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Optimal Capital Structure
and Industry Dynamics

JIANJUN MIAO∗

ABSTRACT

This paper provides a competitive equilibrium model of capital structure and industry
dynamics. In the model, firms make financing, investment, entry, and exit decisions
subject to idiosyncratic technology shocks. The capital structure choice reflects the
tradeoff between the tax benefits of debt and the associated bankruptcy and agency
costs. The interaction between financing and production decisions influences the sta-
tionary distribution of firms and their survival probabilities. The analysis demon-
strates that the equilibrium output price has an important feedback effect. This effect
has a number of testable implications. For example, high growth industries have rel-
atively lower leverage and turnover rates.

THE INTERACTION BETWEEN CAPITAL STRUCTURE and product market decisions has
recently received considerable attention in both economics and finance. Begin-
ning with Brander and Lewis (1986, 1988) and Maksimovic (1988), a growing
number of theoretical papers investigate this interaction. In addition, many em-
pirical studies (Chevalier (1995a, 1995b), Phillips (1995), Kovenock and Phillips
(1997), Maksimovic and Phillips (1998), Zingales (1998), Lang, Ofek, and Stulz
(1996), Mackay and Phillips (2004)) examine the relation between capital struc-
ture and firm entry, exit, investment and output decisions.1 These studies gen-
erally document the following:

(1) Industry output is negatively associated with the average industry debt
ratio.

(2) Plant closings are positively associated with debt and negatively associ-
ated with plant-level productivity.

(3) Firm entry is positively associated with debt of incumbents.
(4) Firm investment is negatively associated with debt.
(5) There is substantial inter- and intra-industry variation in leverage.
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Jacob Sagi, Nancy Stokey, Sheridan Titman, and Neng Wang for helpful comments. I am also
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and suggestions.

1 Early studies that relate the cross-sectional behavior of leverage to industry characteristics
include Bradley, Jarrell, and Kim (1984) and Titman and Wessels (1988), among others.
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It is well known that debt causes the underinvestment and asset substitution
problems identified by Myers (1977) and Jensen and Meckling (1976). How-
ever, it is important to emphasize that simply taking leverage as an exogenous
regressor may be misleading. This is because rational firms may anticipate
the effect of leverage on product/input market behavior so that the latter may
influence capital structure choices. This endogeneity problem makes the in-
terpretation of the above empirical evidence controversial. As pointed out by
Zingales (1998, p. 905), “in the absence of a structural model we cannot deter-
mine whether it is the product market competition that affects capital structure
choices or a firm’s capital structure that affects its competitive position and its
survival.”

The main contribution of my paper is to fill this theoretical gap by pro-
viding an industry equilibrium model in which capital structure choices and
production decisions are simultaneously influenced by the same exogenous
factors. The second contribution of my paper is related to industrial organi-
zation. Many empirical studies in industrial organization have documented
cross-industry differences in firm turnover. However, little theoretical re-
search has been devoted to understanding the impact of financing policies
on firm turnover.2 The present paper adds to this literature both by show-
ing how the interaction between financing and production decisions influ-
ences firm turnover and by providing new testable predictions regarding its
determinants.

The basic structure of the model is as follows. The model features a con-
tinuum of firms facing idiosyncratic technology shocks. These firms are con-
trolled by shareholders and make financing, entry, exit, and production deci-
sions. The capital structure choice is modeled by incorporating approaches of
Modigliani and Miller (1958, 1963), Kraus and Litzenberger (1973), and Jensen
and Meckling (1976).3 Moreover, this choice reflects the equilibrium interac-
tion between financing and production/investment decisions. Specifically, pro-
duction/investment decisions are chosen to maximize equity value after debt
is in place so that shareholder–bondholder conflicts lead to agency costs as
in Jensen and Meckling (1976) and Myers (1977).4 The initial capital struc-
ture choice, made ex ante, trades off the tax benefits of debt versus the associ-
ated bankruptcy and agency costs. Thus, the model departs from the standard
Modigliani–Miller framework.

In a long-run stationary industry equilibrium, there is a stationary distri-
bution of surviving firms. These firms exhibit a wide variation of leverage.

2 See Caves (1998) for a survey of the empirical literature on firm turnover. See Jovanovic (1982),
Hopenhayn (1992a, 1992b), and Ericson and Pakes (1995) for important theoretical models of
industry dynamics. All these papers assume that firms are all-equity financed.

3 See Harris and Raviv (1991) for a survey of the theory of capital structure. They point out that
“with regard to further theoretical work, it appears that models relating to products and inputs are
underexplored, while the asymmetric information approach has reached the point of diminishing
returns.” (pp. 299–300)

4 I do not consider conflicts between shareholders and managers. Morellec (2004) examines these
conflicts in a contingent claims framework.
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Furthermore, all industry-wide equilibrium variables are constant over time,
although individual firms are continually adjusting, with some of them expand-
ing, others contracting, some starting up, and others closing down.

I derive a closed-form solution for the unique stationary equilibrium so that
the model can be analyzed tractably. I also study the effects on the equilibrium
of changes in growth of technology, riskiness of technology, starting distribution
of technology, fixed operating cost, entry cost, bankruptcy cost, and corporate
tax.

I now highlight the main mechanism operating in the model by an example.
Consider the effect of an increase in technology growth in a risk-neutral envi-
ronment. First, this increase has a cash flow effect, in the sense that operating
profits are higher. It also has an option effect in the sense that it changes the
expected appreciation in the value of the option to default. These two effects
raise firm value and the benefit of remaining active. Thus, the firm is less likely
to default, and has lower expected bankruptcy costs. The standard single-firm
tradeoff theory then predicts that the firm should issue more debt. However,
the prediction that high growth firms have high leverage is refuted by many
empirical studies (see Rajan and Zingales (1995), Barclay, Morellec, and Smith
(2002), and references cited therein).

In the present industry equilibrium model, there is an important price
feedback effect associated with an increase in technology growth. That is,
potential entrants will anticipate increased firm value and hence prefer to
enter the industry. As a result, product market competition causes the out-
put price to fall. The decreased output price influences the firm’s financing
and liquidation/exit decisions. In particular, in contrast to standard single-
firm tradeoff models, this feedback effect may dominate so as to raise exit
probabilities, lower coupon payments, and lower the average industry leverage
ratio.

The model also has important implications for industry dynamics. Specifi-
cally, an increase in the rate of technology growth and the induced increase in
the exit threshold have a selection effect in that the stationary distribution of
surviving firms changes. This selection effect causes inefficient firms to exit
and be replaced by new entrants, thereby leading to higher industry output
and a lower turnover rate.

The present paper relates to three strands of literature. One strand begin-
ning with Black and Scholes (1973) and Merton (1974) is in the framework of
dynamic contingent claims analysis. Brennan and Schwartz (1984), Mello and
Parsons (1992), Mauer and Triantis (1994), and Titman and Tsyplakov (2002)
analyze the interaction between investment and financing decisions using nu-
merical methods. Dixit (1989) studies entry and exit decisions under all-equity
financing. Leland (1994, 1998), Leland and Toft (1996), Goldstein, Ju, and Le-
land (2001), and Morellec (2001) analyze corporate asset valuation and optimal
capital structure using analytical methods. All these models consider a single-
firm environment. Under perfect competition, Leahy (1993) analyzes entry and
exit under all equity financing in an industry equilibrium framework. Fries,
Miller, and Perraudin (1997) generalize Leahy’s model and study how entry
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and exit affect corporate asset valuation and capital structure.5 Lambrecht
(2001) analyzes the impact of debt financing on entry and exit in an oligopoly
environment.

Another strand is based on the framework developed by Hopenhayn (1992a,
1992b) and Hopenhayn and Rogerson (1993), where the concept of stationary
equilibrium is introduced to analyze industry dynamics. Dixit and Pindyck
(1994, Chapter 8) study industry investment in a similar framework. They as-
sume firms exit the industry exogenously through sudden deaths. Most papers
in this strand assume that firms are all-equity financed. Cooley and Quadrini
(2001) introduce capital structure decisions into this framework and study
how financial frictions account for the negative dependence of firm dynam-
ics (growth, job reallocation, and exit) on size and age. They assume exoge-
nous exit and consider standard one-period debt contracts based on asymmetric
information.

The third strand of literature is based on strategic models. Some papers in
this strand (Brander and Lewis (1986, 1988) and Maksimovic (1988)) argue
that product market competition becomes “tougher” when leverage increases,
while others (e.g., Poitevin (1989), Bolton and Scharfstein (1990), Dasgupta
and Titman (1998)) reach the opposite conclusion. Since most models in this
strand are essentially static, it seems that they are not suitable to address the
questions of industry dynamics and corporate asset valuation.

My model combines elements of the first two strands of literature. In particu-
lar, I incorporate capital structure decisions into the framework of Hopenhayn
(1992a), using the contingent claims analysis. This allows me to derive a
number of new predictions regarding the relation between leverage and firm
turnover. My model is also closely related to Fries et al. (1997) and Lambrecht
(2001). Unlike Lambrecht (2001), I study perfectly competitive industries. In
addition, unlike these two papers, where uncertainty comes from aggregate in-
dustry demand shocks, I assume that firms face idiosyncratic technology shocks
as in Hopenhayn (1992a). The basic intuition behind the difference between
firm-specific shocks and industry-wide shocks is explained in Dixit and Pindyck
(1994, Chapter 8).

The remainder of the paper is organized as follows. Section I sets up the
model. Section II studies a single firm’s optimal capital structure choice in an
industry setting. Section III derives closed-form solutions for the unique equi-
librium. Section IV analyzes properties of the equilibrium. Section V concludes.
Technical details are relegated to appendices.

I. The Model

Consider an industry consisting of a large number of firms. Suppose infor-
mation is perfect and all investors are risk neutral and discount future cash

5 Maksimovic and Zechner (1991) present a three-period industry equilibrium model in which
firms can adopt different technologies. They do not study entry and exit decisions. See Williams
(1995) for an extension in a four-period model.
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flows at a constant risk-free rate r > 0. The assumption of risk neutrality does
not lose any generality. If agents are risk averse, the analysis may be conducted
under the risk-neutral measure (see Harrison and Kreps (1979)).

