (yt) ≤

√
V ar (at/ξ) + θ

√
V ar

(
Eit [yt]

)
<
σa
ξ

+ θ
√
V ar (yt).

Thus
√
V ar (yt) <

σa
(1− θ) ξ

.

Using (30), we obtain the desired result. Q.E.D.

C Proofs of Results in Section 6

We first use Propositions 1 and 2 to derive the Wold representation for the signal ait (see online

Appendix F),

ait = Γ(L)vit = σw
(1− λwL)

(1− ρaL)
vit, (C.1)

where vit denotes the one dimensional Gaussian Wold innovation with zero mean and unit variance,

the moving average parameter λw is given by

λw =
1

2ρa

[(
1 + τ + ρ2a

)
−
√
τ2 + 2τ + 2τρ2a + 1− 2ρ2a + ρ4a

]
, (C.2)

and the variance σ2w is given by

σ2w =
ρaσ

2
i

λw
. (C.3)

Here τ ≡ σ2a/σ
2
i ∈ (0,∞) denotes the relative volatility of the aggregate shock to the idiosyncratic

shock.

Next, substituting equations (35) and (36) into equation (21) and matching coefficients, we

obtain

My (z) =
1

(1− ρaz) ξ
+

θay (z)

(1− ρaz)
, (C.4)

M i
y (z) =

1

ξ
+ θay (z) , (C.5)
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where ay (z) can be derived from the Wiener-Hopf prediction formula (34) (see online Appendix

F):

ay (z) =
σ2a
σ2w

[zMy (z)− λwMy (λw)]
1− ρaz

(1− λwz) (z − λw)
. (C.6)

Substituting (C.6) into (C.4) yields

My (z) =
(1− λwz) (z − λw)− (1− ρaz)λwξθσ

2
aσ

−2
w My (λw)

ξ
[
(1− λwz) (z − λw)− θσ2aσ

−2
w z
]
(1− ρaz)

. (C.7)

Note that this is a fixed point equation in the sense that the endogenous variable My (λw) appears

on the right-side of the equation above. We use the standard pole-removing procedure to pin down

this variable. Specifically, we can show that the quadratic equation

(1− λwz) (z − λw)− θ
σ2a
σ2w

z = 0 (C.8)

has two real reciprocal roots. Let ϑ denote the root inside the unit circle. Then we have the

following result:

Proposition 4 Equation (C.8) has two real roots ϑ and 1/ϑ with |ϑ| < 1. There is a unique

solution to equation (C.7) given by

My (z) =
(κ− z)ϑ

ξ (1− ϑz) (1− ρaz)
,

where

κ ≡ λ2w (1− ρaϑ) + (1− λwϑ) (1− ρaλw)

λw (1− ρaϑ)
.

Moreover,

M i
y (z) =My (z) (1− ρaz) =

(κ− z)ϑ

ξ (1− ϑz)
.

Proof of Proposition 4: Consider the real-coefficients, complex polynomial equation given by

(C.8),

(1− λwz)(z − λw)− θ
σ2a
σ2w

z = −λwz2 +
(
1 + λ2w − θ

σ2a
σ2w

)
z − λw = 0.

Since the coefficients are symmetric, it follows immediately that the two roots satisfy

z−z+ = 1 and z− + z+ =
1 + λ2w − θσ2a/σ

2
w

λw
.

If the two roots are complex, then by the complex conjugate theorem they are located on the unit

cycle. We will show that both roots are real and reciprocal. The quadratic equation has real roots

if and only if (
1 + λ2w − θσ2a/σ

2
w

λw

)2

− 4 ≥ 0.
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It suffices to show that 1 + λ2w − θσ2a/σ
2
w ≥ 2λw > 0, which is equivalent to the condition

(1− λw)
2 ≥ θ

σ2a
σ2w

= θ
τλw
ρa

,

where the last equality follows from the definition of σ2w =
ρaσ

2
i

λw
and τ = σ2a/σ

2
i . Since θ ∈ (0, 1) is

the strategic complementarity parameter, it suffices to show that

(1− λw)
2 ≥ τλw

ρa
,

or

λ2w −
(
2 +

τ

ρa

)
λw + 1 ≥ 0. (C.9)

Note that λw is itself a function of ρa and τ . If for any parameter choice ρa and τ , λw(ρa, τ ) is

located to the left of the smaller root of the quadratic equation

x2 −
(
2 +

τ

ρa

)
x+ 1 = 0,

then (C.9) holds. That is, we need to show that

λw ≤ τ + 2ρa −
√
τ2 + 4ρaτ

2ρa
, (C.10)

for all τ and ρa. Without loss of generality, fix any ρa ∈ (0, 1) and define

f(x) = λw − 1

2ρa

(
x+ 2ρa −

√
x2 + 4ρax

)

=
1

2ρa

[(
1 + x+ ρ2a −

√
(1 + x− ρ2a)

2 + 4ρ2ax
)
−
(
x+ 2ρa −

√
x2 + 4ρax

)]
.

where we have substituted the expression for λw with τ replaced by x. We wish to show that

f (x) ≤ 0 for all x > 0. We can show that limx→0 f(x) = ρa − 1 < 0 and limx→∞ f(x) = 0.

The derivative of f(x) is

f
′

(x) =
1

2ρa

[
x+ 2ρa√
x2 + 4ρax

− 1 + x+ ρ2a√
(1 + x− ρ2a)

2 + 4ρ2ax

]
.

We wish to show that f ′(x) > 0 for all x > 0. This is equivalent to

x+ 2ρa√
x2 + 4ρax

>
1 + x+ ρ2a√

(1 + x− ρ2a)
2 + 4ρ2ax

⇐⇒ x2 + 2(1 + ρ2a)x+ (1− ρ2a)
2

x2 + 4ρax
>

(1 + x+ ρ2a)
2

(x+ 2ρa)
2
. (C.11)

Lemma 3 If a
b > 1, with a > 0, b > 0, and if 0 < c < b, then

a

b
<
a− c

b− c
.
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Proof: It follows from simple algebra. �

We can easily check
(1 + x+ ρ2a)

2

(x+ 2ρa)
2

> 1.

Applying the preceding lemma, we obtain

(1 + x+ ρ2a)
2

(x+ 2ρa)
2

<
(1 + x+ ρ2a)

2 − 4ρ2a
(x+ 2ρa)

2 − 4ρ2a

=
1 + x2 + 2x+ ρ4a + 2ρ2a + 2ρ2ax− 4ρ2a

x2 + 4ρ2a + 4ρax− 4ρ2a

=
x2 + 2(1 + ρ2a)x+ (1− ρ2a)

2

x2 + 4ρax
,

which is inequality (C.11). So f
′
(x) > 0 for all x ∈ (0,∞).

In summary, we have shown that f(x) is continuous, monotonically increasing on x ∈ (0,∞), and

limx→0 f(x) < 0, limx→∞ f(x) = 0. Elementary calculus implies that f(x) ≤ 0 for all x ∈ (0,∞).

Thus we have established (C.10) and all roots of equation (C.8) are real and reciprocal. We let

ϑ = z− denote the root inside the unit circle. In fact, one can readily verify, using the quadratic

function property and the Rouché’s theorem, that λw ≤ ϑ ≤ ρa. Since these inequalities are

inessential for our results, we omit the proof here.

Now consider the expression for the aggregate output yt in equation (C.7),

My (z) =
(1− λwz) (z − λw)− (1− ρaz)λwξθσ

2
aσ

−2
w My (λw)

ξ
[
(1− λwz) (z − λw)− θσ2aσ

−2
w z
]
(1− ρaz)

. (C.12)

Using the results we just proved, we can rewrite it as

My(z) =
(1− λwz)(z − λw)− (1− ρaz)λwξθσ

2
aσ

−2
w My(λw)

−ξλw(1− ϑz)(1− 1
ϑz)(1 − ρaz)

. (C.13)

Using the standard pole-removing procedure, we setMy(λw) to remove the pole at z = ϑ < 1 in the

denominator, ensuring the analyticity of My(z) inside the unit disc. Observe that the numerator

is again a quadratic system

(1− λwz)(z − λw)− (1− ρaz)λwξθσ
2
aσ

−2
w My(λw) = −λw [(r1 − z)(r2 − z)] ,

where r1 and r2 are the quadratic roots. It is easy to see that

r1 + r2 =
1 + λ2w + ρaλwξθσ

2
aσ

−2
w My(λw)

λw
. (C.14)

Without loss of generality, set r1 = ϑ. Then we have

My(z) =
−λw [(ϑ− z)(r2 − z)]

−ξλw(1− ϑz)(1 − 1
ϑz)(1− ρaz)

=
ϑ(r2 − z)

ξ(1− ϑz)(1 − ρaz)
. (C.15)
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Evaluating the numerator of (C.13) at z = ϑ, My(λw) has to satisfy the zero restriction,

(1− λwϑ)(ϑ − λw)− (1− ρaϑ)λwξθσ
2
aσ

−2
w My(λw) = 0,

which implies

My(λw) =
(1− λwϑ)(ϑ− λ)

(1− ρaϑ)λwξθσ
2
aσ

−2
w

. (C.16)

Now substituting (C.16) into (C.14) and using the fact that r1 = ϑ, we can derive

r2 =
λ2w(1− ρaϑ) + (1− λwϑ)(1− ρaλw)

λw(1− ρaϑ)
.

Define κ = r2.We use (C.15) to obtain the expression forMy (z) in the proposition. The expression

for M i
y (z) in the proposition follows from (C.4) and (C.5). Q.E.D.

Proof of Proposition 3: Consider equations (24) and (27),

α1s
h
it+1 = α2s

h
it + Eit

[
α3s

h
it+2 +∆bit+1

]
+ Eit [βqt+1 + (1− β) dt+1]− qt (C.17)

qt =

∫

I
Eit [α3sit+2 +∆bit+1] di+

∫

I
Eit [βqt+1 + (1− β) dt+1] di, (C.18)

where ∆bit+1 = bit−bit+1 and bit = α4dt+α5nit. Using the structural equation yit = (at+εit)+αnit

and equations (C.4) and (C.5), it is easy to derive

nit =
1

α

{[
My(L)−

1

1− ρaL

]
εat +

[
M i

y(L)− 1
]
εit

}

=
1

α

{
1

1− ρaL

[
M i

y(L)− 1
]
εat +

[
M i

y(L)− 1
]
εzit

}

≡Mn(L) εat +M i
n(L) εit.

It follows that

M i
n(z) = (1− ρaz)Mn(z). (C.19)

Define

qeit = Eit

[
α3s

h
it+2 +∆bit+1

]
+ Eit [βqt+1 + (1− β) dt+1] .

Then

qeit = Eit

[
α3s

h
it+2 + ∆̃bit+1 + βqt+1 + (1− β) dt+1

]
+ α5nit

= aq(L)ait + α5

[
Mn(L) εat +M i

n(L) εit
]

=

[
aq(L)

1− ρaL
+ α5Mn(L)

]
εat +

[
aq (L) + α5M

i
n (L)

]
εit,

where ∆̃bit+1 = ∆bit+1−α5nit and aq (z) can be obtained from the Wiener-Hopf prediction formula.
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Aggregation leads to

∫

I
qeitdi =

[
aq(L)

1− ρaL
+ α5Mn(L)

]
εat +

[
aq (L) + α5M

i
n (L)

] ∫

I
εitdi

=

[
aq(L)

1− ρaL
+ α5Mn(L)

]
εat.

Since

qt =Mq (L) εat, shit+1 =M i
s (L) εit,

it follows from matching coefficients in equation (C.18) that

Mq(z) =
aq(z)

1− ρaz
+ α5Mn(z).

