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In this article, we propose a recursive equilibrium algorithm for the numerical simulation of nonoptimal dynamic
economies. This algorithm builds upon a convergent operator over an expanded set of state variables. The fixed point
of this operator defines the set of all Markovian equilibria. We study approximation properties of the operator. We also
apply our recursive equilibrium algorithm to various models with heterogeneous agents, incomplete financial markets,
endogenous and exogenous borrowing constraints, taxes, and money.

1. INTRODUCTION

In this article, we propose a reliable recursive equilibrium algorithm for the numerical sim-
ulation of nonoptimal dynamic economies and study its convergence and accuracy properties.
Numerical simulation of these economies is usually a formidable task because of various tech-
nical issues that preclude direct application of standard dynamic programming techniques. We
apply our numerical algorithm to various models with heterogeneous agents and real and fi-
nancial frictions. The quantitative analysis of these models becomes critical to advance our
understanding in several basic areas of macroeconomics and finance.

Standard solution methods search for a continuous equilibrium function over a natural state
space of exogenous and endogenous state variables. Since the seminal work of Kydland and
Prescott (1980), it is well known that equilibria of nonoptimal economies may not admit a
recursive representation over this natural state space. These authors consider a game of optimal
taxation and rewrite their model in a recursive form by appending a Lagrange multiplier to
the original state space so as to characterize the exact solution. Their simple model comprises
a representative household, and the set of continuation Lagrange multipliers is unique. This
uniqueness property is a rather limiting condition for many other economies.

Our recursive equilibrium algorithm applies to a broad range of dynamic competitive-markets
economies. We consider an abstract framework and provide a characterization of Markovian
equilibrium representations toward the numerical simulation of these economies. Although
some characterizations of Markovian equilibria for nonoptimal economies are available, these
characterizations are model dependent. Moreover, the numerical implementation of the pro-
posed algorithms together with their approximation properties have never been analyzed in the
literature.
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Numerical simulation of nonoptimal economies by standard solution methods may result in
substantial approximation errors. We simulate below a simple overlapping generations (OLGs)
model by an established algorithm under a continuous equilibrium function. The computed
solution may present large approximation errors and fail to mimic the true dynamics. In spite
of these large approximation errors, the algorithm can be quite deceptive, as it produces small
Euler equation residuals, or may do well under some other independent accuracy checks.
Peralta-Alva and Santos (2010) discuss some of the pitfalls in the computation of equilibrium
solutions for an economy with distortionary taxation.

Positive results on the existence of a continuous equilibrium over a natural state space rely
upon certain monotonicity properties of the equilibrium dynamics (e.g., see Bizer and Judd,
1989; Coleman, 1991; Datta et al., 2002). For the canonical one-sector growth model with taxes
and externalities, monotone dynamics follow from fairly mild restrictions on the primitives.
But monotone dynamics are much harder to obtain in multisector models with heterogeneous
agents and real and financial frictions.

Several papers are concerned with the characterization of recursive equilibria for nonoptimal
economies. As already pointed out, these characterizations are model dependent and do not
consider numerical implementation and approximation properties of these algorithms. Abreu
et al. (1990) introduce continuation utility values to find a recursive representation of sequen-
tial equilibria for dynamic games. This characterization of equilibrium seems quite natural in
repeated games, but it may become computationally demanding in some other models. Duffie
et al. (1994) search for general representations of stationary equilibria over an expanded state
space that includes all endogenous variables such as asset prices and individual consumptions.
Again, expanding the state space over all state variables may slow down the computation
process. Building upon these methods, Kubler and Schmedders (2003) show existence of a
Markovian equilibrium for a class of financial economies with collateral requirements. Their
computations are based on a projection-type algorithm iterating in the space of continuous
functions. This computational procedure cannot guarantee convergence to the true solution.
Marcet and Marimon (2010) study a general class of contracting problems with incentive con-
straints. Following Kydland and Prescott (1980), they enlarge the state space with a vector of
weights for the utility of each agent and compute a transition for such weights from the shadow
values of the agents’ participation constraints. They assume that equilibrium solutions can be
characterized by convex social planning problems. By construction, this method cannot capture
multiple equilibria, but seems to be more operative for the computation of various dynamic
incentive problems written in a Pareto-welfare form.