Time is continuous and varies over [0, ∞). Uncertainty is represented by
a probability space (�, F , P) over which all stochastic processes are defined.
The objective is to study long-run stationary industry equilibria in which all
industry-wide aggregate variables are constant (see Section I.D for a formal
definition). In particular, the equilibrium output price is constant, and there is
an equilibrium stationary distribution of surviving firms.

A. Industry Demand

Industry demand is given by a decreasing function. For simplicity, take the
following iso-elastic functional form:

p = Y − 1
ε , (1)

where p is the output price, Y is the industry output, and ε > 0 is the price
elasticity of demand.

B. Firms

There is a continuum of firms. Firms behave competitively, taking prices of
output and input as given. At each date, each firm suffers independently exoge-
nous death under the Poisson process with parameter η > 0. This assumption
captures the fact that some firms exit the industry for reasons that are not
related to bankruptcy. In addition, it is important to ensure the existence of a
stationary distribution of firms, since the technology shock is a nonstationary
process, as I describe next.

B.1. Technology

Each firm rents capital at the rental rate R to produce output with the produc-
tion function F : R+ → R+, F (k) = kν , where ν ∈ (0, 1). The decreasing-returns-
to-scale assumption ensures that the firm’s profit is positive so that the decision
problem of entry and exit studied below is meaningful. Capital depreciates con-
tinuously at a constant rate δ > 0. Thus, the rental rate R is equal to r + δ.

Firms are ex ante identical in that their technology or productivity shocks
are drawn from the same distribution. They differ ex post in the realization of
idiosyncratic shocks. Suppose that there is no aggregate uncertainty, and a law
of large numbers for a continuum of random variables is such that industry
aggregates are constant (see Judd (1985), Feldman and Gilles (1985), and Miao
(2004) for discussion in the discrete time case).

For an individual firm, the technology shock process (zt)t≥0 is governed by a
geometric Brownian motion
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dzt/zt = µz dt + σz dW t , (2)

where µz and σz are positive constants. Here (Wt)t≥0 is a standard Brownian
motion representing firm-specific uncertainty.

B.2. Profit Function

At each time, each firm incurs a fixed operating cost cf > 0 to produce output.
Corporate income is taxed at the rate τ with full loss-offset provisions.6 Define
the after-tax profit function � as

�(z; p) = max
k≥0

(1 − τ )(pz F (k) − δk − c f ) − rk. (3)

Note that according to the U.S. tax system, the depreciation of capital is tax-
deductible, but the interest cost of capital is not. Profit maximization implies
the following neoclassical investment rule:

pz F ′(k) = r/(1 − τ ) + δ. (4)

That is, the marginal product of capital is equal to the tax-adjusted user cost of
capital. Using this equation, one can solve for the capital demand and output
supply

k(z; p) = zγ

(
pν

r/(1 − τ ) + δ

)γ

,

y(z; p) = z F (k(z; p)) = zγ

(
pν

r/(1 − τ ) + δ

)νγ

, (5)

where I define

γ ≡ 1
1 − ν

. (6)

Substituting the above equations into (3) yields the after-tax profit function

�(z; p) = (1 − τ )
[
a(p)zγ − c f

]
, (7)

where

a(p) ≡ pγ (1 − ν)
(

ν

r/(1 − τ ) + δ

)νγ

. (8)

It is convenient to define the before-tax profit function

π (z; p) ≡ a(p)zγ − c f . (9)

This function will be used repeatedly below.

6 I abstract from personal taxes in the paper.
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B.3. Debt Contracts

Because interest payments to debt are tax deductible, each firm has an in-
centive to issue debt. In order to stay in a time-homogenous environment, I
consider debt contracts with infinite maturity, as in Leland (1994) and Duffie
and Lando (2001). Debt is issued at par. The debt contract specifies a perpet-
ual flow of coupon payments b to bondholders. The remaining cash flows from
operation accrue to shareholders. If the firm defaults on its debt obligations, it
is immediately liquidated. Upon default, bondholders get the liquidation value
and shareholders get nothing.

B.4. Liquidation Value

Suppose that debt reorganization is so costly that after default the firm is
immediately liquidated and exits the industry.7 I model liquidation value as a
fraction α ∈ (0, 1) of the unlevered firm value A(z; p). The remaining fraction
accounts for bankruptcy costs. One can model liquidation value as a general
function of the output price X(p) as in Fries et al. (1997). Here, I follow Mello
and Parsons (1992). Unlevered firm value is equal to the after-tax present value
of profits, plus the option value associated with abandonment opportunities.
Normalize the abandonment value of the firm to zero. The firm then chooses
an abandonment time T so that unlevered firm value can be formally described
as

A(z; p) = (1 − τ ) sup
T∈T

Ez
[∫ T

0
e−(r+η)tπ (zt ; p) dt

]
, (10)

where the maximization is over the set T of all stopping times relative to the
filtration generated by the Brownian motion (Wt)t≥0, Ez is the expectation op-
erator for the process (zt)t≥0 starting at z, and the factor e−ηt accounts for the
possibility of Poisson deaths.

B.5. Investment and Liquidation Decisions

At each date t, after servicing coupon payments b, residual cash flows
(1 − τ )(pztF(kt) − δkt − cf − b) − rkt are distributed to shareholders as divi-
dends. Shareholders select the investment and default policy to maximize the
value of their claims, taking price p as given. Assume that default is triggered
by the decision of shareholders to cease raising additional equity to meet the
coupon payment, as in Mello and Parsons (1992), Leland (1994), Fries et al.
(1997), Lambrecht (2001), and Duffie and Lando (2001).

The following problem describes the investment and liquidation decisions
made by a typical firm with the current level of technology shock z and coupon
payment b:

7 This assumption could be relaxed by allowing debt to be reorganized through, for example, debt
exchange offers as in Mella-Barral (1995) and Lambrecht (2001). This kind of analysis is, however,
beyond the scope of this paper.
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e(z, b; p)

= sup
(kt )t≥0,T∈T

Ez
{∫ T

0
e−(r+η)t [

(1 − τ )
(
pzt F (kt) − δkt − c f − b

) − rkt
]

dt
}

.

(11)

Using the previously defined before-tax profit function, one can rewrite this
problem as

e(z, b; p) = sup
T∈T

(1 − τ ) Ez
[∫ T

0
e−(r+η)t(π (zt ; p) − b) dt

]
, (12)

where π (zt; p) is given in (9). The expression e(z, b; p) represents the equity value
of the firm. Since one can show that it is increasing in z, the default decision is
described by a trigger policy whereby the firm is immediately liquidated and
exits the industry once its technology shock (zt)t≥0 falls below an endogenously
determined threshold zd(b; p) (see Duffie and Lando (2001)). In what follows,
without risk of confusion, I may simply use zd to denote zd(b; p).

The equity-value-maximizing investment policy is similar to that described
by the neoclassical rule (4). The difference is that here, investment takes place
only in the no-default region z > zd(b; p). This is related to the underinvestment
problem of debt pointed out by Myers (1977) and is consistent with the empirical
evidence mentioned in the introduction.

Notice that the limited liability feature of equity is embodied in problem (11)
since equity value is always positive before default (z > zd(b; p)), and is zero
only upon default (z = zd(b; p)).

B.6. Debt Value and Firm Value

The arbitrage-free value of debt is equal to the sum of the present value of
coupon payments accruing to bondholders until the default time and the present
value of liquidation value upon default. That is, debt value d(z, b; p) is given by

d (z, b; p) = Ez
[∫ Tzd

0
e−(r+η)t bdt

]
+ αA(zd ; p)Ez[e−(r+η)Tzd

]
, (13)

where Ty denotes the first time that the process (zt)t≥0 falls to some boundary
value y > 0. Firm value v(z, b; p) is the sum of equity value and debt value,

v(z, b; p) = e(z, b; p) + d (z, b; p). (14)

B.7. Entry and Financing

At each date there is a continuum of potential entrants. Upon entry firms
incur a fixed sunk cost ce. This cost can be financed by equity and debt. After
entry, a firm’s initial level of technology z is drawn from the distribution ζ , which
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is uniform over [z
¯
, z̄]. This firm is then in the same position as an incumbent

with the initial level of technology z. However, firms differ over time because
they may experience different idiosyncratic shocks. Note that the uniform entry
distribution is important to derive a closed-form solution for the stationary
distribution of incumbents.

Assume that z
¯

> zd (b; p). Since zd is endogenous, this assumption must be
verified in equilibrium. I rule out the case in which the initial draw of the tech-
nology shock is below the default threshold so that the entrant is immediately
liquidated and exits the industry.

Before entry, firms are identical and they do not know their initial technology
levels and subsequent random evolution of technology. In a competitive equi-
librium, if there is positive entry, then the expected benefit of entry must be
equal to the entry cost. That is, the following entry condition must hold,∫ z̄

z
¯

v(z, b; p)ζ (dz) = ce. (15)

Finally, upon entry firms may adjust the capital structure in order to balance
the benefit and cost of debt. The optimal coupon rate b∗(p) is chosen to maximize
the expected value of the firm,

∫ z̄
z
¯

v(z, b; p)ζ (dz). Since all firms are ex ante
identical, they choose the same optimal coupon rate. For tractability, I assume
that firms do not readjust debt after entry, as in most contingent claims models
of capital structure.

B.8. Timeline for Decisions

In summary, the sequence of events and the timing of decisions for a typical
firm are described in Figure 1.

C. Aggregation

In a long-run steady state, there is a stationary distribution of surviving
firms µ and a constant entry rate N.8 Note that the distribution µ is not a
probability measure. For any Borel set B in the real line, µ(B) describes the
number of surviving firms whose technology shocks lie in the set B. Since a
firm exits when its technology shock falls below zd(b; p), the support of µ is the
interval [zd(b; p), ∞). Using this stationary distribution, aggregate variables
can be computed; for example, industry output supply is given by

Y (µ, b; p) =
∫ ∞

zd (b;p)
y(z; p)µ(dz), (16)

8 The entry (exit) rate is defined as the number of firms entering (going bankrupt and exiting)
the industry at each time. The same term used in some empirical studies (e.g., Dunne et al. (1988))
corresponds to the turnover rate defined later.
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Figure 1. Timeline for decisions.

where y(z; p) is given in (5). Intuitively, suppose z takes finitely many values
zi ∈ [zd (b; p), ∞), i = 1, . . . , n, and µ(zi) is the mass of surviving firms whose
technology level is zi. Then industry output supply is given by

Y (µ, b; p) =
n∑

i=1

y(zi; p)µ(zi). (17)

D. Equilibrium

A stationary industry equilibrium with exogenous leverage, (p∗, ze, N∗, µ∗),
consists of a constant output price p∗, an exit threshold ze = zd(b; p∗), an entry
rate N∗, and a distribution of incumbents µ∗ such that (i) firms solve problem
(11); (ii) the market clears

p∗ = Y (µ∗, b; p∗)−1/ε, (18)

where Y(·) is given in (16); (iii) the entry condition (15) holds; and, (iv) the
distribution µ∗ is an invariant measure over [ze, ∞).