Matching coefficients in equation (C.17) yields

(α1 − α2z)M
i
s(z) = aq(z) + α5M

i
n(z).

It follows from the preceding two equations and (C.19) that

Mq(z) = α1
1− λsz

1− ρaz
M i

s(z),

where λs = α2/α1. Q.E.D.

Proof of Theorem 2: The proof is constructive. We have solved the real side of the model

in Proposition 4. We now focus on the finacial side. Plugging (38) and (39) into equation (27)

and using (40) and the Wiener-Hopf prediction formula, we can derive the following fixed point

equation for Mq (·) (see online Appendix F):

Gq (z)Mq (z) = Gb (z) + (1− β)Gd (z)− σm

[
Mq (λw)Λ

z − λw
+
Mq (0) ρa
λwz

]
− σβ

Mq (λw)

z − λw
, (C.20)

where the analytic functions Gq (z) , Gb (z) , and Gd (z) satisfy

Gq (z) =
σmρaPq (z)

z (z − λw) (1− λsz)
,

Gb (z) =
1

σw

[
(z − 1)Sba (z)

zΓ(1/z)

]

+

, Gd (z) =
1

σw

[
Sda (z)

zΓ (1/z)

]

+

,

Sba and Sda are covariance-generating functions, the constants σm, σβ, and Λ are defined as

σm =
σ2i
σ2w

(1− λs), σβ = β
σ2a
σ2w

, Λ =
(1− ρaλw)(λw − ρa)

(1− λsλw)λw
,

and the polynomial function Pq (z) is defined as

Pq (z) = a4z
4 + a3z

3 + a2z
2 + a1z + a0. (C.21)
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Here,

a1 = −
[

1

1− λs
+

(
ρa +

1

ρa

)
+

σβ
λw (1− λs)

]
,

a2 =
1 + λsσβ
λw (1− λs)

+
1 + λw
1− λs

, a3 = −
[
1 + λsλw
1− λs

+
λs

λw (1− λs)

]
,

a4 =
λs

1− λs
, a0 = 1.

Note that the expression for the equity price in (C.20) is not in closed-form due to the presence

of unknown constant Mq (λw) and Mq (0). Standard pole-removing procedures can be performed

by using the zeros of the rational function Gq (z) or Pq (z) . The following lemma analyzes the roots

of Pq (z) .

Lemma 4 The univariate polynomial function Pq (z) has two distinct roots inside the unit circle

and two distinct roots outside the unit circle and we can express Pq (z) as

Pq (z) = (1−m1z) (1−m2z) (1−m3z) (1−m4z) ,

with |m1| ≥ |m2| > 1 > |m3| ≥ |m4|.

Denote mr
i = 1/mi for i = 1, 2, 3, 4. Given the preceding lemma, we can solve for the unique

equilibrium by setting Mq (λw) and Mq (0) to remove the poles at z = mr
1 and z = mr

2.

Proof of Lemma 4: Consider the complex quartic polynomial equation in (C.21). Note that

a0, a2, a4 > 0, while a1, a3 < 0. By the fundamental theorem of algebra, there exist four roots,

counting multiplicities. To show the location of roots, we need the Rouché’s theorem (see Brown

and Churchill (2009)).

Theorem 4 (Rouché) Suppose that two functions f and g are analytic inside and on a simple

closed contour C. If |f(z)| > |g(z)| at each point on C, then the functions f(z) and f(z) + g(z)

have the same numbers of zeros, counting multiplicities, inside C.

To proceed, let C = T be the unit circle and define

PA
q (z) = a4z

4 + a2z
2 + a0, P

B
q (z) = a3z

3 + a1z.

We need the following lemma on coefficients.

Lemma 5 We have

|a4|+ |a2|+ |a0| > |a3|+ |a1|.
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Proof: The difference between the expressions on the left-hand and right-hand sides of the in-

equality above is given by

1 +
1 + λs + λw

1− λs
+

1 + σβλs
λw(1− λs)

−
[
2 + λsλw
1− λs

+ (ρa +
1

ρa
) +

σβ + λs
λw(1− λs)

]

=
1

λw

[
λ2w − %λw + (1− σβ)

]
=

1

λw

[
λ2w − (%+

βτ

ρa
)λw + 1

]
,

where we have defined % ≡ ρa +
1
ρa
> 2 and substituted σβ = β σ2

a

σ2
w
= βτλw

ρa
. We wish to show that

λ2w −
(
%+

βτ

ρa

)
λw + 1 > 0.

By (C.2), we can derive

λw =
h(τ , ρa)−

√
h2(τ , ρa)− 4ρ2a
2ρa

where h(τ , ρa) ≡ 1 + τ + ρ2a. By some tedious algebra, we can show that

λ2w −
(
%+

βτ

ρa

)
λw + 1 =

[h(τ , ρa)− (%ρa + βτ)]
[
h(τ , ρa)−

√
h2(τ , ρa)− 4ρ2a

]

2ρ2a
.

Clearly the term in the second bracket on the numerator is positive by definition. The term in the

first bracket can be written as

h(τ , ρa)− (%ρa + βτ) = 1 + τ + ρ2a −
[
(ρa +

1

ρa
)ρa + βτ

]
= (1− β)τ > 0.

We then obtain the desired result. �

Next we show that PA
q (z) has too roots inside the unit disk and two roots outside the unit disk.

Lemma 6 PA
q (z) = a4z

4 + a2z
2 + a0 has two roots inside the unit disk, and two roots outside the

unit disk.

Proof: We need to apply the Rouché theorem. First, it is trivial to see that a2z
2 has two roots

at z = 0 inside the unit disk. Then by the triangle inequality,

|a4z4 + a0| ≤ |a4z4|+ |a0| = |a4|+ |a0|, (C.22)

where z ∈ T is on the unit circle. By the definition of a0, a1, ..., a4, we can easily deduce that

|a2| > |a4|+ |a0|. It follows immediately that for all z ∈ T,

|a2z2| = |a2| > |a4|+ |a0| ≥ |a4z4 + a0|.

Therefore, by the Rouché theorem, a2z
2 and a4z

4+ a0+ a2z
2 have the same number of roots (two)

inside the unit circle. Use the reverse triangle inequality,

∣∣PA
q (z)

∣∣ =
∣∣a4z4 + a0 + a2z

2
∣∣ ≥

∣∣∣∣a2z2
∣∣−
∣∣a4z4 + a0

∣∣∣∣ > 0,
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for all z ∈ T. Hence the other two roots of the quartic polynomial PA
q (z) are located outside the

unit circle, by the Fundamental Theorem of Algebra. The proof is complete. �

To apply Rouché’s theorem, we need the following lemma.

Lemma 7 For each z ∈ T,
∣∣PA

q (z)
∣∣ >

∣∣PB
q (z)

∣∣ .

Proof: Let z = e−iω, ω ∈ [−π, π]. Without loss of generality, define θ = 2ω ∈ [−2π, 2π]. It

follows that

∣∣PA
q (z)

∣∣ =
∣∣∣a4e−2iθ + a2e

−iθ + a0

∣∣∣

= |a4(cos 2θ − i sin 2θ) + a2(cos θ − i sin θ) + a0|

=

√
(a4 cos 2θ + a2 cos θ + a0)

2 + (a4 sin 2θ + a2 sin θ)
2,

where we have employed the Euler’s formula to expand the expression in trigonometric form. The

trigonometric form can be manipulated as

∣∣PA
q (z)

∣∣2 = (a4 cos 2θ + a2 cos θ + a0)
2 + (a4 sin 2θ + a2 sin θ)

2

= a24 cos
2 2θ + a22 cos

2 θ + a20 + 2a4a2 cos 2θ cos θ + 2a4a0 cos 2θ + 2a2a0 cos θ

+a24 sin
2 2θ + a22 sin

2 θ + 2a2a4 sin 2θ sin θ

= a24 + a22 + a20 + 2a2a4(cos 2θ cos θ + sin 2θ sin θ) + 2a0a4 cos 2θ + 2a0a2 cos θ

= a24 + a22 + a20 + 2a2a4 cos θ + 2a0a4 cos 2θ + 2a0a2 cos θ,

where we have used the standard trigonometric identities

sin2 nθ + cos2 nθ = 1,

cos 2θ cos θ + sin 2θ sin θ = cos(2θ − θ) = cos θ.

On the other hand,

∣∣PB
q (z)

∣∣ =
∣∣a3z3 + a1z

∣∣ = |z| ·
∣∣a3z2 + a1

∣∣ = |a3(cos θ − i sin θ) + a1|

=
√

(a3 cos θ + a1)2 + (a3 sin θ)2 =
√
a23 + a21 + 2|a1||a3| cos θ,

where we have used the trigonometric identity again.

To prove the lemma, it is equivalent to show that

∆q(θ) = a24 + a22 + a20 + 2a2a4 cos θ + 2a0a4 cos 2θ + 2a0a2 cos θ

−
(
a23 + a21 + 2|a1||a3| cos θ

)
> 0, (C.23)
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for every θ = 2ω ∈ [−2π, 2π]. By inspection, ∆q(θ) is a periodic, even function with period 2π.12

We will show analytically that when θ ∈ [−2π, 2π], the minimum of ∆q(θ) is

∆q(θ)min = (a4 + a2 + a0)
2 − (|a3|+ |a1|)2

and the minimum is attained at θ = 0,−2π, 2π so that cos θ = 1.

To proceed, we define the trigonometric part of ∆q(θ) as ∆q(θ) such that

∆q(θ) = ∆q(θ) + a24 + a22 + a20 − (a21 + a23).

Then it follows that

∆q(θ) = 2a2a4 cos θ + 2a0a4 cos 2θ + 2a0a2 cos θ − 2|a1||a3| cos θ

= 2a0a4
(
2 cos2 θ − 1

)
+ (2a2a4 + 2a0a2 − 2|a1||a3|) cos θ

= 4a0a4 cos
2 θ + (2a2a4 + 2a0a2 − 2|a1||a3|) cos θ − 2a0a4,

where we have used the trigonometric identity

cos 2θ = 2cos2 θ − 1.

Thus ∆q(θ) is a quadratic function of cos θ ∈ [−1, 1]. It opens upward since 4a0a4 > 0. Therefore,

without the trigonometric restriction, the generic quadratic equation

∆q(t) = 4a0a4t
2 + (2a2a4 + 2a0a2 − 2|a1||a3|) t− 2a0a4

attains its minimum at its vertex (axis of symmetry)

tmin = −2a2a4 + 2a0a2 − 2|a1||a3|
8a0a4

=
|a1||a3| − (a2a4 + a0a2)

4a0a4
.

Next we show that tmin > 1, given our parameter restrictions. This is equivalent to

∆ = |a1||a3| − (a2a4 + a0a2)− 4a0a4 > 0.

Expanding ∆, we have

(1− λs)
2∆ = %(1− λs) + (1− λs)(%λs − 1)(λw +

1

λw
)

+ σβ

[
1

λw
(1− λs) + λs(1 +

1

λ2w
)

]
− 4λs(1− λs)

= (1− λs)

[
%+ (%λs − 1)(λw +

1

λw
)− 4λs

]
+ σβ

[
1

λw
(1− λs) + λs(1 +

1

λ2w
)

]

> (1− λs) [%+ 2(%λs − 1)− 4λs] + σβ

[
1

λw
(1− λs) + λs

(
1 +

1

λ2w

)]

= (1− λs)(%− 2)(1 + 2λs) + σβ

[
1

λw
(1− λs) + λs

(
1 +

1

λ2w

)]

> 0.

12Elementary mathematics implies that cos 2θ has period π, so that the trigonometric sum has period 2π.
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The first inequality follows from the arithmetic inequality λw + 1/λw > 2 and the fact that %λs >

1
2% > 1 (recall λs ∈ (1/2, 1)). The second inequality follows from the fact that % = ρa + 1/ρa > 2.