Our work is closest to Kubler and Schmedders (2003), but we consider a broader family of
economies that may include endogenous and exogenous borrowing constraints. In the numerical
implementation, we discretize our algorithm to preserve its convergence properties. Thus,
unlike Kubler and Schmedders (2003), we iterate over candidate equilibrium sets—instead of
functions—to guarantee convergence to the original equilibrium set. We can thus compute the
set of all competitive equilibria. As discussed later, this reliable discretization procedure can
successfully be applied to various types of models, and it seems particularly useful for OLG
models and some other infinite-horizon models with various types of real and financial frictions.

Section 2 considers two simple examples intended to highlight some major computational
issues and the workings of our algorithm. Section 3 introduces our framework of analysis. We
provide a general characterization of Markov equilibria for nonoptimal economies. The set
of Markov equilibria is computed as the fixed-point of a monotone operator embedding all
short-run equilibrium conditions. This operator has good convergence and stability properties,
and hence it provides the foundations for the formulation of our reliable recursive equilibrium
algorithm. Section 4 studies the numerical implementation of our algorithm and its approxi-
mation properties. We apply these numerical procedures to two types of models. Sections 5 is
devoted to the numerical simulation of a simple OLG model, and Section 6 considers a model
of international trading with various market frictions. We conclude in Section 7.
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2. TWO ILLUSTRATIVE EXAMPLES

2.1. An OLGs Economy. Time is discrete, t = 0, 1, 2, . . . . At each date t, a new consumer
appears in the economy. Each consumer receives an endowment e1 of a perishable good when
young and e2 when old. There is a single asset called money that can be held for trading. This
asset pays zero dividends, and it belongs to the initial old generation starting the economy. The
money supply M remains constant over time.

Let Pt be the price of money in terms of the aggregate good at date t. Then, a typical consumer
born in period t solves the following optimization problem:

max u(ct
t) + v(ct

t+1)

s.t.

ct
t + Mt

Pt
= e1

ct
t+1 = e2 + Mt

Pt+1
.

Note that ct
s denotes consumption at date s of the agent born at time t, for s = t, t + 1, and Mt

is the amount of money demanded at time t.
A sequential competitive equilibrium for this economy is a sequence of prices {Pt} and

sequences of optimal choices {ct
t, ct

t+1, Mt} for the given prices such that both commodity and
money markets clear at all times:

ct
t + ct−1

t = e1 + e2,(1)

Mt = M(2)

for all t ≥ 0. For interior solutions, under the concavity of the objective function, the budget-
constrained optimal choice {ct

t, ct
t+1, Mt} is fully characterized by the first-order conditions:

u′(ct
t) = λt,(3)

v′(ct
t+1) = λt+1,(4)

λt

Pt
= λt+1

Pt+1
,(5)

where λt is a Lagrange multiplier at time t.
To analyze the dynamics of the model, we can indistinctly consider any of the following three

(state) variables: consumption, ct
t, the price level, Pt, or the amount of real money balances,

bt ≡ M/Pt. That is, all these three variables provide the same information. Then, rearranging all
the above equations, equilibrium sequences {ct

t, ct
t+1, Mt, Pt} can be fully characterized by the

equation

btu′(e1 − bt) = bt+1v
′(e2 + bt+1).(6)

A standard approach for computing equilibrium solutions would be to search for a continuous
function g : X → X with bt+1 = g(bt), for all t ≥ 0 and

btu′(e1 − bt) = g(bt)v′(e2 + g(bt)).(7)

We would like to stress that existence of a continuous equilibrium function bt+1 = g(bt) re-
quires further assumptions on the model primitives. More specifically, a continuous equilibrium
function bt+1 = g(bt) occurs under monotone equilibrium dynamics: An upward sloping offer
curve arising under the assumption of gross substitutes in consumption. But if the offer curve is



86 FENG, MIAO, PERALTA-ALVA, AND SANTOS

FIGURE 1

OFFER CURVE

backward bending, then bt+1 = g(bt) is just a correspondence, which may not have a continuous
selection.