In this equilibrium, the coupon rate b is exogenously given. When b is cho-
sen to maximize firm value, the resulting equilibrium is called the station-
ary equilibrium with endogenous leverage. Such an equilibrium is denoted by
(po, zo

e , No, µo).
Conditions (i)–(iii) in the above definition are standard requirements for a

competitive equilibrium. Condition (iv) requires that, in a long-run steady state,
the distribution of firms be constant over time. This is possible because there is
a continuum of firms that are subject to idiosyncratic shocks and a law of large
numbers is assumed. As pointed out by Dixit and Pindyck (1994, p. 277), “at the
industry level, the shocks and responses of firms can aggregate into long-run
stationary conditions, so that the industry output and price are nonrandom.
However, the equilibrium level of these variables is affected by the parameters
of firm-specific uncertainty. Also, behind the aggregate certainty lies a great
deal of randomness and fluctuations: firms enter, invest, and exit in response
to the shocks to their individual fortunes.”
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To better understand condition (iv), it is helpful to use a discrete time approx-
imation similar to that in Hopenhayn (1992a). The following equation describes
the evolution of firm distributions:

µt+dt(B) = (
1 − η dt

) ∫ ∞

ze

Q(B | z)µt(dz) + N ∗ζ ([z
¯
, z̄] ∩ B) dt. (19)

The interpretation is as follows: At any date t, let µt be the distribution of firms
at date t. After an instant dt, firms transit to the set B at date t + dt according to
the transition function Q(B | z). Each firm survives with probability (1 − η dt).
Moreover, each firm exits the industry when its technology shocks fall below
ze. Thus, the first term in (19) describes the mass of firms that lie in the set
B at date t + dt. The second term in (19) describes the mass of new entrants
entering the set B. The sum of these two terms is equal to the total mass of
firms that lie in the set B at date t + dt, which is µt+dt(B). In the long-run
stationary equilibrium, this mass must not change over time. This determines
the invariant distribution µ∗(B). Note that firms are identified by the technology
levels z. The mass of firms with technology levels lying in B is constant over
time. However, the actual identities of firms occupying these positions may keep
changing.

II. Optimal Capital Structure

In this section, I fix the output price p and consider a single firm’s capital
structure decision. This decision is modeled in the spirit of the standard EBIT-
based single-firm contingent claims models, such as Mello and Parsons (1992)
and Goldstein et al. (2001). However, different from these models, investment
policies are not fixed, and the product market influences the capital structure
decision through the output price.

A. Unlevered Firm Value

I begin by deriving unlevered firm value. Because unlevered firm value is
increasing in z, the solution to (10) is described by a threshold value zA. The
firm is abandoned the first time the technology shock falls below zA. To solve
for this threshold value zA and unlevered firm value, let

A(z; p | y) = (1 − τ )Ez
[∫ Ty

0
e−(r+η)tπ (zt ; p) dt

]
(20)

be unlevered firm value given any threshold level y > 0. Here Ty denotes the
first passage time of the process (zt)t≥0 starting from z to y. The abandonment
threshold zA is determined by the smooth-pasting condition

∂ A(z; p | z A)
∂z

∣∣∣∣
z=z A

= 0. (21)

The following proposition describes unlevered firm value and the abandonment
decision.
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PROPOSITION 1: Suppose

λ ≡ r + η − µzγ − σ 2
z γ (γ − 1)/2 > 0. (22)

Then unlevered firm value is given by

A(z; p) = (1 − τ )�(z; p) − (1 − τ )�(z A; p)
(

z
z A

)ϑ

, z ≥ z A, (23)

where

ϑ ≡ 1
σ 2

z

[(
σ 2

z

/
2 − µz

) −
√

2(r + η)σ 2
z + (

σ 2
z

/
2 − µz

)2
]

< 0, (24)

�(z; p) ≡ Ez
[∫ ∞

0
e−(r+η)tπ (zt ; p) dt

]
= a(p)

λ
zγ − c f

r + η
, (25)

and

z A(p) =
[

ϑλc f

(ϑ − γ )(r + η)a(p)

]1/γ

. (26)

The firm is abandoned the first time its technology process falls below the thresh-
old value zA.

Note that � (z; p) in (25) represents the before-tax present value of the profit
flow. Assumption (22) ensures that � (z; p) is finite. Equation (23) implies that
unlevered firm value is equal to the present value of after-tax profits plus the
option value of abandonment. Since �(z A, p) = γ

ϑ − γ

c f

r + η
< 0, the firm is not

abandoned as soon as losses are incurred: Only if the firm’s technology shock is
bad enough, is the firm abandoned—because abandonment is irreversible and
waiting has positive option value.

B. Liquidation Decision and Levered Equity Value

Recall that the firm’s liquidation decision is described by a trigger policy. To
solve for equity value and the optimal default threshold zd, let

e(z, b; p | y) = (1 − τ )Ez
[∫ Ty

0
e−(r+η)t(π (zt ; p) − b) dt

]
(27)

denote the equity value when the default threshold is given by y and the coupon
rate is given by b.

Since shareholders may always cover operating losses by raising addi-
tional equity, they choose a default threshold y so as to maximize equity
value e(z, b; p | y). The optimal default threshold zd satisfies the smooth-pasting
condition
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∂e(z, b; p | zd )
∂z

∣∣∣∣
z=zd

= 0. (28)

The following proposition describes equity value and liquidation decisions.

PROPOSITION 2: Let Assumption (22) hold. Then equity value is given by

e(z, b; p)

= (1 − τ )
[
�(z; p) − b

r + η
+

(
b

r + η
− �(zd ; p)

)(
z
zd

)ϑ]
, z ≥ zd , (29)

where

zd (b; p) =
[

ϑλ(b + c f )
(ϑ − γ )(r + η)a(p)

]1/γ

. (30)

The firm is liquidated the first time its technology shock falls below the threshold
value zd(b; p).

Equation (29) implies that equity value is equal to the after-tax value of the
present value of the profit flow, minus the present value of coupon payments,
plus the option value of default. Similar to abandonment, default is irreversible
and waiting to default has positive option value.

Using equation (25), one can rewrite equation (30) as

�(zd ; p) = ϑ

ϑ − γ

b
r + η

. (31)

This implies that the optimal liquidation policy for shareholders consists in
liquidating when the present value of the profit flow upon default �(zd; p) is
equal to the cost of servicing debt b/(r + η) multiplied by the factor ϑ/(ϑ − γ ) ∈
(0, 1) that represents an option value of waiting to default. It is important to
note that product market behavior affects the liquidation decision because the
output price affects the present value of the profit flow.

Equation (30) also implies that the liquidation threshold zd (b; p) is increasing
in b and decreasing in p (note that a(p) given in (8) is increasing in p). Thus,
higher debt or lower output prices cause the firm to exit earlier. Higher debt
also induces underinvestment as in Myers (1977) in the sense that the range
of the states over which investment takes place is smaller.

C. Debt Value and Levered Firm Value

Using the standard contingent claims analysis, one can derive debt value and
firm value from equations (13)–(14).

PROPOSITION 3: Let Assumption (22) hold. Then debt value is given by

d (z, b; p) = b
r + η

+
(

αA(zd ; p) − b
r + η

) (
z
zd

)ϑ

, z ≥ zd , (32)
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and firm value is given by

v(z, b; p) = A(z; p) + bτ

r + η

[
1 −

(
z
zd

)ϑ
]

− (1 − α)A(zd ; p)
(

z
zd

)ϑ

, z ≥ zd . (33)

Equation (32) demonstrates that debt value is equal to the present value of
coupon payments, plus the probability-adjusted changes in value if and when
default occurs. Note that under the present specification of liquidation value,
one can show that αA(zd ; p) < b

r + η
, so debt is risky, that is, d (z, b; p) < b

r + η
.

By definition, levered firm value is the sum of equity value and debt value
as given in (29) and (32). Equation (33) demonstrates that levered firm value
equals unlevered firm value plus the probability-adjusted tax shield of debt
minus probability-adjusted bankruptcy costs.

D. Optimal Coupon

Upon entry, the firm adjusts its capital structure to balance the benefit and
cost of debt. Thus, it chooses an optimal coupon rate b∗ to maximize its expected
value; that is,

b∗(p) ∈ arg max
b

∫ z̄

z
¯

v(z, b; p)ζ (dz). (34)

Since it can be shown that v is strictly concave in b, the following first-order
condition determines the optimal coupon rate:

τ

r + η

[
1 −

∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz)

]
= −ϑ

γ

τb
(r + η)(b + c f )

∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz) + 1 − α

γ (b + c f )

× [
A′(zd ; p)zd − ϑ A(zd ; p)

] ∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz),

(35)

where the liquidation threshold zd is given by (30).
The expression on the left side of equation (35) represents the probability-

adjusted marginal tax advantage of debt and the expression on the right side
represents the marginal bankruptcy cost. In particular, the first term on the
right side represents the loss of marginal tax shield due to bankruptcy. The
second term on the right side represents the loss of marginal liquidation value
due to an inefficient choice of liquidation time by the shareholder. The optimal
capital structure prescribes a coupon rate so that the marginal benefit of debt
equals the marginal cost.

The present model implies that product market competition influences the
firm’s financing decisions since industry output prices affect the optimal coupon
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rate. This is transparent when there is no fixed operating cost (cf = 0). In this
case, there is a closed-form solution to (35),

b∗(p) = (ϑ − γ )(r + η)a(p)
ϑλ

[
γ − ϑ

γ
− ϑ(1 − α)(1 − τ )

γ τ

] γ

ϑ
[ ∫ z̄

z
¯

zϑζ (dz)
] γ

ϑ

. (36)

This equation implies that the optimal coupon is increasing in the output price
p. The intuition is that when the output price p is higher, the firm is less likely
to default so that it prefers to issue more debt.