Therefore, the unrestricted, global minimum for the quadratic system ∆q(t) occurs at tmin > 1.

By definition t = cos θ ∈ [−1, 1], the minimum of ∆q(θ) occurs at cos θ = 1. We can then compute

the minimum of ∆q(θ) as

∆q(θ)min = ∆q(θ)min + a24 + a22 + a20 − (a21 + a23)

= (a4 + a2 + a0)
2 − (|a3|+ |a1|)2 > 0,

where the inequality follows from Lemma 5. Therefore, ∆q(θ) > 0 for every θ ∈ [−2π, 2π], which is

equivalent to
∣∣PA

q (z)
∣∣ >

∣∣PB
q (z)

∣∣ for each z ∈ T. �

Given the preceding three lemmas, we conclude that PA
q (z) has two roots inside the unit circle

and
∣∣PA

q (z)
∣∣ >

∣∣PB
q (z)

∣∣ for each z ∈ T. Hence PA
q (z) and Pq(z) = PA

q (z) + PB
q (z) have the same

number of roots (two) inside the unit circle by the Rouché theorem. Since Pq(z) cannot have roots

on the unit circle, the other two roots are located outside the unit circle. The proof of Lemma 4 is

thus complete. Q.E.D.

Using equation (C.20) and Lemma 4, we can derive

Mq(z) =
∆q(z)

σmρa
∏4

i=1(1−miz)
, (C.24)

where ∆q(z) is given by

∆q(z) = z(z − λw)(1 − λsz)

[
Gb(z) + (1− β)Gd(z)− σm

[
Mq(λw)Λ

z − λw
+
Mq(0)ρa
λwz

]
− σβ

Mq(λw)

z − λw

]

= z(z − λw)(1 − λsz) [Gb(z) + (1− β)Gd(z)]− z(1 − λsz) [σmΛ+ σβ ]Mq(λw)

− (z − λw)(1− λsz)
σmρa
λw

Mq(0).

By inspection, ∆q(z) is a rational analytic function in the closed unit disk (T ∪ D). Thus ∆q(z) ∈
H2(D). Note that equation (C.24) does not give a closed-form solution for Mq (z) because the

constants Mq(λw) and Mq(0) on the right side are endogenous. We set these constants to remove

the poles inside the unit circle at mr
1 = 1/m1 and mr

2 = 1/m2, ensuring the causal stationarity of

the equity price. The pole-removing procedure is equivalent to the following derivative conditions

d(0)∆q(z)

dz

∣∣∣∣∣
z=mr

1

= ∆q(m
r
1) = 0,

d(0)∆q(z)

dz

∣∣∣∣∣
z=mr

2

= ∆q(m
r
2) = 0.

These conditions also extend to higher-order zeros with multiplicities (see Tan and Walker (2015)).

The above condition can be transformed into the following system of linear equations,

[σmΛ + σβ]m
r
1Mq(λw) + σm(mr

1 − λw)Mq(0)
ρa
λw

= g(mr
1),

[σmΛ + σβ]m
r
2Mq(λw) + σm(mr

2 − λw)Mq(0)
ρa
λw

= g(mr
2),
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where we define

g(z) ≡ z(z − λw) [Gb(z) + (1− β)Gd(z)] .

This is a linear system of equations, which admits a unique solution

Mq(0) =
g(mr

1)m
2
2 − g(mr

2)m
r
1

(m2
1 −mr

2)σmρa
,

Mq(λw) =
(λw −mr

2)g(m
r
1) + (mr

1 − λw)g(m
r
2)

λw(mr
1 −mr

2)[σmΛ+ σβ]
.

Now substituting these expressions back into ∆q (z) and simplifying, we obtain

∆q(z) = (1− λsz)

[
g(z)− g(mr

1)− g(mr
2)

mr
1 −mr

2

z +
g(mr

1)m
r
2 − g(mr

2)m
r
1

mr
1 −mr

2

]
.

Define the rational function Nq(z) as the expression in the preceding square bracket. By inspection,

Nq(z) is analytic in the closed unit disk, and has two zeros at z = mr
1 and z = mr

2. Therefore,

following Churchill and Brown (2009), p249, Theorem 1, there exists an analytic function N̂q(z)

that is nonzero at these two points such that

Nq(z) = (1−m1z)(1 −m2z)N̂q(z).

Finally, we show that the rational polynomial function Nq(z) has real coefficients. To see this,

we use Lemma 4 to deduce that Nq (z) has two roots mr
1 and mr

2 inside the unit circle satisfying

|mr
1| ≤ |mr

2| < 1. If both roots are real, then the result follows from the definition of Nq (z) as g (z)

has real coefficients. Suppose that one of these roots is complex. Since Pq(z) has real coefficients,

it follows from the complex conjugate theorem that mr
1 and mr

2 form conjugate pairs, mr
2 = mr

1.

Since g(z) has real coefficients, it follows that

g(mr
2) = g(mr

1) = g(mr
1),

g(mr
1)m

r
2 − g(mr

2)m
r
1 = g(mr

1)m
r
1 − g(mr

1)m
r
1,

where we use x to denote conjugation instead of x∗ for notational simplicity. It is then clear that

the coefficients
g(mr

1)−g(mr
2)

mr
1−mr

2
and

g(mr
1)m

r
2−g(mr

2)m
r
1

mr
1−mr

2
are real-valued, so that Nq (z) has real coefficients.

The proof of Theorem 2 is complete. Q.E.D.

We need the following lemma to prove Theorem 3.

Lemma 8 When σi → ∞, the analytic function Pq (z) converges to

lim
σi→∞

Pq (z) = (z − 1)

(
λs

1− λs
z − 1

)[
z2 −

(
ρa +

1

ρa

)
z + 1

]
.

There are still two roots inside the unit circle and one root outside the unit circle, but m3 converges

to a unit root as σi → ∞.
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Proof: Since a0 = 1, the Fundamental Theorem of Algebra implies that Pq(z) admits a unique

factorization in the form (modulo a constant normalization)

Pq(z) = (1−m1z)(1 −m2z)(1 −m3z)(1−m4z).

Moreover, the roots of the polynomials are functions of the coefficients and are continuous with re-

spect to the coefficients. Since the coefficients are continuous functions of τ , all roots are continuous

functions of τ .

By the definition of λw, σw, and τ = σ2a/σ
2
i , we have limσi→∞ τ = 0, limσi→∞ λw = ρa, and

lim
σi→∞

σβ = lim
σi→∞

β
σ2a
σ2w

= lim
σi→∞

βσ2a
ρaσ

2
i /λw

= lim
σi→∞

βτ = 0.

We now compute

lim
σi→∞

Pq(z) =
λs

1− λs
z4 − λs + ρ2aλs + ρa

ρa(1− λs)
z3 +

[
1 + (λs + ρa) ρa
ρa(1− λs)

+ 1

]
z2

−
[

1

1− λs
+

1 + ρ2a
ρa

]
z + 1

= (z − 1)

(
λs

1− λs
z − 1

)(
z2 − %z + 1

)
,

where % ≡ 1
ρa

+ ρa > 2. Since λs ∈ (12 , 1), the equation limσi→∞ Pq(z) = 0 has a root (1− λs) /λs

inside the unit circle. The quadratic equation z2 − %z + 1 = 0 obviously has two real roots. By

symmetry of its coefficients, one of the roots is inside the unit circle and the other is outside the

unit circle. Thus the equation limσi→∞ Pq(z) = 0 has two roots inside the unit circle, one root

outside the unit circle, and one root on the unit circle. By the continuity of roots with respect to τ ,

it must be the case that the smaller roots of Pq(z) = 0 outside the unit circle gradually converges

to the unit root, i.e., limσi→∞mr
3 = limσi→∞ 1/m3 = 1. The proof is then complete. �

Proof of Theorem 3: We use the Parseval theorem to compute the equity price volatility as

V ar (qt) = σ2a||Mq(z)||2H2 = σ2a
1

2πi

∮

T

|Mq (z)|2
dz

z

=
σ2a
σ2mρ

2
a

1

2πi

∮

T

(1− λsz)(1 − λs
1
z )N̂q(z)N̂q(

1
z )

(1−m3z)(1−m3
1
z )(1−m4z)(1−m4

1
z )

dz

z
.

By Lemma 8, mr
1 = 1/m1 and mr

2 = 1/m2 remain inside the unit circle, and mr
4 remains outside

the unit circle, while mr
3 = 1/m3 converges to the unit root, as σi → ∞. Therefore, it suffices to

show that N̂q(z) has no roots on the unit circle when σi → ∞.
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By the definition in Theorem 2 and the derivation of (C.20) in online Appendix F, we have

g(z) = z(z − λw)Gb(z) + z(z − λw)(1 − β)Gd(z)

=
1

σw
[z(z − λw)ψb(z)− ϕb(λw)z − ϕb(0)(z − λw)]

+ (1− β)
1

σw
[z(z − λw)ψd(z)− zϕd(λw)] .

Using the limiting result

lim
σi→∞

λw = ρa, lim
σi→∞

σ2a
σ2w

= lim
σi→∞

σ2aλw
σ2i ρa

= 0, lim
σi→∞

σ2i
σ2w

= 1,

we can show that

lim
σi→∞

g(z) = (z − 1)(z − ρa)M
i
b(z) +M i

b(0).

By Proposition 4 and the derivation of (C.20) in online Appendix F, we can show that

M i
b(z) =

α5

α

[
M i

y(z)− 1
]
=
α5

α

[
(κ− z)ϑ

ξ(1− θz)
− 1

]
.

Since

lim
σi→∞

ϑ = ρa, lim
σi→∞

κ =
1

ρa
,

it follows that

lim
σi→∞

M i
b(z) =

α5

α

[
( 1
ρa

− z)ρa

ξ(1− ρaz)
− 1

]
=
α5

α

(
1

ξ
− 1

)
.

Given Assumption 1, it follows from Appendix A that α5 6= 0. Thus

α

α5
lim

σi→∞
g(z) = (z − 1)(z − ρa)

(
1

ξ
− 1

)
+

1

ξ
− 1.

In Theorem 2, we have defined

Nq(z) = g(z)− g(mr
1)− g(mr

2)

mr
1 −mr

2

z +
g(mr

1)m
r
2 − g(mr

2)m
r
1

mr
1 −mr

2

.

Moreover, Nq (z) has two roots located at z = mr
1 and z = mr

2. By our proof above, we have shown

that Nq(z) becomes a quadratic polynomial function in the limit as σi → ∞. Thus the limits of

mr
1 and mr

2 are the two roots of limσi→∞Nq (z) . Thus limσi→∞ N̂q(z) = limσi→∞
Nq(z)

(1−m1z)(1−m2z)

becomes a constant independent of z. Finally, we have one pole in the limit at limσi→∞mr
3 = 1 by

Lemma 8. Therefore, we have

lim
σi→∞

||Mq(z)||H2 → ∞.

This completes the proof. Q.E.D.
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D Proofs of Results in Section 7

We first state an equilibrium existence and uniqueness result.