For instance, as is well known (Grandmont, 1985), the offer curve is backward bending for
the following parameterization:

u (c) = c0.45, v (c) = −0.8
7

c−7, M0 = 1, e1 = 2, e2 = 26/7 − 21/7

(see Figure 1). Here, the upper and lower arms are two continuous equilibrium selections. As
illustrated in Section 5, there are other cases in which no continuous equilibrium selection does
exist.

For this parameterization, we applied a version of the projection method over (7) to compute
a continuous policy bt+1 = g(bt). Depending on the initial guess, the numerical approximation
converges to either the upper or to the lower arm of the offer curve or to some other hybrid
solution. This strong dependence on initial conditions is a rather undesirable feature of this
computational method. In particular, if we only consider the lower arm of the actual equilibrium
correspondence, then all competitive equilibria converge to autarchy (zero monetary holdings).
But if we iterate over the upper arm of the offer curve, we find that money holdings converge
monotonically to the stationary solution M̄

p = 0.4181. Hence, even in the deterministic version,
we need a global approximation of the equilibrium correspondence to analyze the various
predictions of the model. As a matter of fact, none of these two selections would capture a
two-period equilibrium cycle in which real money holdings oscillate between 0.8529 and 0.0953
(Figure 2). It is also known that the model has a three-period cycle.

As shown in Section 5, for certain parameterizations, an OLG economy may not admit an
equilibrium function over the natural space of state variables. To compute the equilibrium set,
we could consider some auxiliary variables. One possible choice is to select continuation utilities
over the multiple equilibrium paths. Continuation utilities, however, will force us to discard the
first-order condition (6). Thus, from a computational point of view it seems optimal to build an
efficient numerical algorithm based upon (6).

Let us then define mt+1 as mt+1 = bt+1
bt

v′(e2 + bt+1). Now, Equation (6) reduces to u′(e1 − bt) =
mt+1. This simple equation seems much easier to compute. Accordingly, we propose to compute
the set of all equilibrium paths over an expanded state space (bt, mt). In this expanded state
space, we will define an equilibrium correspondence that generates all equilibrium paths. With
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FIGURE 2

EQUILIBRIUM CYCLES

this background in place, let us further illustrate our computational method in the following
example.

2.2. Optimal Growth. Consider the infinite-horizon optimization problem

max{ct,kt+1}
∞∑

t=0
βtu(ct)

s.t.

ct + kt+1 = F (kt, 1) + (1 − δ)kt

given k0, 0 < β < 1, 0 < δ ≤ 1.

Under standard conditions for u and F, the solution to the above problem can be fully charac-
terized by the (infinite) set of Euler equations:

u′(F (kt, 1) + (1 − δ)kt − kt+1)(8)

= βu′(F (kt+1, 1) + (1 − δ)kt+1 − kt+2)(Fk(kt+1, 1) + 1 − δ).

A common approach is to search for a continuous function kt+1 = g(kt) over this time-
homogeneous nonlinear system:

u′(F (kt, 1) + (1 − δ)kt − g(kt))(9)

= βu′(F (g(kt), 1) + (1 − δ)g(kt) − g(g(kt)))(Fk(g(kt), 1) + 1 − δ),

for all t ≥ 0.