E. Agency Costs

Given the coupon rate b and the technology shock z, the firm’s first–best
liquidation policy is to choose a liquidation threshold zFB

d so as to maximize
firm value, instead of equity value. Since upon default the firm only recovers
a fraction of unlevered firm value, it prefers to postpone default as long as
possible in order to benefit from tax shields. However, the firm also incurs
the fixed operating cost, and hence eventually suffers losses. The first–best
liquidation threshold must be chosen to trade off these benefits and costs.

Due to the conflict of interest between shareholders and bondholders, the
first–best liquidation policy cannot be enforced ex post. These agency costs
are measured by the difference between the first–best firm value and firm
value under the liquidation policy chosen by the shareholder. The following
proposition describes the first–best liquidation policy, firm value, and agency
costs.

PROPOSITION 4: Let Assumption (22) hold. Then the first–best firm value is given
by

vF B(z, b; p) = A(z; p) + bτ

r + η

[
1 −

(
z

z A

)ϑ
]

, (37)

where zA is given by (26). Under the first–best liquidation policy, the firm is
liquidated the first time its technology process falls below the threshold value
zA. The agency cost is given by

cA(z, b; p) = bτ

r + η

[(
z
zd

)ϑ

−
(

z
z A

)ϑ
]

+ (1 − α)A(zd ; p)
(

z
zd

)ϑ

> 0. (38)

This proposition demonstrates that the first–best liquidation threshold is
equal to the abandonment threshold value zA, that is, zFB

d = zA. Since Proposi-
tions 1–2 show that zA < zd, the equity-maximizing liquidation policy implies an
inefficient early liquidation time. Equation (37) shows that the first–best firm
value is equal to unlevered firm value plus the probability-adjusted tax shield.
Equation (38) shows that agency costs consist of the loss of tax shields due
to inefficient early liquidation plus the probability-adjusted liquidation costs.
Since ϑ < 0 and zA < zd, it follows from (38) that agency costs decrease with the
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technology level z for any fixed coupon rate b. This implies that agency costs are
less severe for more efficient firms. The intuition is that more efficient firms are
less likely to default and hence the loss of tax shields and probability-adjusted
liquidation costs is smaller.

III. Stationary Equilibrium

This section analyzes the existence and uniqueness of stationary equilibrium.
I first consider the case in which leverage is exogenous. Then I consider the case
in which leverage is chosen to maximize firm value.

A. Equilibrium with Exogenous Leverage

Throughout this subsection, the coupon rate b is assumed to be fixed exoge-
nously. The following proposition establishes the existence and uniqueness of
stationary equilibrium.

PROPOSITION 5: Suppose

r + η > µzγ + σ 2
z γ (γ − 1)/2, (39)

0 > γ + 1
σ 2

z

(
µz − 0.5σ 2

z −
√(

µz − 0.5σ 2
z

)2 + 2σ 2
z η

)
, (40)

η > σ 2
z − µ, (41)

where γ = 1/(1 − ν). Then there is a unique stationary equilibrium with the
coupon rate b ≥ 0, (p∗, ze, N∗, µ∗), such that z

¯
> ze.9

I first comment on the assumptions. As explained earlier, assumption (39)
ensures that the present value of profits is finite. Assumption (40) ensures that
certain high-order moments of the scaled stationary distribution are finite. This
assumption is necessary since the stationary distribution has an infinite sup-
port and the moments are improper integrals. Assumption (41) is important
for the existence of a stationary distribution.10 It simply says that the Poisson
death rate cannot be too small. The reason lies in the fact that the geomet-
ric Brownian motion technology process (zt)t≥0 is nonstationary. Heuristically,
without Poisson deaths, the number of firms with high technology levels can
explode and a stationary distribution cannot exist. One needs to assume a suf-
ficiently high death rate to prevent this explosion. From this argument, one can
deduce that the Poisson death assumption is not needed if (zt)t≥0 is a stationary
process, for example, the mean-reverting process. However, the mean-reverting
technology process does not permit any intuitive closed-form solution for the
stationary equilibrium. Consequently, complex numerical methods are needed.
This is typical in the discrete time models (e.g., Hopenhayn (1992b), Hopenhayn

9 The explicit expressions for the equilibrium are given in Appendix A.
10 The same assumption is also made in Dixit and Pindyck (1994, p. 275).
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and Rogerson (1993), Cooley and Quadrini (2001)). Finally, the condition z
¯

> ze
guarantees that the initial draw of the technology shock cannot be so bad that
the firm has no incentive to enter the industry. Since ze = zd(b; p∗), it follows
from (30) that this condition requires that the fixed cost cf is not too big.

Note that when there is no debt (i.e., b = 0), firms are all-equity financed
and the model reduces to the one similar to the discrete time industry dynam-
ics model studied by Hopenhayn (1992a). As mentioned earlier, one important
difference is that here the technology shock is modeled as a nonstationary pro-
cess, whereas it is modeled as a stationary process in Hopenhayn (1992a).

I now outline the intuition behind the theorem and relegate the detailed proof
to the appendix. The proof is by construction, which follows from a similar
procedure described in both Hopenhayn and Rogerson (1993) and Dixit and
Pindyck (1994, Chapter 8). It consists of three steps.

In the first step, I use the entry condition (15) to determine the equilibrium
output price p∗. It is easy to show that firm value is strictly increasing in the
output price. When the output price is high enough, expected firm value exceeds
the entry cost ce, and potential entrants have incentives to enter the industry.
As more firms enter the industry, market competition drives down the output
price. On the other hand, when the output price is low enough, expected firm
value may be lower than the entry cost. In this case, no firm prefers to enter
the industry. In sum, if there is positive entry, the equilibrium output price
p∗ must be such that the expected firm value equals the entry cost, which is
the entry condition (15). To show that there is a unique solution p∗ to (15),
observe the following: As price p goes to infinity, the firm makes unbounded
profits and hence firm value goes to infinity. However, as p goes to zero, the firm
becomes unprofitable so that it is abandoned and firm value goes to zero. Thus, a
unique equilibrium output price p∗ is determined using the intermediate value
theorem, as illustrated in Figure 2.

In the second step, I solve for the invariant distribution µ∗. I first solve for
the exit threshold and the support of µ∗. Given the equilibrium output price p∗,
the equilibrium exit threshold ze = zd(b; p∗) is determined using equation (30).
This threshold value is exactly analogous to the corresponding formula for the
single-firm liquidation decision described in Section II. The intuition is similar
to that discussed in Dixit and Pindyck (1994, Chapter 8). When uncertainty is
firm-specific, a firm that observes a favorable shock z has an edge over its com-
petitors. Its favorable z cannot be “stolen” by competitors. Thus, a positive value
of waiting does survive, and the standard single-firm option value analysis can
be embedded in an industry equilibrium model.

Since inefficient firms with technology levels lower than ze exit the industry,
the support of the stationary distribution of incumbents µ∗ is given by [ze, ∞).
Note that equation (19) implies that µ∗ is linearly homogenous in the entry
rate N∗. Thus, it is convenient to scale µ∗ by the factor N∗ when solving it.
In Appendix A, I derive the scaled density of µ∗ using the method described in
Dixit and Pindyck (1994, Chapter 8). The main idea of this method follows from
the intuitive description given in Section I.D. That is, in order for the density
to be constant over time, the rate at which firms arrive at any technology level
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z v(z, b; p)ζ(dz)
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Figure 2. The determination of the equilibrium output price p∗. This figure illustrates
that the equilibrium output price p∗ is determined by the entry condition—the expected firm value
is equal to the entry cost.

because of entry must be equal to the rate at which firms move away from that
level because of Poisson deaths or bankruptcy.

In the final step, the entry rate N∗ is determined by the market-clearing
condition (18). Since the stationary distribution µ∗ is proportional to the entry
rate N∗, it follows from (16) that industry output supply Y(µ∗, b; p∗) is also
proportional to N∗. Equating the industry demand p∗ = Y(µ∗, b; p∗)−1/ε yields
the entry rate N∗.

B. Equilibrium with Endogenous Leverage

When each firm chooses a value-maximizing capital structure, it selects the
coupon rate b∗(p) to solve problem (34). The equilibrium output price po is then
the solution to the following equation derived from the entry condition:∫ z̄

z
¯

v(z, b∗(p); p)ζ (dz) = ce. (42)

Now, the equilibrium with endogenous leverage can be characterized in the
same manner as that with exogenous leverage except for the following changes:
(i) The output price p∗ is replaced by the above value po; (ii) the coupon rate
b takes the value bo ≡ b∗(po); and, (iii) the exit threshold ze takes the value
zo

e = ze(bo; po). The detailed computation of the equilibrium (bo, po, zo
e , No, µo) is

described in Appendix B.



Optimal Capital Structure and Industry Dynamics 2639

Importantly, if there is no fixed operating cost (i.e., cf = 0), then the equi-
librium with endogenous leverage can be characterized completely in closed
form.

PROPOSITION 6: Let Assumptions (39)–(41) hold. Also assume cf = 0. Then the
unique stationary equilibrium with optimal leverage (po, zo

e , No, µo) is charac-
terized as follows:

zo
e =

[
γ − ϑ

γ
− ϑ(1 − α)

(
1 − τ

)
γ τ

] 1
ϑ

[∫ z̄

z
¯

zϑζ (dz)

] 1
ϑ

, (43)

po = (ce)
1
γ

{
(1 − ν)

(
ν

r/(1 − τ ) + δ

)νγ [
1 − τ

λ

z̄γ+1 − z
¯
γ+1

(z̄ − z
¯
)(γ + 1)

+ τ

λ

(
zo

e

)γ

]}− 1
γ

, (44)

No = (po)−(ε+γ ν)
(∫ ∞

ze

zγ f o(z) dz
)−1 (

ν

r/(1 − τ ) + δ

)−νγ

, (45)

where Nof o is the density of the stationary distribution µo and its explicit ex-
pression is given in the appendix. Moreover, the optimal coupon rate is given
by

bo = (ϑ − γ )(r + η)a(po)
ϑλ

[
γ − ϑ

γ
− ϑ(1 − α)

(
1 − τ

)
γ τ

] γ

ϑ
[∫ z̄

z
¯

zϑζ (dz)

] γ

ϑ

. (46)

Equation (43) implies that the exit threshold does not depend on the equi-
librium output price. This result does not hold true if there are positive fixed
operating costs. In fact, when there are positive fixed costs, the equilibrium
output price has an important feedback effect on the exit threshold and hence
on the production and financing decisions, as illustrated in the simulations
below. Note that equation (44) implies that the equilibrium output price in-
creases with entry cost. Although it is often argued that the entry cost should
not play a role in subsequent price competition, as it is a sunk cost, the present
model demonstrates that this sunk cost may feed back into the entry rate and
consequently in the output price. In particular, a high entry cost discourages
entry and hence protects incumbents. Thus, competition is less intense and the
output price becomes higher.