Theorem 5 Consider the model under the signal representation (45). Let the analytic functions

A(z), Ã(z), B(z), and B̃(z) and the signal-noise ratios τ1, τ 2, τ3, and τ4 be defined below. Suppose

that

u(z) = π1(z) =
(1− λsz) [x(z)− x(γ1)]

−λs(z − γ1)(z − γ2)
, (D.1)

where x(z) = A(z)a(z) +B(z) is an affine transformation of a(z) in H2(D) and γ1 and γ2 are the

two real roots of the quadratic equation P1(z) ≡ −λsz2 + (βτ2λs + 1)z − [(1− λs)τ1 + βτ2], with

|γ1| < 1 and |γ2| > 1. If the analytic function

π1(z)

1− π2(z)
=
κ(z)− κ(β)

z − β

has no roots in the open unit disk D, where

κ(z) = Ã(z)a(z) + B̃(z)−
[
(1− λs)τ 3
1− λsz

+ βτ4

]
π1(z) + [(1− λs)τ3 + βτ4] π1(0),

then there exists a unique equilibrium with the equity price qt given by (44).

Proof of Theorem 5: Consider the equilibrium conjecture in (44):

qt =
π1(L)

1− π2(L)
εat +

π2(L)

1− π2(L)
u(L)εut,

where π1(z) and π2(z) are rational functions. Given the assumption that u(z) = π1(z), it follows

that

qt =
π1(L)

1− π2(L)
εat +

π2(L)π1(L)

1− π2(L)
εut.

For qt to be a causal stationary process, we need π1(z)
1−π2(z)

and π1(z) to be in the Hardy space H2 (D).

We need to drive the Wold representation for the signal process {Xit} given in (45). We can

compute the covariance generating function

Sx(z) = H(z)ΣηH(z−1)T =

[
σ2a + σ2i

π1(z−1)
1−π2(z−1)

σ2a
π1(z)

1−π2(z)
σ2a

π1(z)π1(z−1)
(1−π2(z))(1−π2(z−1))(σ

2
a + σ2u)

]
,
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where

Ση =



σ2a

σ2i
σ2u




is the covariance matrix for the innovation vector ηit. We wish to derive the spectral factorization

Sx(z) = Γ(z)Γ(z−1)T .

Applying the triangular factorization method in Proposition 1,13 we obtain

Γ(z) =

[
σe

σ2
a

σp

0 π1(z)
1−π2(z)

σp

]
,

where we define σ2e = σ2i +
σ2
aσ

2
u

σ2
a+σ2

u
and σ2p = σ2a + σ2u. Note that

det Γ(z) = σpσe
π1(z)

1− π2(z)
.

By Theorem 4.6.11 in Lindquist and Picci (2015), Γ(z) is an outer spectral factor if and only if
π1(z)

1−π2(z)
has no roots in the open unit disk. We shall make this assumption and then obtain the

Wold representation Xit = Γ (L) vit, where vit is a two-dimensional Wold fundamental innovation

vector with zero mean and identity covariance matrix. In this case we do not need step 2 when

using our two-step procedure.

Now we solve for the equilibrium quantities. We conjecture that yit =My(L)ηit, whereMy(z) =[
Ma

y (z),M
i
y(z),M

u
y (z)

]
. Aggregation leads to aggregate output yt = MA

y (L) ηit, where M
A
y (z) =

My(z)Ii and

Ii =



1 0 0
0 0 0
0 0 1


 .

Using the Wiener-Hopf prediction formula, we can derive that Eit[yt] = Ψ (L)Xit, where

Ψ (z) =
[
Syx(z)

(
Γ−1(z−1)

)T ]
+
Γ−1(z) =

[
ψy(z)

]
+
Γ−1(z),

and the cross-spectrum is given by

Syx(z) =MA
y (z)ΣsH

T (z−1).

Routine algebra then reveals that

ψy(z) =

[
(
σ2a
σe

− σ4a
σ2pσe

)Ma
y (z)−

σ2aσ
2
u

σ2pσe
Mu

y (z),
Ma

y (z)σ
2
a +Mu

y (z)σ
2
u

σp

]
.

13Following Rondina and Walker (2015), we transform the lower-triangular matrix to the upper triangular form by
right multiplication of an unitary matrix, which ease the algebra.
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By inspection, ψy(z) is analytic in the open unit disk and has square-summable Laurent series

expansion. Therefore,
[
ψy(z)

]
+
= ψy(z). In the innovation form, we have

Eit[yt] =
[
ψy(L)

]
+
Γ−1(L)H(L)ηit

=
[
(h1 + h3)M

a
y (L) + (h4 − h2)M

u
y (L), h1M

a
y (L)− h2M

u
y (L), h3M

a
y (L) + h4M

u
y (L)

]
ηit,

where we define

h1 =
σ2a
σ2e

− σ4a
σ2pσ

2
e

, h2 =
σ2aσ

2
u

σ2pσ
2
e

,

h3 =
σ2a
σ2p

+
σ6a
σ4pσ

2
e

− σ4a
σ2pσ

2
e

, h4 =
σ4aσ

2
u

σ4pσ
2
e

+
σ2u
σ2p
.

Plugging yit =My(L)ηit and the preceding conditional expectation Eit[yt] into (21) and match-

ing coefficients, we obtain a system of linear equations

Ma
y (z) =

1

ξ
a(z) + θ

[
(h1 + h3)M

a
y (z) + (h4 − h2)M

u
y (z)

]
,

Mu
y (z) = θ

[
h3M

a
y (z) + h4M

u
y (z)

]
,

M i
y(z) =

1

ξ
+ θ

[
h1M

a
y (z)− h2M

u
y (z)

]
,

which yields the solution

Ma
y (z) =

a(z)

ξm1
, Mu

y (z) =
m2a(z)

ξm1
,

M i
y(z) =

1

ξ
+ θβ

h1 − h2m2

ξm1
a(z),

where m1 = 1− (h4−h2)h3θ
1−θh4

− θ(h1 + h3), m2 =
h3θ

1−θβh4
.

Next we proceed to the financial market and construct the informational fixed point. Conjecture

the shareholding choice takes the form shit+1 = Ms(L)ηit, where Ms(z) =
[
0,M i

s(z), 0
]
. By (24)

and (43), we obtain

(α1 − α2L)Ms(L)ηit = π1(L) (εat + εit) + π2(L) (qt + ut)− qt.

Plugging (44) into this equation and using the assumption u (z) = π1 (z) , we can verify our con-

jecture by matching coefficients on innovations to get

M i
s(z) =

π1(z)

α1 − α2z
. (D.2)

We can then compute the conditional expectation

Eit

[
α3s

h
it+2

]
= α3

[
z−1Ssx(L)

[
Γ−1(L−1)

]T ]
+
Γ−1(L)Xit

= α3

[
σ2i
σ2e

M i
s(L)−M i

s(0)

L
, −σ

2
aσ

2
i

σ2pσ
2
e

1− π2(L)

π1(L)

M i
s(L)−M i

s(0)

L

]
Xit.
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Conjecture that dt =Md (L) ηit, nt =Mn (L) ηit, and bt =Mb (L) ηit, where

Md (z) =
[
Ma

d (z),M
i
d(z),M

u
d (z)

]
,

Mn (z) =
[
Ma

n(z),M
i
n(z),M

u
n (z)

]
,

Mb (z) =
[
Ma

b (z),M
i
b(z),M

u
b (z)

]
.

Using equations (25), (26), and (27) and matching coefficients, we can derive that

Md (z) =

[(
1

α6
− α7

αα6

)
Ma

y (z) +
α7

αα6
a(z), 0,

1

α6
(1− α7

α
)Mu

y (z)

]
,

Mn (z) =
1

α

[
Ma

y (z)− a(z), M i
y(z)− 1, Mu

y (z)
]
,

Mb (z) = α4Md(z) + α5Mn(z).

Therefore, we can compute the rest of the expectational terms in χit, and then substitute

them into our initial conjecture in (43). After some tedious algebra, we construct the following

informational fixed point equations

zπ1(z) = α3τ1
[
M i

s(z)−M i
s(0)

]
+βτ2 [π1(z)− π1(0)]+(1−β)

[
G

(1)
d (z)−G

(1)
d (0)

]
+G

(1)
b (z)−G(1)

b (0),

(D.3)

and

zπ2(z) =
1− π2(z)

π1(z)

[
− α3τ3

[
M i

s(z)−M i
s(0)

]
− βτ4 (π1(z) − π1(0)) −

βπ1(0)

1− π2(0)
(D.4)

+ (1− β)
[
G

(2)
d (z)−G

(2)
d (0)

]
+G

(2)
b (z) −G

(2)
b (0)

]
+ β,

where we define the relevant signal-noise ratios as

τ1 =
σ2i
σ2e
, τ2 =

σ2aσ
2
u

σ2eσ
2
p

, τ3 =
σ2aσ

2
i

σ2eσ
2
p

, τ4 =
σ2u
σ2p

(
1 +

σ4a
σ2pσ

2
e

)
,

and the analytic functions as

G
(1)
d (z) = h1M

a
d (z)− h2M

u
d (z),

G
(2)
d (z) = h3M

a
d (z) + h4M

u
d (z),

G
(1)
b (z) = (z − 1)

[
h1M

a
b (z)− h2M

u
b (z) + τ1M

i
b(z)

]
,

G
(2)
b (z) = (z − 1)

[
h3M

a
b (z) + h4M

u
b (z)− τ3M

i
b(z)

]
.

We also define the function

x(z) = (1− β)
[
G

(1)
d (z)−G

(1)
d (0)

]
+G

(1)
b (z)−G

(1)
b (0).
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Substituting (D.2) into (D.3), we can show that

π1(z) =
(1− λsz) [x(z)− ((1− λs)τ 1 + βτ2)π1(0)]

P1 (z)
,

where

P1(z) ≡ −λsz2 + (βτ2λs + 1)z − [(1− λs)τ1 + βτ2] .

We need the following lemma on the distribution of roots.

Lemma 9 Suppose that σi, σa, σu ∈ (0,∞) . Then the polynomial function P1(z) has one real root

inside the unit circle and one real root outside the unit circle.

Proof: We will make use of the Rouché theorem. Notice that τ1 ∈ (0, 1), τ2 ∈ (0, 1), and

τ1 + τ2 = 1. It is easy to see that the polynomial function

P f
1 (z) ≡ −λsz2 + (βτ2λs + 1)z

has one root inside the unit circle at z = 0 and the other outside unit circle at z = βτ2λs+1
λs

> 1.

Therefore, it suffices to show that

∣∣∣P f
1 (z)

∣∣∣ > |P g
1 (z)| ≡ |− ((1− λs)τ1 + βτ2)| = |(1− λs)τ 1 + βτ2|

for all z ∈ T. Since λs ∈ (1/2, 1) , it follows that on the unit circle

∣∣∣P f
1 (z)

∣∣∣ = |λsz − (1 + βτ2λs)| ≥ |λs − (1 + βτ2λs)| = (1 + βτ2λs)− λs.

Finally,

(1 + βτ2λs)− λs − [(1− λs)τ1 + βτ2] = (1− λs)(1− τ1 − βτ2)

> (1− λs)(1− τ1 − τ2) = 0.

Since β ∈ (0, 1), we have strict inequality. By the Rouché theorem, the proof is complete. �

Given the preceding lemma, we can write

π1(z) =
(1− λsz)

−λs(z − γ2)(z − γ1)
[x(z)− ((1− λs)τ1 + βτ2) π1(0)] ,

with γ1 indicating the root inside the unit circle. To remove this pole, we set π1(0) such that

x(γ1)− ((1− λs)τ1 + βτ2) π1(0) = 0,

which implies that

π1(0) =
x(γ1)

(1− λs)τ 1 + βτ2
.
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Now we can collect terms and simplify expressions to derive

π1(z) =
(1− λsz) [x(z)− x(γ1)]

−λs(z − γ1)(z − γ2)
, (D.5)

where x(z) = A(z)a(z) +B(z),

A(z) = (1− β)
(h1 − h2m2)α + [h1(ξm1 − 1) + h2m2]α7

αα6ξm1

+ {(h1 − h2m2)αα4 + h2m2α7α4 + [h1α5α6 − h1α4α7](1− ξm1)

+ α5α6[τ 1θh1 − h2m2(1 + τ1θ]}
(z − 1)

αα6ξm1
,

and

B(z) =

[
(h1 − h2m2)αα4 + h2m2α7α4 + [h1α5α6 − h1α4α7](1− ξm1) + α5α6[τ 1θh1 − h2m2(1 + τ1θ]

αα6ξm1

− (1− β)
(h1 − h2m2)α+ [h1(ξm1 − 1) + h2m2]α7

αα6ξm1

]
a(0) +

τ1α5(1− ξ)

αξ
z.