Under some specifications for the production function F , a continuous solution g may not
exist (cf. Boldrin and Rustichini, 1994). For instance, in models with externalities, function F
may be written as F (k, 1) = f (k̂, k, 1), with k̂ = k at every equilibrium solution. As a matter of
fact, in nonconvex programming, the Euler equation may pick suboptimal solutions. In those
cases, the set of optimal solutions may be characterized by continuation utilities or some other
auxiliary variables.
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For simplicity, let us assume that the system of Euler equations (9) determines all equilibrium
solutions. Then, we cannot hope to find a recursive representation of equilibrium by condition-
ing on variable k only. Indeed, for every k0 there is a continuum of vectors (k1, k2) that satisfy
the above Euler equation (9). A recursive characterization of equilibrium, however, can readily
be obtained by letting the state space comprise equilibrium pairs (c, k). That is, for each (k0, c0),
the resource constraint determines k1; furthermore, c1 can be solved from the Euler equation.
Therefore, for each equilibrium pair (c, k), the Euler equation (9) generates a unique continu-
ation value (k+, c+). We would like to stress that for computational purposes it may be more
operative to expand the state space with auxiliary variable m ≡ u′(c)(Fk(k, 1) + 1 − δ), that is
the shadow return of one unit of investment. As in the preceding example, the Euler equation
is linear in m. This will be useful in the computation stage.

Let K be the domain of possible values for the capital stock and M the set of possible values
for m. We could start with space K × M as an initial guess for all starting equilibrium values.
Usually, this universal set is too broad: Many pairs (k, m) may lack continuation values (k+, c+)
over the above Euler equation (9). Each initial guess will be refined under the action of the
following operator B embedding all short-run equilibrium conditions.

Let V : K → M be a large enough correspondence of potential continuation values (k+, m+).
For every k, let m ∈ B(V )(k) if there exists (c, k+, m+) with m+ ∈ V (k+) such that

c + k+ = F (k, 1) + (1 − δ)k(10)

u′(c) = βm+,(11)

where m ≡ u′(c)(Fk(k, 1) + 1 − δ). Correspondence V is chosen large enough2 so that the new
correspondence B(V ) is a subset of V . Then, by construction we obtain a decreasing sequence of
correspondences Vn+1 = B(Vn) that converge to the equilibrium correspondence V ∗. Therefore,
starting from each pair (k, m) ∈ graph(V ∗), we can generate a sequence of equilibrium solutions
{ct, kt+1} satisfying the above equation system at all times. As a matter of fact, every sequential
equilibrium solution can be generated under some initial equilibrium pair (k, m) ∈ graph(V ∗).

To summarize, under the action of operator B, the recursive equilibrium algorithm finds a
Markov equilibrium correspondence V ∗ that can generate all (sequential) equilibrium solutions.

There are three main points to be emphasized from this exercise. First, the equilibrium
correspondence is the maximal fixed point of operator B. That is, V ∗ = B(V ∗) and V ′ ⊂ V ∗

for any other fixed point V ′ = B(V ′). Hence, under a proper formulation of the state space the
existence of a fixed point V ∗ is tantamount to the existence of a sequential equilibrium solution.
Second, the iteration process under operator B proceeds over correspondences instead of
functions. Although iteration over correspondences may be computationally more costly, the
recursive equilibrium algorithm guarantees convergence to the set of equilibrium solutions
under a good initial guess V0. Finally, the recursive equilibrium algorithm is subject to the curse
of dimensionality, as it may involve maximizations and integrations over spaces of functions
and set iterations. Indeed, some characterizations of Markov equilibria may not be computable.
Therefore, the choice of the state space is usually critical. In the previous two examples, the
state space has been enlarged with the shadow values of investment.

3. GENERAL THEORY

In this section, we first set out a general analytical framework that encompasses various
recursive economic models. Their equilibrium time series, however, may depend on full histories
of shocks and economic variables. Therefore, these equilibria are not directly amenable to
computation unless we can find a Markovian representation over a well-chosen state space.
Then, we present a formal version of our recursive algorithm. In Section 4, we develop a
convergent numerical algorithm with desirable approximation properties.