To close this section, I introduce the concept of turnover rate. The turnover
rate is an important measure of industry dynamics (see Dunne, Roberts, and
Samuelson (1988) and Hopenhayn (1992a)). The turnover rate of entry is de-
fined as the ratio of the mass of entrants to the mass of incumbents. The
turnover rate of exit can be defined similarly. Since in a stationary equilib-
rium the entry rate is equal to the exit rate, these two measures of turnover
are equal. Appendix B presents the explicit expressions for the turnover rate
as well as other important equilibrium variables. In particular, the formula for
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the turnover rate (B5) implies that the turnover rate is determined exclusively
by the exit threshold and the scaled stationary distribution of firms.

IV. Results

To examine the implications of the model, I first calibrate a base case model. I
then conduct simulations based on this model. For all simulations, input param-
eter values are chosen such that the conditions of Proposition 5 are satisfied.

A. Parameter Values

The base case model studies the equilibrium with endogenous leverage de-
scribed in Proposition 6. The parameter values are either taken from the
estimated values from the data or chosen such that the model’s equilibrium
behavior matches some measured statistics as closely as possible. They are
used as an illustrative benchmark. Some parameter values can be fine-tuned
as in the real business cycle literature (e.g., Kydland and Prescott (1982)).

I first set the fixed operating cost cf = 0 so that there is a closed-form solution
to the unique equilibrium. I then set the price elasticity of demand ε = 0.75.

This number is within the range estimated by Phillips (1995).
Next, I calibrate parameters related to technology. Set the returns-to-scale

parameter ν = 0.40, as estimated by Caballero and Engel (1999). This implies
γ = 1/(1 − ν) = 1.667. As in the business cycle literature, set the depreciation
rate of capital δ = 0.1. In order to calibrate the drift µz and volatility σ z, use
π (zt; p) to proxy a firm’s cash flow. The growth rate and volatility of cash flows
are roughly equal to 2.5% and 25%, respectively, for a typical Standard & Poor’s
500 firm. Thus, apply Ito’s Lemma to equation (3) to derive that σz = 0.25/γ =
15% and µz = (0.025 − 0.5γ (γ − 1)σ 2

z )/γ = 0.75%
Set the risk-free r = 5.22% so that it is equal to the average rate on Treasury

bills, as reported in Standard & Poor’s The Outlook in 2001. Set the corporate
tax rate τ = 34%, as estimated by Graham (1996). Set the bankruptcy cost pa-
rameter 1 − α = 20%, which is at the upper bound of recent estimates reported
in Andrade and Kaplan (1998).

Set the Poisson death parameter η = 4%. This number follows from the facts
that the annual turnover rate is roughly 7% (see Dunne et al. (1988) and
Hopenhayn (1992b)) and that the default rate is roughly 3% (see Brady and
Bos (2002)).

It remains to calibrate the parameters ce, z
¯
, and z̄. First, follow Hopenhayn

(1992b) and normalize the equilibrium output price po = 1. Next, use
equation (42) to determine ce once z

¯
and z̄ are known. Finally, choose val-

ues for z
¯

and z̄ so that the following numbers are roughly matched: (i)
The average industry Tobin’s q is equal to 2.7, which is in the range
estimated by Lindenberg and Ross (1981); and, (ii) the turnover rate is
7%.

The base case parameter values are summarized in Table I.
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Table I
Base Case Parameter Values

Parameter Value

Returns to scale ν 0.40
Depreciation rate δ 0.10
Shock drift µz 0.75%
Shock volatility σ z 0.15
Riskless rate r 5.22%
Corporate tax rate τ 0.34
Bankruptcy cost 1 − α 0.20
Poisson death η 0.04
Entry cost ce 78.35
Entry distribution z

¯
2.50

Entry distribution z̄ 3.50
Price elasticity ε 0.75
Fixed cost cf 0.00

B. The Base Case Model

The equilibrium for the base case model is reported in Panel 1 of Table II. It
shows that the average industry leverage ratio is equal to 23.09%. This number
is close to the historical average leverage ratio (25%) reported in Barclay et al.
(2002). To compare with the standard single-firm EBIT-based contingent claims
model, I adopt the same parameter values for a single risk-neutral firm. The
optimal leverage ratio is 71.59%, which is much higher than that typically
observed in practice.11 The main reason that the present model predicts low
leverage is that I compute equilibrium average industry leverage level, instead
of a single firm’s leverage. In a stationary equilibrium, there are not many
surviving firms that have high leverage ratios.

I also compute the industry tax advantage of debt, which is measured as∫ ∞

zo
e

boτ

r + η

[
1 − (

z
/

zo
e

)ϑ]
µo(dz)∫ ∞

zo
e

v(z, bo; po)µo(dz)
× 100%. (47)

The value is 7.08%, which is close to the estimate (9.7%) reported in Graham
(2000).

Figure 3 plots the stationary distribution of surviving firms. This figure im-
plies that more efficient firms are less likely to exit, since they have higher

11 For a wide range of reasonable parameter values, the Leland-style single-firm contingent
claims model typically predicts a much higher leverage ratio than that observed in practice. How-
ever, dynamic capital structure models such as Goldstein, Ju, and Leland (2001), Ju et al. (2003),
and Hackbarth, Miao, and Morellec (2004) can predict lower leverage ratios. A duopoly model in
which firms strategically set their leverage in the run-up to a war of attrition may also generate a
low leverage level for at least one of the two firms.
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Table II
Comparative Statics for Selected Parameter Values

The parameter values for the base case model are given in Table I. Comparative statics is based
on the base case model. When performing simulations for the entry cost and demand elasticity, I
set the fixed cost cf = 5.

Industry Industry Average Turnover Exit Optimal Agency
Output Price Leverage (%) Rate (%) Threshold Coupon Cost (%)

Base case 1.00 1.00 23.09 7.51 1.91 6.66 2.57

µz = 0.5% 0.97 1.04 28.12 7.73 1.89 6.70 3.37
µz = 1.0% 1.03 0.96 17.50 7.29 1.92 6.62 1.80
µz = 1.5% 1.10 0.88 4.46 6.91 1.94 6.55 0.39

σz = 10% 0.97 1.04 39.43 6.04 2.04 6.28 2.76
σz = 15% 1.00 1.00 23.09 7.51 1.91 6.66 2.57
σz = 20% 1.06 0.92 7.04 9.13 1.79 7.18 1.08

z̄ = 3.5 1.00 1.00 23.09 7.51 1.91 6.66 2.57
z̄ = 4.0 1.06 0.92 22.42 7.46 2.03 6.49 2.42
z̄ = 4.5 1.12 0.86 21.68 7.40 2.15 6.30 2.25

α = 95% 1.01 0.998 24.50 8.27 2.02 7.20 2.51
α = 90% 1.006 0.992 24.00 7.98 1.98 7.01 2.54
α = 80% 1.00 1.00 23.09 7.51 1.91 6.66 2.57

τ = 25% 1.04 0.95 20.43 7.12 1.84 5.96 1.74
τ = 34% 1.00 1.00 23.09 7.51 1.91 6.66 2.57
τ = 40% 0.97 1.04 25.00 7.70 1.94 7.08 3.22

cf = 5 0.82 1.31 16.64 9.37 2.15 7.77 1.77
cf = 10 0.72 1.55 13.54 10.83 2.27 8.48 1.30
cf = 12 0.69 1.64 12.68 11.35 2.30 8.76 1.17

ce = 70 0.85 1.25 16.16 9.55 2.16 6.94 1.70
ce = 85 0.80 1.35 16.97 9.24 2.13 8.23 1.82
ce = 100 0.76 1.44 17.61 9.01 2.11 9.52 1.92

ε = 0.60 0.85 1.31 16.64 9.37 2.15 7.66 1.77
ε = 0.75 0.82 1.31 16.64 9.37 2.15 7.66 1.77
ε = 0.90 0.79 1.31 16.64 9.37 2.15 7.66 1.77

η = 0.03 1.07 0.91 10.04 6.16 1.89 5.99 1.12
η = 0.04 1.00 1.00 23.09 7.51 1.91 6.66 2.57
η = 0.05 0.94 1.08 31.35 8.80 1.92 7.33 3.46

technology (productivity) levels that are farther away from the exit threshold.
This prediction is consistent with the empirical finding reported by Kovenock
and Phillips (1997). Since the size of a firm measured by either output y(z,p)
or input k(z, p) is an increasing function of its technology shock z, the long-run
size (probability) distribution plotted in Figure 4 has a similar shape to that
plotted in Figure 3. Note that the size distribution does not depend on firm age.
The issue of size and age dependence is studied by Cooley and Quadrini (2001).

Another property of the base case model is that although all firms in the
industry are ex ante identical, and hence pay the same coupon amount, the
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Figure 3. The effect of an increase in growth of technology on the scaled density of firms.
The solid line is for the base case model. The dashed line is for µz = 1.5%. All other parameter values
are given in Table I.

leverage ratios vary across firms. In particular, small or inefficient firms take
on high leverage. This is because surviving firms differ in realizations of tech-
nology shocks so that they have different equity values.12 This result is related
to the empirical finding of Welch (2004) that leverage changes are mainly de-
termined by equity returns.

Simulations reported in Table II also reveal that the average industry agency
cost accounts for 2.57% of the first–best average industry firm value. In later
simulations, I find that the magnitude of the average industry agency cost
is approximately 2% for a wide range of parameter values. Thus, the agency
costs arising from the conflict of interest between shareholders and bond-
holders are quite small. A similar finding is reported in Parrino and Weis-
bach (1999). The present model implies that competition can mitigate the
bondholder–shareholder agency problem. This is because inefficient firms have

12 Maksimovic and Zechner (1991) attribute the variation of capital structures to the adoption
of different technologies within the industry.
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Figure 4. The size distribution of firms. This figure plots the size distribution of firms mea-
sured according to output. This distribution is derived from the scaled density of the equilibrium
stationary distribution. The parameter values are given in Table I.

high agency costs as discussed in Section II.E, but they cannot survive in an
industry equilibrium.