Note that A(z) ∈ H∞(D) defines a linear and bounded multiplication operator in D.14 Thus x(z)

defines an affine transformation of a(z) in H2(D).

Next consider the fixed point condition (D.4). After some algebra, we can write the condition

in terms of π1(z)
1−π2(z)

:

π1(z)

1− π2(z)
=
x̃(z) + π1(z)z

z − β
, (D.6)

where

x̃(z) = −α3τ3
[
M i

s(z)−M i
s(0)

]
+ β

[
−τ4 (π1(z)− π1(0)) −

π1(0)

1− π2(0)

]

+ (1− β)
[
G

(2)
d (z) −G

(2)
d (0)

]
+G

(2)
b (z)−G

(2)
b (0)

is by construction a rational analytic function in the closed unit disk given the solution of π1(z).

Plug (D.2) into the equation above, use the define λs = α2/α1 and 1− λs = α3/α3, and define

κ(z) = (1− β)[G
(2)
d (z)−G

(2)
d (0)] +G

(2)
b (z) −G

(2)
b (0) −

[
(1− λs)τ 3
1− λsz

+ βτ4

]
π1(z) + [(1− λs)τ 3 + βτ4] π1(0)

≡ Ã(z)a(z) + B̃(z) −
[
(1− λs)τ 3
1− λsz

+ βτ4

]
π1(z) + [(1− λs)τ 3 + βτ4]π1(0)

We can easily compute Ã(z) and B̃(z) by direct substitution of the expressions for G
(2)
d (·) and

G
(2)
b (·). For simplicity, we omit these expressions.

14See Conway (1990), p.28, Theorem 1.5 and Lindquist and Picci (2015), Theorem 4.3.3 (Bochner-
Chandrasekharan) and Proposition B.2.4.

51



As we mentioned earlier, we need π1(z)
1−π2(z)

to be analytical in the unit disk. Thus we should

remove the pole at z = β by setting the constant π2(0) such that x̃(β) + π1(β)β = 0. Solving this

equation yields

π2(0) = 1− π1(0)β

κ(β)
.

We can then rewrite (D.6) as
π1(z)

1− π2(z)
=
κ(z) − κ(β)

z − β
. (D.7)

Clearly, the model solution is rational in the frequency domain if a(z) is a rational function.

For the solution we presented above to be the unique stationary equilibrium, we need to make sure

that the spectral factorization is valid. As discussed earlier, we need the equation

π1(z)

1− π2(z)
=
κ(z)− κ(β)

z − β
= 0

to have no roots inside the open unit disk. This condition completes the proof. Q.E.D.

Next we present a limiting result.

Theorem 6 Suppose the conditions in Theorem 5 hold. Then for any finite σa ∈ (0,∞) ,

lim
σi→∞

||π1(z)||H2 = ∞ and lim
σi→∞

V ar(qft ) = σ2a lim
σi→∞

∥∥∥∥
π1(z)

1− π2(z)

∥∥∥∥
2

H2

= ∞.

Proof of Theorem 6: We first show that a unit root arises in π1(z) as σi → ∞. Consider the

polynomial function,

P1(z) ≡ −λsz2 + (βτ2λs + 1)z − [(1− λs)τ1 + βτ2] .

P1(z) can be written as a continuous function of coefficients, and hence in σi, as a parameterized

function P1(z, σi). Therefore, we know that limσi→∞ P1(z, σi) exists and can be written as

lim
σi→∞

P1(z, σi) = −λsz2 + z − (1− λs) = −λs(z − 1)(z − 1− λs
λs

),

where we have used the limits

lim
σi→∞

τ1 = lim
σi→∞

σ2i
σ2e

= 1, lim
σi→∞

τ2 = lim
σi→∞

σ2aσ
2
u

σ2eσ
2
p

= 0.

Since λs ∈ (1/2, 1), one of the roots γ1 = 1−λs

λs
is located strictly inside the unit circle. Lemma 9

shows that P1(z) always has one root inside the unit circle and the other outside the unit circle

when σi, σa, σu ∈ (0,∞). Since λs and γ1 are independent of σi, by the continuous dependence of

roots on coefficients, the larger root γ2 gradually converges to the unit root as σi → ∞.
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We then show that π1(z) cannot have a zero at z = 1. By (D.1), it suffices to show that the

analytic function x(z)− x(γ1) does not have a zero at z = 1. Using the previous definition, we can

show that limσi→∞ h1 = limσi→∞ h2 = 0. Moreover,

lim
σi→∞

x(z) =
α5(1− ξ)

αξ
z.

Therefore,

lim
σi→∞

[x(1)− x(γ1)] =
α5(1− ξ)

αξ
(1− γ1) =

α5(1− ξ)

αξ
(1− 1− λs

λs
),

which is clearly non-zero. It follows from (D.1) that limσi→∞ ||π1(z)||H2 → ∞.

Finally, consider the analytic function derived from (D.7)

π1(z)

1− π2(z)
=
Ã(z)a(z) + B̃(z)−

[
(1−λs)τ3

1−λsz
+ βτ4

]
π1(z) + [(1− λs)τ3 + βτ4] π1(0) − κ(β)

z − β
. (D.8)

We can check that Ã(z) and B̃(z) are polynomial functions that are analytic in the entire complex

plane, even as σi → ∞. We then need to show that there is no zero at z = 1 as σi → ∞.

Since a(z) is an exogenous rational analytic function in the closed unit disk, whose form is

independent of σi. Without loss of generality, we can write a(z) ≡ ap(z)
aq(z)

. We focus on the numerator

of (D.8) and plug (D.5) into it to obtain

Ã(z)a(z) + B̃(z)−
[
(1− λs)τ3
1− λsz

+ βτ4

]
π1(z) + [(1− λs)τ3 + βτ4]π1(0) − κ(β)

=
λs(z − γ1)(z − γ2)

[
Ã(z)ap(z) + B̃(z)aq(z) + [((1− λs)τ 3 + βτ4) π1(0)− κ(β)] aq(z)

]

λs(z − γ1)(z − γ2)aq(z)

+
[x(z)− x(γ1)] [(1− λs)τ3 + βτ4(1− λsz)] aq(z)

λs(z − γ1)(z − γ2) (1− λsz) aq(z)
.

Consider the numerators of the two terms on the right side of the equation above. Since a(z) is

by construction a rational analytic function on T ∪ D, aq(z) cannot have zeros on the unit circle.

Evaluating the numerator of the first term at z = limσi→∞ γ2 = 1, it vanishes. Consider the second

numerator

κ̃(z) ≡ [x(z)− x(γ1)] [(1− λs)τ3 + βτ4(1− λsz)] aq(z).

Taking limits as σi → ∞ yields

lim
σi→∞

τ3 =
σ2a
σ2p

lim
σi→∞

τ4 =
σ2u
σ2p

= 1− σ2a
σ2p
.

By continuity, we have

lim
σi→∞

κ̃(z) = aq(z) lim
σi→∞

[x(z)− x(γ1)] lim
σi→∞

[(1− λs)τ3 + βτ4(1− λsz)]

= aq(z)

[
α5(1− ξ)

αξ
(z − 1− λs

λs
)

] [
(1− λs)

σ2a
σ2p

+ β(1− σ2a
σ2p

)(1− λsz)

]
.
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Since a(z) is by construction a rational analytic function on T ∪D, aq(z) cannot have zeros on the

unit circle. It is then clear that the above limit cannot have zeros when evaluated at z = 1. This

completes the proof. Q.E.D.

Proof of Noise Normalization: We formally prove that

lim
σi→∞

V ar(qt) =

∥∥∥∥
π2(z)π1(z)

1− π2(z)

∥∥∥∥
2

H2

σ2u
σ2i

<∞,

after we normalize u(L) = π1(L)
σi

. Fix a σi ∈ (0,∞). We know that π2(z)π1(z)
1−π2(z)

= π1(z)
1−π2(z)

−π1(z) is in

H2(D) by Theorem 5. Using the triangle inequality,

∥∥∥∥
π2(z)π1(z)

1− π2(z)

∥∥∥∥
2

H2

σ2u
σ2i

≤
∥∥∥∥

π1(z)

1− π2(z)

∥∥∥∥
2

H2

σ2u
σ2i

+ ‖π1(z)‖2H2

σ2u
σ2i
.

Without loss of generality, we can write

π1(z) = c

∏n
i=1(1− ziz)∏m
j=1(1− zjz)

where c is some constant and the degree of m and n depends on the functional form of a(z). In

particular, the denominator will contain the roots of the quadratic polynomial P1(z). For simplicity,

we assume m > n and zj are distinct.15 Using the residue theorem, we know

‖π1(z)‖2H2

σ2u
σ2i

=
σ2u
σ2i

1

2πi

∮

T

|π1 (z)|2
dz

z
=

σ2u
σ2i c

2

1

2πi

∮

T

∏n
i=1(1− ziz)

∏n
i=1(1− ziz

−1)∏m
j=1(1− zjz)

∏m
j=1(1− zjz−1)

dz

z
.

Define the function

f(z) =

∏n
i=1(1− ziz)

∏n
i=1(1− ziz

−1)∏m
j=1(1− zjz)

∏m
j=1(1− zjz−1)z

=
zm−n−1

∏n
i=1(1− ziz)

∏n
i=1(z − zi)∏m

j=1(1− zjz)
∏m

j=1(z − zj)
.

It is clear that f(z) has isolated singularities insider the unit circle at z = z1, z2 . . .zj . The integral

can be evaluated as ∮

T

f(z)dz =

m∑

j=1

Res(f, zj),

where

Res(f, zj) = 2πi
zj

m−n−1
∏n

i=1(1− zizj)
∏n

i=1(zj − zi)∏m
k=1(1− zkzj)

∏
k 6=j(zj − zk)

.

By the continuous dependence of polynomial roots on coefficients and the partial fraction repre-

sentation of the complex integral, we know that the norm is continuous in σi. Now let σi → ∞, we

know by Theorem 5 and 6 that one real root zu in the denominator converges to 1. Taking limits,

we have

lim
σi→∞

‖π1(z)‖2H2

σ2u
σ2i

= lim
σi→∞

σ2u
σ2i c

2
Res(f, zu).

15In the case of m ≤ n or repeated zj , we need to modify the formula for the residues of higher-order poles.
However, the rest of the proof will remain the same.
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The rest of residuals are dominated by 1
σ2
i

and hence vanish. The limit can be written as

lim
σi→∞

σ2u
σ2i c

2
Res(f, zu) = lim

σi→∞

σ2u
σ2i c

2(1− z2u)

zm−n−1
u

∏n
i=1(1− zizu)

∏n
i=1(zu − zi)∏

k 6=u(1− zkzu)
∏

k 6=u(zu − zk)
.