2 Our method works under the weaker condition that V contains equilibrium correspondence V ∗ presently defined.



SIMULATION OF DYNAMIC ECONOMIES 89

Following Ljungqvist and Sargent (2000), a recursive equilibrium representation is conformed
by “a transition mapping the state of the model today into the state tomorrow and a function
mapping the state into the other endogenous variables of the model.” Duffie et al. (1994)
show that under fairly general conditions it is possible to provide a recursive representation of
sequential competitive equilibria by expanding the state space with all endogenous variables.
Their approach does not cover models with endogenous constraints—nor does it provide a way
to find or approximate equilibria. Our analysis will be guided by computational considerations,
and so it is imperative to keep a manageable state space.

3.1. General Framework. Time is discrete t = 0, 1, 2, . . . . At every date t, the economy is
composed of I agents, and it is shocked by a vector of exogenous variables z. This vector
follows a Markov chain (zt)t≥0 over a finite set Z = {

1, 2, . . . , Ẑ
}

as described by transition
probabilities π (z′|z) for all z, z′ ∈ Z. The initial state, z0 ∈ Z, is known to all agents in the
economy. Then zt = (z0, z1, z2, . . . , zt) ∈ Zt+1 is a history of shocks, often called a date event or
node. Endogenous predetermined variables are denoted by x, with x ∈ X, X ⊂ R

N. Vector x
may include agents’ holdings of physical capital, human capital, and financial assets. All other
endogenous variables are denoted by y, with y ∈ Y, Y ⊂ R

L. Vector y may include equilibrium
prices, choice variables such as consumption and investment, and auxiliary variables such as
Lagrange multipliers, shadow values of investment, and continuation utilities. Indeed, certain
auxiliary variables may either be necessary or may allow for a more operational representation
of equilibrium.

In Section 6, our set of auxiliary variables includes shadow values of investment of each
existing asset for every agent, m ∈ M, M ⊂ R

K, and continuation utilities, p ∈ R
I, as is common

in the literature on incentive constraints. Agents will have the choice to default. It is thus
necessary to specify the payoff of default, which in our case implies permanent exclusion from
commodities and financial markets. Default carries a lifetime utility that may depend on the
vectors of shocks z and endogenous predetermined state variables x. When nonconvexities arise
from individual effects on the aggregate state variables, first-order conditions cannot longer be
invoked. Hence, computations must consider global maximization methods. More precisely,
each of the I agents in this economy confronts an expected discounted lifetime utility given
by a function Paut : R

N × Z → R
I in case of default. This payoff function Paut may depend on

both individual and aggregate state variables and may give rise to a non-concave individual
optimization problem.

The thrust of our analysis is the computation of sequential competitive equilibria (SCE),
as described by infinite sequences {x(zt), y(zt)}t≥0. We limit this exercise to models where all
SCE lie in a compact space and can be characterized by aggregate resource constraints and
short-run optimality conditions involving only variables of two contiguous time periods, t and
t + 1. Specifically, the law of motion of the state vector x is conformed by a system of nonlinear
equations:

ϕ(xt+1, xt, yt, zt) = 0.(12)

Function ϕ may embed technological constraints as well as individual budget constraints. For
some models, we can explicitly solve for xt+1 as a function of (xt, yt, zt) . But in some other
applications, such as in models with adjustment costs, xt+1 may not admit an analytical solution.

Furthermore, a SCE {x(zt), y(zt)}t≥0 must satisfy an infinite system:

(xt, yt, zt, xt+1, yt+1, zt+1) ∈ �,(13)

for all t ≥ 0. Functional � describes various short-run equilibrium conditions: (i) Euler equa-
tions, in which case � represents simply a nonlinear system, (ii) one-period ahead constrained-
optimization to account for nonconcave maximization programs because of real and financial
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distortions and additional participation constraints, (iii) market-clearing conditions, and (iv)
various types of budget restrictions and resource constraints.

We say that a model is recursive and time invariant if there exist functionals ϕ and � charac-
terizing the set of all SCE under conditions (15–16). Several assumptions underlie this abstract
formulation.