To compare with Hopenhayn’s (1992a) industry dynamics model without debt
financing, I set the fixed operating cost cf = 5 and compute equilibria with
and without debt financing. The equilibrium outcome for the model with debt
financing is reported in the 12th row of Table II. By contrast, when firms do not
take into account tax advantages of debt and are all-equity financed, industry
output is 0.72, the turnover rate is 4.77%, and average industry firm value
is 372.12, all of which are lower than the model with debt financing. Thus,
debt financing not only raises firm value,13 but also facilitates efficient exit
and increases industry output. The intuition is simple. Debt increases the exit
threshold (see equations (26) and (30)), and hence induces inefficient firms to
exit. In addition, increased firm value promotes entry. Competition then drives
down the output price and raises industry output.

13 Average industry firm value is 395.57 in the present model. This number is not reported in
Table II.
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C. Comparative Statics

Since capital structure and production decisions may simultaneously respond
to changes in exogenous factors, I focus on the stationary equilibrium with
optimal leverage described in Section III.B and examine comparative static
properties of the equilibrium based on the base case model studied earlier.

C.1. Technology Growth and Entry Distribution

Panel 2 of Table II details the effect of changes in technology growth. As
argued in the introduction, the standard single-firm tradeoff model cannot ex-
plain the empirical evidence that high growth firms have low leverage. How-
ever, in the present industry equilibrium framework, the tradeoff theory can
still explain this fact. This is because the price feedback effect discussed in the
introduction plays an important role. Simulations reported in Table II show
that this effect dominates so that the optimal coupon rate falls and the liqui-
dation threshold rises with technology growth µz. Simulations also reveal that
the tax benefit of debt falls and average industry leverage falls with µz.

Since the market-to-book ratio is positively related to technology growth,14 it
is negatively related to leverage. The usual interpretation of this fact is based on
the underinvestment problem of debt identified by Myers (1977) or the free cash
flow theory of Jensen (1986). Two recent interpretations are offered by Welch
(2004) and Baker and Wurgler (2002). The present model, however, offers a new
interpretation in an industry equilibrium setting.

To examine why the price feedback effect may dominate and how robust the
result is, consider the expression for the before-tax present value of profits (25),

�(z; p) =
pγ (1 − ν)

(
ν

r/(1 − τ ) + δ

)νγ

r + η − µzγ − σ 2
z γ (γ − 1)

/
2

zγ − c f

r + η
, (48)

where I have substituted the expressions for a(p) and λ in (8) and (22). If � (z;
p) is price elastic (i.e., γ > 1), and if the level and changes of the growth rate
µz are small, then the decrease in the price p may well dominate the increase
in µz. In the present model, under decreasing-returns-to-scale technology ν <

1, γ ≡ 1/(1 − ν) must be bigger than 1. Moreover, for a typical firm the growth
rate of cash flows and its change are unlikely to be high. Therefore, I conclude
that the result is quite robust for a wide range of reasonable parameter values.

The increase in µz also has a positive selection effect because it changes
the liquidation threshold and the stationary distribution of firms. Figure 3
illustrates that this effect causes the scaled density function to shift to the
right. Thus, to survive in the industry, firms must have high productivity or
technology levels. This makes entry tougher. Thus, the turnover rate decreases.

14 Simulations (not reported in Table II) confirm this positive correlation. The market-to-book
ratio is a commonly used proxy for growth opportunities.
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Note that even though the increase in technology growth may cut the present
value of profits, the average industry equity value and firm value rise with tech-
nology growth. Simulations show that when µz increases from 0.75% to 1.5%,
average industry equity value increases from 203.57 to 1338.2 and average in-
dustry firm value increases from 264.68 to 1400.8. This is because those values
are computed using the stationary distribution of surviving firms. In addition,
the positive selection effect implies that a high growth industry has a greater
number of highly efficient firms than a low growth industry. These highly effi-
cient firms have higher equity value and firm value. Furthermore, simulations
show that the size of the high growth industry is much lower than that of the
low growth industry.

The impact of an improvement of the entry distribution (i.e., an increase in
z̄) is similar to that of an increase in technology growth, as reported in Panel 4
of Table II. So I omit the discussion.

C.2. Riskiness of Technology

Panel 3 of Table II documents the effect of changes in technology volatility. As
in the standard contingent claims model, the volatility parameter σ z provides a
measure of bankruptcy risk and hence is an important determinant of leverage.
Panel 3 of Table II reveals that volatility is negatively related to average in-
dustry leverage. This prediction is similar to that in the single-firm model and
is consistent with the empirical evidence documented by Titman and Wessels
(1988).

Panel 3 of Table II also reveals that volatility is positively related to indus-
try output. This is because an increase in σ z has an option effect in that it
raises the option value of waiting to default. This results in higher firm value
and hence encourages entry. Competition then drives down the output price
and raises industry output. Finally, Panel 3 of Table II reveals that an in-
crease in volatility has a positive selection effect, resulting in a high turnover
rate.

C.3. Bankruptcy Cost and Corporate Tax

Panel 5 of Table II reports the effect of changes in the bankruptcy cost. An
increase in the bankruptcy cost parameter 1 − α has a negative cash flow effect.
This effect decreases the value of an active firm and depresses entry. As a result,
the output price rises and industry output falls.

While it is intuitive that bankruptcy costs are negatively related to leverage,
Panel 5 of Table II also reveals that bankruptcy costs are negatively related to
the turnover rate. The intuition is that an increase in the bankruptcy cost low-
ers debt and hence decreases the opportunity cost of remaining active. Thus,
each incumbent prefers to stay longer in the industry. Consequently, the liqui-
dation threshold falls. The lower value of the liquidation threshold implies less
selection and higher expected lifetime of firms. As a result, the turnover rate
falls.
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An increase in the corporate tax rate has the same negative cash flow effect
as an increase in the bankruptcy cost so that industry output falls with the
tax rate. However, the increase in the corporate tax rate raises the tax benefit
of debt and hence has an opposite effect on leverage and turnover relative to
an increase in the bankruptcy cost. The impact of the tax rate is reported in
Panel 6 of Table II. I omit the detailed analysis.

C.4. Fixed Operating Cost

So far, I have set the fixed operating cost cf to zero. Because the fixed cost is
related to the degree of economies of scale, I now examine the impact of the fixed
operating cost on equilibrium outcomes, as reported in Panel 7 of Table II.15

The panel reveals that the fixed cost is positively related to the turnover
rate, and negatively related to industry output and leverage. The intuition is
as follows. An increase in the fixed operating cost lowers the operating profit
and hence lowers firm value. This depresses entry, raises the output price, and
hence lowers industry output. As reported in Panel 7 of Table II, the positive
price feedback effect is dominated so that each incumbent prefers to exit earlier,
resulting in an increased exit threshold and an increased turnover rate.

I now analyze the impact on leverage. While the increased fixed cost lowers
the tax benefit of debt, it also lowers unlevered firm value and hence bankruptcy
costs. Simulations reported in Panel 7 of Table II reveal that the latter effect
dominates so that the optimal coupon rises. Thus, the average industry value of
debt also rises. However, due to the positive selection and price effects, average
industry firm value also increases with the fixed cost. The intuition is that fol-
lowing an increase in the fixed cost, surviving firms are more efficient since the
exit threshold is higher and the positive price effect is stronger for those firms.
A similar result is derived in Hopenhayn (1992a, 1992b) for all-equity financed
firms. Simulations reported in Panel 7 of Table II show that the increase in firm
value dominates the increase in debt value so that average industry leverage
falls with the fixed cost.

C.5. Entry Cost

In the short run, an increase in the entry cost ce does not affect a firm’s cash
flows and its liquidation decision. Thus, it does not affect the value of an active
firm. However, the entry cost acts as a barrier to entry. High entry costs protect
incumbents and drive up the industry output price. This price feedback effect
will generally influence financing and exit decisions.

Specifically, the increase in the output price raises the benefit of remain-
ing active and the tax advantage of debt. On the other hand, this implies
that each firm prefers to issue more debt and hence the optimal coupon
rises. This leads to an increased opportunity cost of remaining active. The

15 As a robustness check, I redo all previous simulations for a number of positive values of the
entry cost. I find the results do not change qualitatively.
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impact on the exit threshold depends on these two opposite effects as shown
in equation (31). When there is no fixed operating cost, these effects offset
each other so that changes in the entry cost do not affect the exit thresh-
old (see equation (43)). Consequently, these changes do not have a selection
effect.

However, this result is not robust to the introduction of the fixed operating
cost. To illustrate this point, I set the operating cost cf = 5. Panel 8 of Table II
documents the impact of increases in the entry cost. It reveals that the entry cost
is positively related to leverage and negatively related to the turnover rate.16

This is because in response to an increase in the entry cost, the positive price
feedback effect dominates so that the exit threshold decreases. This results in
a negative selection effect so that the turnover rate falls. This prediction is
consistent with the evidence reported by Orr (1974) for Canadian industry. A
similar result is derived by Hopenhayn (1992a) for all-equity financed firms.
In the present model, a lower exit threshold also induces lower default/exit
probabilities, and hence expected bankruptcy costs are lower. This results in
higher leverage.

C.6. Industry Demand Elasticity

I now analyze the impact of changes in demand elasticity, which is an impor-
tant industry characteristic. From Proposition 6, one finds surprisingly that the
output price po, the exit threshold zo

e , and the scaled density f o do not depend
on the demand elasticity parameter ε. Consequently, the turnover rate and av-
erage industry leverage do not depend on ε. However, the change in demand
elasticity does have on effect an industry output, industry size, and entry rate.
As can be seen from Appendix B, this result is also true for positive fixed costs
cf > 0. The key intuition is that the competitive entry condition (15), which de-
termines the equilibrium output price, is independent of the industry demand
elasticity. This implies that the industry output price is also independent of
the demand elasticity. Consequently, the exit threshold is independent of the
demand elasticity since it is determined by an individual firm’s behavior taking
industry prices as given. Since the scaled stationary distribution is determined
by the exit threshold and the exogenous evolution of the technology process, it
is also independent of the demand elasticity.