The second component is clearly non-zero constant. The root zu is given by the quadratic equation

P1(z). Elementary asymptotic theory shows that (1− z2u(σi)) ∼ O(σ−2
i ). Therefore by definition,16

0 < lim
σ2
i→∞

σ2i (1− z2u) <∞

This ensures that the 0 < limσi→∞ ‖π1(z)‖2H2
σ2
u

σ2
i

< ∞. Similar argument can be used to show

that 0 < limσi→∞

∥∥∥ π1(z)
1−π2(z)

∥∥∥
2

H2

σ2
u

σ2
i

<∞. By continuity, take limit to the triangle inequality derived

before. The proof is then complete. In particular, in the limit the model still features persistent

dispersed information induced by the noise ut, but its volatility is normalized and hence finite.

Q.E.D.

E Proofs of Results in Section 4

Proof of Lemma 1: This is a standard result in the harmonic analysis of stationary time series.

Without loss of generality, we normalize the structural innovation to unity. Since H(z) is rational,

representing the ARMA (p,q) representation, the signal process is linear regular. By Lindquist and

Picci (2015), Theorem 4.2.1, fx(ω) is absolutely continuous, and has constant rank ` for almost all

ω ∈ [−π, π]. The proof of the spectral density can be found in standard textbooks such as Sargent

(1987) and Brockwell and Davis (2002), which in turn implies that fx(ω) is rational. The Hermitian,

normal, and non-negative definite property of the spectral density can be found in Rozanov (1967),

chapter 1. Brockwell and Davis (2002), p420 contains the covariance matrix generating function

formula for real-valued process. For complex-valued processes, the formula for Sx(z) follows from

Lippi and Reichlin (1994) and Bernhardt, Seiler, and Taub (2010). Finally, the non-negative definite

constant covariance matrix Ση can be decomposed, using the unitary eigen-decomposition (spectral

theorem), as

Ση = QηDηQ
∗
η,

where Qη is an unitary matrix (QηQ
∗
η = I) consisting of orthonormal eigenvectors of Ση, Dη is the

diagonal matrix containing eigenvalues of Ση. By the non-negativeness, all eigenvalues are real and

non-negative. Therefore, the normalization

Ĥ
(
e−iω

)
= H

(
e−iω

)
Qη

√
Dη

is well-defined and preserves the spectral density. Q.E.D.

16The asymptotic notation means that (1− z2u) and σ
−2
i has the same order of convergence rate. The proof of this

asymptotic result is lengthy and available upon request.
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Proof of Proposition 1: The proof is by construction. Since fx(ω) is rational, it has a constant,

maximal rank of ` except at a finite number of points on the unit circle T. To develop the triangular

factorization of the spectral density, we need the following lemma from Rozanov (1967) on rational

functions.

Lemma 10 Every non-negative (real) rational function f(ω) of e−iω can be represented in the form

f(ω) =
|P (e−iω)|2
|Q(e−iω)|2 =

P (e−iω)P (e−iω)

Q(e−iω)Q(e−iω)
=
P (z)P (z)

Q(z)Q(z)

for z ∈ T. The polynomial functions P (z) and Q(z) have no zeros in the open unit disk. If f

satisfies

f(ω) = f(−ω)

Then the coefficients of P (z) and Q(z) can be chosen all real.

Proof: See Rozanov (1967), Lemma 10.1. �

If we extend f(z) to be a complex function in the entire complex plane, the preceding lemma

implies that it can be factorized in a “symmetric” way such that if λi is a root for f(z), so is the

conjugate inverse 1/λi.

Now consider the ` × ` spectral density matrix fx(ω), by definition it is Hermitian, normal,

and non-negative definite for almost all ω. For simplicity, we drop the x subscript and write the f

matrix as

f(ω) =




f11 f12 ... f1`
f21 f22 ... f2`
...

...
. . .

...
f`1 f`2 ... f``


 .

Using the Sylvester’s criterion for the non-negative definite matrix, define the family of leading

principal minors as Mj(ω), j = 1, 2, ...`. By definition, Mj(ω) ≥ 0 a.e., and M1(ω) = f11 ≥ 0 a.e.

Next we implement elementary row operations on the matrix. Adding to the rth row (r =

2, 3, ...`) the first row, multiplied by − fr1
f11

, yielding

f(ω) =




f11 f12 ... f1`
0 f22 − f12

f21
f11

... f2` − f1`
f21
f11

...
...

. . .
...

0 f`2 − f12
f`1
f11

... f`` − f1`
f`1
f11



.

Similarly, adding to the jth column (j = 2, 3, ...`) from the first column multiplied by − f1j
f11

, we

have

f (2)(ω) =




f11 0 ... 0

0 f22 − f12
f21
f11

... f2` − f1`
f21
f11

...
...

. . .
...

0 f`2 − f12
f`1
f11

... f`` − f1`
f`1
f11



=



f11 0

0 g(2)


 ,
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where the elements of matrix g(2) = [g
(2)
rj ] have the form

g
(2)
rj = frj −

fr1f1j
f11

.

Notice that the diagonal element g
(2)
22 satisfies g

(2)
22 (ω) =

M2(ω)
M1(ω)

a.e. If we denote g(1) = f (1) = f ,

then f (2) is obtained by using the row-column transformations on f (1). Now consider the matrix

g(2),

g(2) =



f22 − f12

f21
f11

... f2` − f1`
f21
f11

...
. . .

...

f`2 − f12
f`1
f11

... f`` − f1`
f`1
f11


 .

we apply the same transformation for g(2) to eliminate its first row and column except the leading

coefficient, yielding

g(2) =



f22 − f12

f21
f11

0

0 g(3)




it is easy to verify that g
(3)
33 (ω) =

M3(ω)
M2(ω)

. We then arrive at a new `× ` matrix as

f (3)(ω) =




f11 0 0

0 f22 − f12
f21
f11

0

0 0 g(3)



.

Continue this process until we reach a diagonal matrix f (`)(ω), admitting the following form

f (`)(ω) =




h11
h22

. . .

h``


 .

It is easy to see that the diagonal elements are

h11(ω) =M1(ω),

hrr(ω) =
Mr(ω)

Mr−1(ω)
, r = 2, 3, ...`.

It follows that f(ω) admits the following LDU -like decomposition.

Lemma 11 The spectral density fx(ω) can be decomposed as

fx = g f (`) g∗
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where the matrix function g(ω) is lower triangular with diagonal elements equal to one,

g(ω) =




1 0 ... 0
g21 1 ... 0
...

...
. . .

...
g`1 g`2 ... 1


 .

The off-diagonal non-zero elements are defined as

grj =
g
(j)
rj

hjj
, r > j,

where g
(l)
rl is determined by the recursion

g
(1)
rj = frj,

g
(i)
rj = g

(i−1)
rj −

g
(i−1)
r,i−1 − g

(i−1)
i−1,j

g
(i−1)
i−1,i−1

, i = 2, 3, ...j.

Proof: Direct matrix multiplication will verify the result. �

Since the element of fx(ω) are rational functions, the matrix transformation implies that ele-

ments of g and f (`) are rational as well. Next we define

grj(ω) =
Prj(z)

Qrj(z)
,

where z = e−iω. We extend the definition of z to the entire complex plane, and fix a column

j ∈ {1, 2, ..., `}. Let α(j)
p , p = 1, 2, ..., denote the roots of the set of polynomials {Qrj(z) : r = 1, ..., `}

that are located inside the unit circle, counting multiplicities. Define

cj(z) =
∏

p

(z − α(j)
p ), Dj(z) =

hjj(z)

|cj(z)|2
.

Note that Dj(z) is non-negative by construction. We can use Lemma 10 to decompose Dj(z) as

Dj(z) =

∣∣∣∣
Φj(z)

Ψj(z)

∣∣∣∣
2

=
Φj(z)Φj(

1
z )

Ψj(z)Ψj(
1
z )

on the unit circle, where we can choose Φj(z) and Ψj(z) such that they have no zeros inside the

unit disk (when extending the definition of z to the entire complex plane). The second equality

follows from the real-coefficients assumption. If the polynomials have complex-valued coefficients,

we need to conjugate the coefficients accordingly.

Now set

Γ̃rj(z) = grj(z)cj(z)
Φj(z)

Ψj(z)
, r = 1, ..., `,
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where z = e−iω. Continuing this construction for all columns of g and using Lemma 11, we obtain

the desired matrix Γ̃(z) such that

fx(ω) = Γ̃
(
e−iω

)
Γ̃∗
(
e−iω

)
,

where all elements of the matrix function

Γ̃ (z) =




Γ̃11(z) 0 ... 0

Γ̃21(z) Γ̃22(z) ... 0
...

...
. . .

...

Γ̃`1(z) Γ̃`2(z) ... Γ̃``(z)




are analytic in the closed unit disk and hence in the H2 (D) space. This completes the proof by

construction. Q.E.D.

Proof of Proposition 2: By Proposition 1, we obtain

fx (ω) = Γ̃
(
e−iω

)
Γ̃∗
(
e−iω

)
.

The Beurling-Blaschke factorization theorem states that every Γ̃ (z) ∈ H2(D) can be written in the

form

Γ̃ (z) = Γ(z)Q(z), (E.1)

where Q(z) is an ` × ` matrix inner function. The proof of this theorem can be found in Rudin

(1987), Theorem 17.17. The matrix generalization of this theorem can be found in Lindquist and

Picci (2015), Theorem 4.6.5-4.6.8.17 The factorization is unique up to constant unitary matrices.18

Since Γ̃ (z) is rational, the outer function Γ(z) is also rational as well. A rational outer function is

completely characterized by the location of its zeros. That is, a rational function Γ(z) is an outer

function if and only if det(Γ(z)) 6= 0, ∀|z| < 1. Hence, the inner function Q(z) can be reduced to

the Blaschke matrices satisfying

Q(z) =
n∏

j=1

B̃j (z)Vj, (E.2)

where B̃j satisfies

B̃j (z) =




1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 .....
z−zj
1−z̄jz


 = B−1

j (z),

17Lindquist and Picci (2015) use the engineering definition of z = eiω so that the analytic region is reversed
comparing with this paper, but all analytic results remain valid.

18The conditional uniqueness corresponds only to orthonormal Wold innovations. In fact, given a Wold representa-
tion Xt = Γ(L)vt, the transformation Xt = Γ(L)ΣΣ−1vt is also Wold fundamental provided that the constant matrix
Σ is invertible. In this case, the Wiener-Hopf formula will be modified to contain Σ.
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and zj are zeros of det (Q (z)) or det
(
Γ̃ (z)

)
satisfying |zj| < 1. Here Vj are constant unitary

matrices. In other words, the singular part of the rational inner function is absent (see Rudin

(1987), Theorem 17.9 and Lindquist and Picci (2015), Theorem 4.6.11). Compared with the general

definition of the Blaschke factors, we implicitly assume there are no zeros at z = 0 and omit the

norm terms
z̄j
|zj |

since finite Blaschke products have no convergence issues.

Combining (E.1) and (E.2), we have

Γ(z) = Γ̃ (z)
n∏

j=1

V −1
j

[
B̃j (z)

]−1
= Γ̃ (z)

n∏

j=1

V −1
j Bj (z) .

Note that the Blacheke-inner function satisfies

Q(z)Q∗(z) = I, ∀|z| = 1,

on the unit circle. The spectral density is preserved under the factorization

Γ(z)Γ∗(z) = Γ̃ (z)
n∏

j=1

V −1
j Bj (z)

n∏

j=1

B∗
j (z) (V

−1
j )∗Γ̃∗ (z) = fx(ω),

where z = e−iω. Moreover, all zeros inside the unit disk are removed because

det(Γ(z)) = det(Γ̃ (z))

n∏

j=1

det(V −1
j )

n∏

j=1

1− z̄jz

z − zj

= Υ(z)
n∏

j=1

(z − zj)
n∏

j=1

det(V −1
j )

n∏

j=1

1− z̄jz

z − zj

= Υ(z)

n∏

j=1

det(V −1
j )

n∏

j=1

(1− z̄jz)

6= 0 ∀|z| < 1

where

Υ(z) =
det(Γ̃ (z))∏n
j=1(z − zj)

has no zeros inside the unit disk by construction. Unfortunately, the right multiplication of the

Blaschke matrices also brought poles (z = zj) for the element in the Γ̃ (z) matrix that has no inside

zeros. In order to maintain the analyticity inside the unit disk so that Γ(z) ∈ H2
`×`(D), we need to

get rid of these by-product poles. We remove these poles inside the unit disk by setting appropriate

constant unitary matrices Vj .

In practice, Vj can be obtained by the singular value decomposition in a sequential procedure.

For j = 1, we have

Γ1(z) = Γ̃ (z)V −1
1 B1(z)
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Without the constant unitary matrix V1, the matrix transformation

Γ̃ (z)B1(z) =




Γ̃11(z) 0 ... 0

Γ̃21(z) Γ̃22(z) ... 0
...

...
. . .

...

Γ̃`1(z) Γ̃`2(z) ... Γ̃``(z)







1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 ..... 1−z̄1z
z−z1


 .

It is clear the potential poles can only appear in the last column, if we assume that Γ̃``(z) has no

zeros at z = z1. To remove this pole, we follows Rozanov (1967) by employing the singular value

decomposition (SVD) for Γ̃ (z) at z = z1

Γ̃ (z1) = U1D1V1 = U1




λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ..... 0


V1.

By definition, the unitary matrices U1 and V1 are given by the (unitary) eigen-decomposition,

G(z1) = Γ̃ (z1) Γ̃
∗ (z1) = U1D̄1U

∗
1 ,

Ĝ(z1) = Γ̃∗ (z1) Γ̃ (z1) = V1D̂1V
∗
1 .

Such decomposition always exists as G(z1) and Ĝ(z1) are Hermitian and non-negative definite by

construction. The diagonal matrices D̄1 and D̂1 contains eigenvalues of G(z1) and Ĝ(z1), which are

not necessarily distinct. The diagonal matrix D1 in the SVD contains the singular values of Γ̃ (z).

The non-zero singular values {λ1, λ2, ...λp} are the square root of the non-zero eigenvalues of G(z1)

and Ĝ(z1), which are not necessarily distinct. Since we know that det(Γ̃ (z1)) = 0,

det(G(z1)) = det
(
Γ̃ (z1)

)
det
(
Γ̃ (z1)

∗
)
= 0.

Therefore, there exists at least one singular value in D1 that is zero, i.e. p < d.19 Now evaluate

Γ1(z) at z = z1,

Γ1(z1) = Γ̃ (z1)V
−1
1 B1(z1) = U1D1V1V

−1
1 B1(z1)

= U1




λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ..... 0







1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 ..... 1−z̄1z1
z1−z1


 .

Since the last column of D1 are identically zero, the pole at 1−z̄1z1
z1−z1

vanishes at z = z1. In other

words, Γ
(i,j)
1 (z1) <∞ are all well-defined without poles. On the other hand, condition (E.3) ensures

that zeros at z = z1 is removed as well.

19The rank loss generally depends on the multiplicity of zeros in det(Γ̃ (z1)).
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Now consider the second step j = 2,

Γ2(z) = Γ1 (z)V
−1
2 B2(z).

Without the constant unitary matrix V2,

Γ1 (z)B2(z) = Γ1 (z)




1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 ..... 1−z̄2z
z−z2




would have poles in the last column. Note that Γ1 (z) is no longer lower triangular after the first

step transformation. To remove these poles at z = z2, we employ the SVD again,

Γ2(z2) = Γ1 (z2)V
−1
2 B1(z2) = U2D2V2V

−1
2 B2(z2)

= U2




λ̃1 0 ... 0

0 λ̃2 ... 0
...

...
. . .

...
0 0 ..... 0







1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 ..... 1−z̄2z2
z2−z2


 ,

where {λ̃1, λ̃2, ...λ̃p̃} are the non-zero singular values. Again, there exists at least one zero in the

diagonal of D2 matrix (p̃ < d), since det(Γ1 (z2)) = 0. Arranging the zeros in the last positions

of the diagonal, it follows immediately that Γ
(i,j)
2 (z1) <∞ are all well-defined without poles, since

the last column of D2 are identically zero and the poles introduced by 1−z̄2z2
z2−z2

vanishes.

Continue this sequential procedure for all zj , it follows that Γ(z) is analytic (component wise)

at z = {z1, z2, ...zn} inside the unit disk. By (E.3), we conclude that Γ(z) is indeed Wold (outer)

spectral factor.

The above constructive proof can be trivially extended to the case with higher-order zeros, see

Rozanov (1967), p47. In particular, the location of the Blaschke factor
1−z̄jz
z−zj

(along the diagonal) is

inconsequential, as long as we put the zero in the corresponding diagonal position of Dj . Q.E.D.

A Working Example of 2×3 Signal System As a working example of the two-step factoriza-

tion method, we consider an alternative specification of the 2 × 3 signal system in Section 7. Let

the signal representation be

Xit = H(L)ηit ≡




1
1−ρaL

1 0

π1(L)
1−π2(L)

0 π1(L)
1−π2(L)






εat
εit
εut


 ,

where π1(L)
1−π2(L)

is an outer function in H2(D). In this case the first signal is ait = at + εi.
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Step 1: The spectral density fx(ω) is given by

fx(ω) ≡
[

1
(1−ρaz)(1−ρaz

−1)
σ2a + σ2i

π1(z−1)
(1−ρaz)(1−π2(z−1))

σ2a
π1(z)

(1−ρaz
−1)(1−π2(z))

σ2a
π1(z)π1(z−1)

(1−π2(z))(1−π2(z−1))
[σ2a + σ2u]

]
,

where z = e−iω. The leading principal minors are given by

M1(ω) = f11(ω) =
(1− λwz)(1 − λwz

−1)

(1− ρaz)(1 − ρaz
−1)

σ2w,

M2(ω) = det(fx(ω)) =
π1(z)π1(z

−1)

(1− π2(z))(1 − π2(z−1))(1− ρaz)(1 − ρaz
−1)

[
σ2g(1− λw)(1− λwz

−1)− σ4a
]
,

where we define σ2p = σ2a + σ2u and σ2g = σ2wσ
2
p. Using Lemma 10,

σ2g(1− λw)(1 − λwz
−1)− σ4a = σ2h(1− λhz)(1 − λhz

−1).

The new parameters σh and λh satisfy

λh =
λwσ

2
g

σ2h
, σ2h(1 + λ2h) = σ2g(1 + λ2w)− σ4a.

In particular, we can pick a real λh ∈ (0, 1). Then the spectral density admits the following

decomposition,

fx(ω) =

[
1 0

g21(ω) 1

] [
h11(ω) 0

0 h22(ω)

] [
1 g∗21(ω)
0 1

]
.

The diagonal elements h11 and h22 are given by

h11(ω) =M1(ω), h22(ω) =
M2(ω)

M1(ω)
.

In addition, we use the recursion formula to get g21(ω) =
g
(1)
21
h11

= f21
h11

. Therefore,

g21(ω) =
σ2a
σ2w

π1(z)(1 − ρaz)

(1− π2(z))(1 − λwz)(1− λwz−1)
.

Now fix the first column j = 1, we know the only inside pole is at z = λw in g21. This implies

C1(z) = (z − λw), D1(z) =
h11(z)

|C1(z)|2
=

∣∣∣∣
Φ1(z)

Ψ1(z)

∣∣∣∣
2

.

Hence Φ1(z)
Ψ1(z)

= σw

1−ρaz
. This in turn implies

Γ̃11(z) = g11C1(z)
Φ1(z)

Ψ1(z)
= σw

z − λw
1− ρaz

,

Γ̃21(z) = g21C1(z)
Φ1(z)

Ψ1(z)
=
σ2a
σw

π1(z)z

(1− π2(z))(1 − λwz)
.
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We repeat this procedure for the second column. Notice that the second column of g are constants,

therefore, C2(z) = 1 and Φ2(z)
Ψ2(z)

= σh

σw

π1(z)(1−λhz)
(1−π2(z))(1−λwz) . In the end, we obtain the lower-triangular

matrix

Γ̃(z) =

[
σw

z−λw

1−ρaz
0

σ2
a

σw

π1(z)z
(1−π2(z))(1−λwz)

σh

σw

π1(z)(1−λhz)
(1−π2(z))(1−λwz)

]
.

clearly, Γ̃(z) ∈ H2
2×2(D).

Step 2: We remove the inside zeros at z = λw to achieve the Wold fundamentality. Using the

Blaschke factorization, we have

Γ(z) = Γ̃(z)V −1
1 B(z),

where

B(z) =

[
1 0

0 1−λwz
z−λw

]

and V1 satisfies the unitary eigen-decomposition of Ĝ(λw) = Γ̃∗ (λw) Γ̃ (λw) = V1D̂1V
∗
1 . It is easy

to check that eigenvalues of Hermitian matrix Ĝ(λw) are distinct. Therefore, we can pick two

eigenvectors from the two eigenvalues, which are necessarily orthogonal by the spectral theorem.

Normalizing these two eigenvectors yields the unitary matrix as desired,

V1 =



√

h2

1+h2

√
1

1+h2√
1

1+h2 −
√

h2

1+h2


 ,

where h = σ2
a

σh

λw

(1−λhλw) . The resulting matrix Γ(z) is the Wold fundamental matrix

Γ(z) =




σw
z−λw

1−ρaz
V

(11)
1 σw

1−λwz
1−ρaz

V
(12)
1

π1(z)
1−π2(z)

σhV
(12)
1

σw

π1(z)
1−π2(z)

V
(12)
1 σ2

a

σw(1−λhλw)


 .

Finally, we can transform Γ(z) into an upper triangular form by right multiplication of another

unitary matrix V2,

V2 =



√

1
1+x2

√
x2

1+x2

−
√

x2

1+x2

√
1

1+x2


 ,

where x = σh(1−λhλw)
σ2
a

. After some algebraic simplifications, we obtain

Γ(z) =




σh

σp

1−λhz
1−λwz

σ2
a

σp

1
1−ρaz

0 π1(z)
1−π2(z)

σp


 .

Assuming that π1(z)
1−π2(z)

has no roots in the open unit disk, we then obtain the Wold representation.

Given the signal system in this example, we have shown that the results in Section 7 still hold. The

analysis is significantly more complicated and available upon request.
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F Additional Algebra in Section 6

Derivation of Equation (C.1): We follow the procedure in the proof of Proposition 1 and take

the special case of ` = 1. Here

Xit = ait =
[

1
1−ρaL

1
] [ εat

εit

]
.

By Lemma 1, the autocovariance generating function of the univariate signal Xit is given by

Sx(z) =
σ2a

(1− ρaz)(1 − ρa
1
z )

+ σ2i =
σ2a + σ2i (1− ρaz)(1− ρa

1
z )

(1− ρaz)(1 − ρa
1
z )

.

By definition, the corresponding spectral density fx(ω) on |z| = 1 is real-valued and non-negative.

Since the signal process is real-valued, we can use Lemma 10 to decompose fx (ω) as
20

fx(ω) = σ2w
(1− λwz)(1 − λw

1
z )

(1− ρaz)(1 − ρa
1
z )
, z = e−iω,

where σ2w is the variance-covariance term in the spectral density or the Wold innovation variance.

We now determine σ2w and λw.

The numerator of Sx (z) is equal to

σ2a + σ2i (1− ρaz)(1− ρa
1

z
)

= −σ2i ρaz − σ2i ρaz
−1 + [σ2a + σ2i (1 + ρ2a)]

= σ2w(1− λwz)(1 − λw
1

z
)

= −λwσ2wz − σ2wλwz
−1 +

(
1 + λ2w

)
σ2w.