To illustrate the above result, I set cf = 5 and fix other parameter values
as in Table I. Panel 9 of Table II illustrates the effect of increases in the de-
mand elasticity. I find that the industry output, industry size, and entry rate
all decrease. This is because the isoelastic demand function (1) implies that the
industry output decreases with the demand elasticity for any fixed price p > 1.
To accommodate decreased industry output, the entry rate and industry size
must fall.

16 This result does not depend on the choice of cf = 5 since it is verified by simulations for many
other values of cf .
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C.7. Poisson Deaths

As discussed earlier, a sufficiently high Poisson death rate is needed for the
existence of a stationary equilibrium in the present model. I now examine the
impact of changes in this rate, as detailed in the last panel of Table II. As
expected, increased death rates lower industry output. Surprisingly, firms is-
sue more debt and average industry leverage increases. This is because an
incumbent enjoys high output price and hence high tax benefits of debt (see
equation (36)). Consider next the turnover rate. In order for the population of
firms to keep being refreshed, the turnover rate of entry must rise in response
to an increased Poisson death rate. Surprisingly, the turnover rate of exit due
to bankruptcy also rises, which is the difference between the turnover rate of
entry and the Poisson death rate.17 This is because the exit threshold rises fol-
lowing an increase in the Poisson death rate. Thus, firms are more likely to go
bankrupt and exit.

V. Conclusion

In this paper, I present a competitive equilibrium model of industry dynamics
and capital structure decisions. I show that technology (productivity) hetero-
geneity is important in determining a firm’s survival probability and leverage
ratio. In particular, in equilibrium there is a stationary distribution of surviving
firms. These firms exhibit a wide variation of capital structures. In addition,
more efficient firms are less likely to exit and have lower agency costs. Finally,
I analyze comparative static properties of changes in technology growth, tech-
nology risk, entry distribution, entry cost, fixed cost, bankruptcy cost, and tax
policy.

The analysis reveals that the interaction between financing and production
decisions is important in an industry equilibrium. Moreover, the equilibrium
output price has an important feedback effect. As a result, several conclusions
reached in the standard single-firm contingent claims models do not hold true in
an equilibrium setting. Moreover, it moves predictions in the right direction in
terms of reconciling the empirical evidence. Specifically, the analysis shows that
either one of the following exogenous factors can simultaneously explain the
empirical findings mentioned in the introduction: the slowdown of technology
(productivity) growth, the deterioration of entry distribution, or the increase in
the corporate tax rate.

The paper also provides a number of new testable predictions regarding cap-
ital structure and industry dynamics. First, industries with high technology
growth or good starting distributions of technology have relatively lower aver-
age leverage, lower turnover rates, and higher output. Second, industries with
risky technology have relatively lower average leverage, higher turnover rates,
and higher output. Third, industries with high bankruptcy costs have rela-
tively lower average leverage, lower turnover rates, and lower output. Fourth,

17 This rate is given by 3.16, 3.51, and 3.80 for η equal to 0.03, 0.04, and 0.05, respectively.
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industries with high fixed operating costs have relatively lower average lever-
age, higher turnover rates, and lower output. Finally, industries with high entry
costs have relatively higher average leverage, lower turnover rates, and lower
output.

The paper could be extended in several directions, which are left for future
research. First, in the paper, the expected returns of equity and other macroe-
conomic variables are constant. To study equity premium and other time-series
behavior of the industry, it is necessary to introduce aggregate uncertainty. Sec-
ond, this paper considers only the conflict of interest between shareholders and
bondholders. It would be interesting to study the conflict of interest between
shareholders and managers. Third, I analyze firms’ initial capital structure
decisions only, as in most contingent claims models of capital structure in the
literature. A model of dynamic capital structure would be worth pursuing (Le-
land (1998), Goldstein, Ju, and Leland (2001), Ju et al. (2003), and Hackbarth,
Miao, and Morellec (2004)). Finally, it would be interesting to consider finite
maturity debt. This requires a constant default threshold in stationary equi-
librium, which can be delivered using the framework of Leland and Toft (1996)
or Leland (1998).

Appendix A. Proofs

Proof of Propositions 1–2:18 I first prove Proposition 2. Proposition 1 is ob-
tained by setting b = 0. It follows from (27) that equity value given a default
threshold y is given by

e(z, b; p | y) = (1 − τ )Ez
[∫ Ty

0
e−(r+η)t(π (zt ; p) − b) dt

]
. (A1)

This expression is equal to

(1 − τ )Ez
[∫ ∞

0
e−(r+η)t(π (zt ; p) − b) dt

]
− (1 − τ )Ez

×
[∫ ∞

Ty

e−(r+η)t(π (zt ; p) − b) dt

]
= (1 − τ )Ez

[∫ ∞

0
e−(r+η)t(π (zt ; p) − b) dt

]

− (1 − τ )E y
[∫ ∞

0
e−(r+η)t(π (zt ; p) − b) dt

]
× Ez[e−(r+η)Ty

]
, (A2)

where the last equality follows from the strong Markov property of the process
(zt)t≥0 (see Karatzas and Shreve (1991, p. 82)). By an argument similar to that
in Karatzas and Shreve (1991, p. 197),

Ez[e−(r+η)Ty
] =

(
z
y

)ϑ

, (A3)

18 Here I use a probabilistic proof method similar to Mella-Barral (1995) and Morellec (2004).
An alternative standard method is to use ODEs (e.g., Leland (1994)).
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where ϑ is given in (24). Substitute this expression into above equations to
derive

e(z, b; p | y) = (1 − τ )

[
�(z; p) − b

r + η
+

(
b

r + η
− �( y ; p)

) (
z
y

)ϑ
]

. (A4)

Use the smooth-pasting condition (28) to derive the optimal default threshold
zd(b; p) in (30). Use the fact that e(z, b; p) = e(z, b; p | zd) to derive equity value
in (29). Q.E.D.

Proof of Proposition 3: As in the proof of Propositions 1–2, one can use (13)
and the strong Markov property to derive

d (z, b; p)

= Ez
[∫ Tzd

0
e−(r+η)t bdt

]
+ αA(zd ; p)Ez[e−(r+η)Tzd

]

= Ez
[∫ ∞

0
e−(r+η)t bdt

]
− Ez

[∫ ∞

Tzd

e−(r+η)t bdt

]
+ αA(zd ; p)Ez[e−(r+η)Tzd

]

= b
r + η

− Ez
[∫ ∞

0
e−(r+η)t bdt

]
Ez[e−(r+η)Tzd

] + αA(zd ; p)Ez
[
e−(r+η)Tzd

]

= b
r + η

+
(

αA(zd ; p) − b
r + η

)
Ez[e−(r+η)Tzd

]
. (A5)

Use the last expression and (A3) to obtain (32). Finally, one can derive firm
value in (33) by using equations (13), (29), and (32). Q.E.D.

Proof of Proposition 4: Similar to the derivation of equation (33), one can
deduce that firm value given a default threshold y is given by

v(z, b; p | y) = A(z; p) + bτ

r + η

[
1 −

(
z
y

)ϑ
]

− (1 − α)A( y ; p)
(

z
y

)ϑ

. (A6)

The first–best liquidation policy is to choose default threshold y so as to maxi-
mize firm value in (A6). It can be verified that the maximizer is zFB

d = zA. Equa-
tion (37) follows from the fact that vFB(z, b; p) = v(z, b; p | zA). Finally, equation
(38) follows from cA(z, b; p) = vFB(z, b; p) − v(z, b; p). Q.E.D.

Proof of Proposition 5: As argued in Section III.A, the proof consists of three
steps. In the first step, one uses the entry condition to solve for the equilibrium
output price p∗. Then the exit threshold ze is determined by ze = zd(z, b; p∗) using
equation (30). In the second step, one solves for the density f of the stationary
distribution µ∗ up to a scale factor N∗. In the final step, the entry rate N∗ is
determined by the market-clearing condition (18). Specifically, use (5) and (16)
to derive the industry output
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Y (µ∗, b; p∗) = N ∗
∫ ∞

ze

zγ f (z) dz
(

pν

r/(1 − τ ) + δ

)νγ

. (A7)

Use the market-clearing condition p∗ = Y(µ∗, b; p∗)−1/ε to derive the entry rate

N ∗ = (p∗)−(ε+γ ν)
(∫ ∞

ze

zγ f (z)dz
)−1 (

ν

r/(1 − τ ) + δ

)−νγ

. (A8)

Note that the integral
∫ ∞

ze
zγ f (z) dz is improper since the density f has an

infinite support. Once f is derived toward the end of the proof, one will see that
assumption (40) ensures that this improper integral is finite.

The remainder of the proof is devoted to the second step, which is key. It
is convenient to work in terms of the logarithm, x = log z. Then (xt)t≥0 is a
Brownian motion satisfying,

dxt = µx dt + σx dWt , (A9)

where µx = µz − 1
2σ 2

z and σx = σz. Because the initial draw of z is uniform over
[z
¯
, z̄], the initial draw of x = log (z) has an exponential distribution over [x

¯
, x̄],

where x̄ = log z̄ and x
¯

= log z
¯
. This distribution has a density function

g (x) = exp(x − x̂), (A10)

where x̂ = log(z̄ − z
¯
).

Let the stationary distribution of incumbent firms have a density function
N∗φ(x) on [xe, ∞), where xe = log (ze) and N∗ is the entry rate determined later.
I will now use the Kolmogorov equation to find the function φ(x) by considering
three cases.

I adapt the heuristic argument from Dixit and Pindyck (1994, Chapter 8).
First, approximate the Brownian motion by a random walk. To do so, divide
time into short intervals of duration dt, and the x space into short segments,
each of length dh = σx

√
dt. Of the firms located in one such segment, during

time dt a proportion η dt will die. Of the rest, a fraction qr will move one segment
to the right, and a fraction ql will move to the left, where

qr = 1
2

[
1 + µx

σx

√
dt

]
, ql = 1

2

[
1 − µx

σx

√
dt

]
. (A11)

Now consider the first case, where x
¯

≤ x < x̄. Then there are new entrants
that realize shock x since the support of their initial draw of shocks is [x

¯
, x̄].

There are N∗φ(x) dh firms in the segment centered at x. In the next unit of
time period dt, all of these firms move away with either Poisson or Brownian
shocks. New entrants, as well as firms from the left and right, arrive to take
their places. For balance,

N ∗φ(x) dh = N ∗dt g (x) dh + qr (1 − η dt)N ∗φ(x − dh) dh

+ ql (1 − η dt)N ∗φ(x + dh) dh. (A12)
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Apply Taylor’s expansion theorem and simplify to obtain the ODE

1
2

σ 2
x φ′′(x) − µxφ

′(x) − ηφ(x) + g (x) = 0. (A13)

A particular solution to this equation can be derived as

φ0(x) = ex−x̂/(
η + µx − σ 2

x

/
2
)
. (A14)

To make economic sense, this density must be positive (also see Dixit and
Pindyck (1994, p. 275)). This is ensured by assumption (41) since η + µx −
σ 2

x /2 = η + µz − σ 2
z > 0. The general solution to (A13) is given by

φ(x) = A1eβ1x + A2eβ2x + φ0(x), for x
¯

≤ x < x̄, (A15)

where

β1 = µx − √
µ2

x + 2σ 2
x η

σ 2
x

, β2 = µx + √
µ2

x + 2σ 2
x η

σ 2
x

, (A16)

and A1 and A2 are constants to be determined.
In the second case, xe < x < x

¯
, there is no new entrant in the segment centered

at x. Apply a similar method to show that φ satisfies the following ODE:

1
2

σ 2
x φ′′(x) − µxφ

′(x) − ηφ(x) = 0. (A17)

The general solution to this equation is given by

φ(x) = G1eβ1x + G2eβ2x , for xe < x < x
¯
, (A18)

where G1 and G2 are constants to be determined.
In the third case, x ≥ x̄, there is no new entrant in the segment centered at

x, so φ still satisfies the above ODE. Let the solution be

φ(x) = H1eβ1x + H2eβ2x , for x ≥ x̄, (A19)

where H1 and H2 are constants to be determined.
The constants A1, A2, G1, G2, H1, and H2 are determined by the following six

boundary conditions: ∫ ∞

x̄
φ(x) dx < ∞, (A20)

φ(xe) = 0, (A21)

lim
x↑x

¯
φ(x) = lim

x↓x
¯

φ(x), (A22)

lim
x↑x

¯
φ′(x) = lim

x↓x
¯

φ′(x), (A23)

lim
x↑x̄

φ(x) = lim
x↓x̄

φ(x), (A24)



2654 The Journal of Finance

lim
x↑x̄

φ′(x) = lim
x↓x̄

φ′(x). (A25)

Equation (A20) says that the total mass of incumbents must be finite.
Equation (A21) is derived from the fact that when the process (xt) falls to
xe, the firm exits the industry. Finally, equations (A22)–(A25) follow from
Theorem 4.4.9 in Karatzas and Shreve (1991, p. 271). These equations ensure
sufficient smoothness of φ. Using equations (A20)–(A25), one can derive H2 = 0
and G1, G2, A1, A2, H1 solve the following system of linear equations:

G1eβ1xe + G2eβ2xe = 0,

G1eβ1x
¯ + G2eβ2x

¯ = A1eβ1x
¯ + A2eβ2x

¯ + φ0(x
¯
),

G1β1eβ1x
¯ + G2β2eβ2x

¯ = A1β1eβ1x
¯ + A2β2eβ2x

¯ + φ′
0(x

¯
),

A1eβ1 x̄ + A2eβ2 x̄ + φ0(x̄) = H1eβ1 x̄ ,

A1β1eβ1 x̄ + A2β2eβ2 x̄ + φ′
0(x̄) = H1β1eβ1 x̄ . (A26)

The solution in terms of z is

A1 = (1 − β1)zβ2−β1
e (z̄1−β2 − z

¯
1−β2 ) + (1 − β2)z

¯
1−β1

(β2 − β1)(z̄ − z
¯
)
(
η + µz − σ 2

z

) ,

A2 = − (1 − β1)z̄1−β2

(β2 − β1)(z̄ − z
¯
)
(
η + µz − σ 2

z

) ,

G1 = (1 − β1)zβ2−β1
e (z̄1−β2 − z

¯
1−β2 )

(β2 − β1)(z̄ − z
¯
)
(
η + µz − σ 2

z

) ,

G2 = (1 − β1)(z
¯

1−β2 − z̄1−β2 )
(β2 − β1)(z̄ − z

¯
)
(
η + µz − σ 2

z

) ,

H1 = (1 − β1)zβ2−β1
e (z̄1−β2 − z

¯
1−β2 ) + (β2 − 1)(z̄1−β1 − z

¯
1−β1 )

(β2 − β1)(z̄ − z
¯
)
(
η + µz − σ 2

z

) . (A27)

In terms of z, the density function of µ∗ is given by N ∗ f (z) = N ∗
z φ(log(z)), where

f (z) =




G1zβ1−1 + G2zβ2−1, for ze < z ≤ z
¯
,

A1zβ1−1 + A2zβ2−1 + 1
(z̄ − z

¯
)
(
η + µz − σ 2

z

) , for z
¯

< z ≤ z̄,

H1zβ1−1, for z > z̄.

(A28)

I finally show that assumption (40) ensures
∫ ∞

ze
zγ f (z) dz is finite. It suffices

to show that
∫ ∞

z̄ zγ f (z) dz is finite. Since f (z) = H1zβ1−1 for z > z̄,∫ ∞

z̄
zγ f (z) dz = H1

∫ ∞

z̄
zβ1+γ−1 f (z) dz = H1

β1 + γ

(
lim
z→∞ zβ1+γ − z̄β1+γ

)
. (A29)
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Thus, if and only if β1 + γ < 0 is satisfied, limz→∞ zβ1+γ = 0 and the
above integral is finite. By (A16), the condition β1 + γ < 0 is equivalent to
assumption (40). Q.E.D.

Proof of Proposition 6: The analysis in Section II.D shows that when cf = 0,
for any output price p the optimal coupon rate b∗(p) is given by (36). Since
cf = 0, it follows from (31) that the exit threshold is given by

zd (b; p) =
[

ϑλb
(ϑ − γ )(r + η)a(p)

]1/γ

. (A30)

Substituting (36) for b into this expression yields

zd (b∗(p); p) =
[
γ − ϑ

γ
− ϑ(1 − α)(1 − τ )

γ τ

] 1
ϑ

[∫ z̄

z
¯

zϑζ (dz)

] 1
ϑ

. (A31)

Since this expression is independent of the output price, it is also the equilib-
rium exit threshold zo

e given in (43). I now derive the equilibrium output price
using the entry condition (42). Substituting (33), (36), and (43) into (42), one
can solve for the unique equilibrium output price po given in (44). Finally, the
equilibrium entry rate No is obtained from (A8) by replacing p∗ with po and the
scaled density f o is obtained from (A28) by replacing ze with zo

e . Q.E.D.

Appendix B. Computation of Stationary Equilibrium

This appendix provides explicit formulas and an algorithm to compute the
stationary equilibrium with endogenous leverage (bo, po, zo

e , No, µo) described in
Section III.B for the case with positive fixed cost cf > 0. The algorithm consists
of the following steps:

Step 1. Solve for the optimal coupon rate bo and the equilibrium output price
po using the system of two equations (34) and (41). Specifically, rewrite (34) and
(41) in an explicit form

τ

r + η

[
1 −

∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz)

]
= −ϑ

γ

τb
(r + η)(b + c f )

∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz)

+ 1 − α

γ (b + c f )
[A′(zd ; p)zd − ϑ A(zd ; p)]

×
∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz), (B1)
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ce =
∫ z̄

z
¯

A(z; p)ζ (dz) + bτ

r + η

[
1 −

∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz)

]

− (1 − α)A(zd ; p)
∫ z̄

z
¯

(
z
zd

)ϑ

ζ (dz). (B2)

Substituting the expressions for zA, zd, and A(z, p) in equations (25), (29), and
(22), respectively, into the above two equations yields a system of two nonlinear
equations for two unknowns, (b, p). Any standard nonlinear equation solver can
deliver numerical solutions for (bo, po).

Step 2. Solve for the exit threshold zo
e . Once (bo, po) is obtained, use (29) to

compute zo
e = zd(bo; po).

Step 3. Solve for the scaled density f o of the stationary distribution µo. The
expression for f o is the same as that given in (A28), but ze must be replaced by
zo

e in the support and also in the coefficients A1, A2, G1, G2, and H1.
Step 4. Solve for the entry rate No. The expression for No is the same as that

given in (A8), but p∗ must be replaced by po.
The expressions for other important equilibrium variables are described as

follows:

1. Industry output. Use the industry demand (1) to derive

Y (µo, bo; po) = (po)−ε. (B3)

2. Turnover rate. It is defined as the ratio of the entry rate to the mass of
incumbents. Since the mass of incumbents (size of the industry) is given
by

M o =
∫ ∞

zo
e

µo(dz) = No
∫ ∞

zo
e

f o(z) dz, (B4)

the turnover rate No/Mo is given by

No

M o = 1∫ ∞

zo
e

f o(z) dz
. (B5)

3. Average industry agency costs. The absolute value is defined as the total
industry agency costs divided by the mass of incumbents

1
M o

∫ ∞

zo
e

cA(z, bo; po)µo(dz) = No

M o

∫ ∞

zo
e

cA(z, bo; po) f o(z) dz. (B6)

The relative value is defined as the percentage of the average industry
first–best firm value
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1
M o

∫ ∞

zo
e

cA(z, bo; po)µo(dz)

1
M o

∫ ∞

zo
e

vF B(z, bo; po)µo(dz)
=

∫ ∞

zo
e

cA(z, bo; po) f o(z) dz∫ ∞

zo
e

vF B(z, bo; po) f o(z) dz
. (B7)

4. Average industry leverage. It is defined as the ratio of the average industry
debt value to the average industry firm value:

1
M o

∫ ∞

zo
e

d (z, bo; po)µo(dz)

1
M o

∫ ∞

zo
e

v(z, bo; po)µo(dz)
=

∫ ∞

zo
e

d (z, bo; po) f o(z) dz∫ ∞

zo
e

v(z, bo; po) f o(z) dz
. (B8)
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