Matching coefficients yields

σ2wλw = ρaσ
2
i , σ2w(1 + λ2w) = σ2a + σ2i (1 + ρ2a).

Solving these two equations yields (C.2) and (C.3), where we define τ = σ2a/σ
2
i . It is easy to check

that 0 < λw < ρa < 1.

Now we obtain the Wold fundamental representation Xit = Γ (L) vit, where vit is the Wold

innovation with zero mean and unit variance and

Γ(z) = σw
(1− λwz)

(1 − ρaz)
.

Note that the Wold fundamental representation is unique up to constant unitary matrices. Q.E.D.

20The real-valued process implies real coefficients for polynomials. For higher-order polynomials, roots can be
complex, but complex roots must come in conjugate pairs implied by the complex conjugate theorem. We use this
fact in subsequent proofs.
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Derivation of Equation (C.6): By the Weiner-Hopf prediction formula, Eit[yt] = ay(L)ait,

where

ay (z) =

[
Sya (z) Γ

−1

(
1

z

)]

+

Γ−1 (z) . (F.1)

It follows from (C.1) that

Γ(z) = σw
(1− λwz)

(1 − ρaz)
. (F.2)

Since [
yt
ait

]
=

[
My(L) 0

1
1−ρaL

1

] [
εat
εit

]
,

we can compute that

Sya(z) =My(z)
σ2a

1− ρa/z
.

We compute

ψ(z) ≡ Syx(z)

Γ(1z )
=
σ2a
σw

zMy(z)

z − λw
.

The complex function ψ(z) has a first-order pole at z = λw < 1. Following Hansen and Sargent

(1980), the annihilation operation is given by

[ψ(z)]+ = ψ(z)− P1(z),

where

P1(z) =
−1∑

n=−∞

an(z − λw)
n

is the principal part of the Laurent series expansion of ψ(z) in some annulus 0 < |z − λw| < R∗

around the point z = λw.
21 Since we only have a first order pole, P1(z) = a−1(z − λw)

−1 = a−1

z−λw
.

Using the inverse Laurent series formula and the residue theorem in complex analysis

a−1 =
1

2πi

∮

L

ψ(z)

(z − λw)−1+1
dz =

1

2πi

∮

L
ψ(z)dz

= Res (ψ, λw) = lim
z→λw

(z − λw)ψ(z) =
σ2a
σw

λwMy(λw),

where L refers to any circle centered at z = λw that is inside the annulus. It follows immediately

that

[ψ(z)]+ = ψ(z) − P1(z) = ψ(z)− σ2a
σw

λwMy(λw)

z − λw

=
σ2a
σw

[
zMy(z)

z − λw
− λwMy(λw)

z − λw

]
.

Substituting the last equation and (F.2) into (F.1) yields (C.6). By inspection ay(z) is analytic

inside the unit disk, including z = λw. Q.E.D.

21Hansen and Sargent (1980)’s method requires some restrictions on the isolated singularities of ψ(z). In particular,
a common region of convergence (analytic region) is needed for the numerator and denominator of ψ(z). In our model
with ARMA (p,q) shocks, these restrictions are satisfied using Corollary 2.4 on rational functions.
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Derivation of Equation (C.20): First, we compute the expectation terms in equation (24),

using the approach in Section 4. We have shown in (C.1) that ait = Γ (L) vit, where

Γ (z) = σw
1− λwz

1− ρaz
.

We can derive the following covariance generating functions

Ssa(z) = σ2iM
i
s(z), Sba(z) = σ2a

Mb(z)

1− ρa/z
+ σ2iM

i
b(z),

Sqa(z) = σ2a
Mq(z)

1− ρa/z
, Sda(z) = σ2a

Md(z)

1− ρa/z
,

where we have used the frequency domain representations (38), (39),

bit =Mb(L)εat +M i
b(L)εit, and dt =Md(L)εat.

Using equilibrium conditions (22), (25), and (26), we can derive that

Md (z) =

(
1

α6
− α7

αα6

)
My (z) +

α7

αα6

1

1− ρaz
,

Mb (z) = α4

[(
1

α6
− α7

αα6

)
My (z) +

α7

αα6

1

1− ρaz

]
+ α5

[
My (z)

α
− 1

α (1− ρaz)

]
,

M i
b (z) =

α5

α

[
M i

y(z)− 1
]
.

We compute the conditional expectation about the future shareholdings using the Wiener-Hopf

formula, Eit

[
shit+2

]
= as(L)ait, where

as(z) =

[
Ssa(z)

zΓ(z−1)

]

+

1

Γ(z)
≡ [ψs(z)]+

1

Γ(z)
.

We can compute the annihilation as

[ψs(z)]+ =

[
σ2i
σw

M i
s(z)(z − ρa)

z(z − λw)

]

+

= ψs(z) −
ϕs(λw)

z − λw
− ϕs(0)

z
,

where the functional constants are determined using the residual theorem

ϕs(λw) =
σ2i
σw

M i
s(λw)

(λw − ρa)

λw
, ϕs(0) =

σ2i
σw

M i
s(0)

ρa
λw

.

Similarly, we can compute that

Eit [qt+1] = aq(L)ait, Eit [dt+1] = ad(L)ait,

where

aq(z) =

[
Sqa(z)

zΓ(z−1)

]

+

1

Γ(z)
≡
[
ψq(z)

]
+

1

Γ(z)
,

ad(z) =

[
Sda(z)

zΓ(z−1)

]

+

1

Γ(z)
≡ [ψd(z)]+

1

Γ(z)
.
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The annihilation is given by

[
ψq(z)

]
+
=

[
σ2a
σw

Mq(z)

z − λw

]

+

= ψq(z) −
ϕq(λw)

z − λw
,

[ψd(z)]+ =

[
σ2a
σw

Md(z)

z − λw

]

+

= ψd(z)−
ϕd(λw)

z − λw
,

where

ϕq(λw) =
σ2a
σw

Mq(λw), ϕd(λw) =
σ2a
σw

Md(λw).

Finally, we derive Eit [∆bit+1] = ab(L)ait, where the Weiner-Hopf prediction formula gives

ab(z) =

[
(z − 1)Sba(z)

zΓ(z−1)

]

+

1

Γ(z)
≡ [ψb(z)]+

1

Γ(z)
,

with

ψb(z) =
(z − 1)

[
σ2azMb(z) + σ2i (z − ρa)M

i
b(z)

]

σwz(z − λw)
.

The annihilation is given by

[ψb(z)]+ = ψb(z) −
ϕb(λw)

z − λw
− ϕb(0)

z
,

where

ϕb(λw) =
(λw − 1)

[
σ2aMb(λw)λw + σ2iM

i
b(λw)(λw − ρa)

]

σwλw
,

ϕb(0) = −σ
2
iM

i
b(0)ρa

σwλw
.

Now rewriting (27) in the frequency domain using the preceding expressions and matching

coefficients, we obtain

(1− ρaz)Mq(z) =

{
α3

[
ψs(z) −

ϕs(λw)

z − λw
− ϕs(0)

z

]
+

[
(z − 1)Sba(z)

zΓ(z−1)

]

+

+ β

[
ψq(z)−

ϕq(λw)

z − λw

]
+ (1− β)

[
ψd(z)−

ϕd(λw)

z − λw

]}
1

Γ(z)
,

where we have invoked the LLN so that the cross-sectional aggregation eliminates the idiosyncratic

innovations. Multiplying Γ(z) on the two sides of the above equation, and using (40) and

α3

α1
= 1− α2

α1
= 1− λs (by Appendix A),

we can rewrite the preceding equation for Mq (z) as (C.20), where

Gq(z) = (1− λwz)− σm
(z − ρa)(1 − ρaz)

z(z − λw)(1 − λsz)
− σβ
z − λw

≡ Pq(z)

Qq(z)
,

and the expressions and variables surrounding equation (C.20) are defined in the text. Q.E.D.
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G Frequency Domain Methods

In this section we introduce some mathematical background for the frequency domain methods.

We study casual covariance stationary real-valued equilibrium processes that have an MA(∞)

representation. For example, the aggregate output process in the model of Section 3 can be written

as

yt =
∞∑

j=0

Mjεa,t−j , (G.1)

where {Mj}∞j=0 is square summable, i.e.,
∑∞

j=0 |Mj |2 < ∞. Solving for the infinite sequence of

{Mj}∞j=0 is a daunting task. The idea of the frequency domain method is to transform this problem

into an equivalent problem of solving for an analytical function in the Hardy space. To define this

space, we recall that C denotes the complex plan, T denotes the unit circle, and D denotes the open

unit disk.

Definition 2 The Hardy space H2 (D) is the class of analytical functions g on the unit disk D

satisfying {
1

2π
sup

0≤r<1

∫ π

−π

∣∣g
(
reiω

)∣∣2 dω
}1/2

<∞.

It can be verified that the expression on the preceding inequality defines a norm on H2 (D) ,

denoted as ‖g‖
H2 . The Hardy space can also be viewed as a certain closed vector subspace of the

complex L2 space for the unit circle T. This connection is provided by the fact that the radial limit

g̃
(
eiω
)
= lim

r↑1
g
(
reiω

)

exists for almost all ω ∈ [−π, π] . The function g̃ belongs to the space L2 (T) of functions f : T → C

with the inner product

< f1, f2 >=
1

2π

∫ π

−π
f
(
eiω
)
f2 (eiω)dω, f1, f2 ∈ L2 (T) .

Then we have

‖g‖
H2 = ‖g̃‖L2 = lim

r↑1

{
1

2π

∫ π

−π

∣∣g
(
reiω

)∣∣2 dω
}1/2

<∞.

Denote by H2 (T) the vector subspace of L2 (T) consisting of all limit functions g̃, when g varies

in H2 (D).

Theorem 7 (Katznelson 1976) f ∈ H2 (T) if and only if f ∈ L2 (T) and f̂n = 0 for all n < 0 ,

where f̂n is the Fourier coefficient of a function f integrable on the unit circle,

f̂n =
1

2π

∫ π

−π
f
(
eiω
)
e−iωndω, n = 0,±1,±2, ....
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Suppose that g̃ ∈ H2 (T) and g̃ has Fourier coefficients {an} with an = 0 for all n < 0. We

define

g (z) =

∞∑

n=0

anz
n, |z| < 1.

The following theorem ensures g ∈ H2 (D) . Thus we have a bijection between H2 (D) and H2 (T) .

Theorem 8 If f (z) is an analytic function in D and its Laurent expansion is

f (z) =

∞∑

n=0

bnz
n,

then f ∈ H2 (D) if and only if {bn}∞n=0 is square summable, i.e.,
∑∞

n=0 |bn|
2 < ∞. When this

condition is satisfied
∞∑

n=0

|bn|2 = ‖f‖
H2 .

We call the map from the sequence {bn}∞n=0 to f (z) a z-transform. Theorem 8 also allows

us to give an equivalent definition of the Hardy space H2 (D) as the class of analytical functions

f : D → C, which are the z-transforms of some square summable sequences. Thus solving for

{Mj}∞j=0 in (G.1) is equivalent to solving for a function M (z) in the hardy space H2 (D) . In

particular, we can write yt = M (L) εat, where M (z) ∈ H2 (D) is the object we will solve for. We

can use Theorem 8 to compute the variance of yt easily because

V ar (yt) = σ2a

∞∑

j=0

M2
j = σ2a ‖M (z)‖

H2 .

Finally, a rational function f(z) ∈ H2(D) if and only if f(z) is analytic in the boundary D. In

other words, poles are not allowed on the unit circle.
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