First, the space of endogenous variables X × Y is compact. Hence, transversality conditions
at infinity are usually trivially satisfied. Section 6 shows how a compact domain X × Y may arise
from optimization conditions in the presence of unbounded utility and production functions.
Therefore, (12–13) must provide a set of sufficient conditions for the characterization of all
SCE. Second, (12–13) only involve variables at times t and t + 1. Hence, production and utility
functions, technological, borrowing, and incentive constraints must satisfy certain intertemporal
separability assumptions. For instance, some forms of habit formation may be incorporated in
the analysis by including auxiliary variables. Third, (12–13) are time invariant. That is, we
search for a time-homogeneous Markovian representation of SCE, which will be given by an
equilibrium correspondence mapping current states into equilibrium values for each successor
node.

3.2. The Recursive Equilibrium Algorithm. The set of SCE may not admit a recursive rep-
resentation over the standard state space comprising exogenous shocks z and predetermined
endogenous variables x. To recover a recursive structure it is necessary to enlarge the state
space. The required expansion of the state space will depend on the economic application.
Hence, at this stage of our analysis we will simply assume that the equilibrium values of
the required vector of auxiliary variables are described by an equilibrium correspondence
V ∗ : (x, z) �−→ V ∗ (x, z) ⊆ Y. This equilibrium correspondence may contain discontinuities and
multiple equilibria. Under standard continuity conditions on utility and production functions,
the equilibrium correspondence is usually upper semicontinuous.

The theoretical underpinnings of our recursive equilibrium algorithm rest on the iteration of
monotone equilibrium inclusions (Kydland and Prescott, 1980; Abreu et al., 1990) that lead to
a convergent process. We first select an appropriate set of state variables and a well-chosen
initial correspondence V0. Then, we apply a monotone operator, B, that generates sequences
of nonempty decreasing compact sets {Vn} shrinking to the equilibrium correspondence V ∗.
Operator B embodies all short-run equilibrium conditions (15–16) from any initial value z to all
immediate successor nodes z+. This operator is analogous to the expectations correspondence of
Duffie et al. (1994), albeit it may contain a smaller set of endogenous variables. Using operator
B, we can generate the set of all SCE under time-invariant equilibrium selections.

More precisely, for any given V under the action of operator B we obtain V ′ = B (V ).
Correspondence V ′ is defined as follows: Pick a vector (x, z). Then, v ∈ V ′(x, z) if there is a
vector (y, x+, y+(z+), v+(z+)) for all z+ ∈ Z, with v+ (z+) ∈ V (x+, z+) such that the resulting
vector (x, y, z, x+, y+, z+) satisfies the temporary equilibrium conditions (12–13).

For models where a SCE exists, correspondence B(V ) will be nonempty provided that our
initial guess V0 has been properly chosen. Note that by construction operator B is monotone: If
V ⊂ V̂ then B(V ) ⊂ B(V̂ ).3 Furthermore, under standard continuity conditions on functionals
ϕ and � it follows that if V has a closed graph then B(V ) will have a closed graph.

ASSUMPTION 1. Operator B preserves compactness: If V is compact valued then B(V ) is also
compact valued.

Assumption 1 will allow us to establish some uniform convergence properties of the algorithm.
This assumption could be weakened to show existence of a fixed-point solution V ∗ and the global
convergence of the iteration process.

3 For correspondences V, V̂ we say that V ⊂ V̂ if V (x, z) ⊂ V̂ (x, z) for all (x, z). We shall consider the usual notion
of distance over sets given by the Hausdorff metric.
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THEOREM 1 (EXISTENCE AND GLOBAL CONVERGENCE). Let V0 be a compact-valued correspon-
dence such that V0 ⊃ V ∗. Let Vn = B (Vn−1) for all n ≥ 1. Then, operator B has a fixed-point
solution, that is, V ∗ = B(V ∗), where V ∗ = limn→∞ Vn. Moreover, V ∗ is the largest fixed point of
operator B; that is, V = B(V ) implies V ⊂ V ∗.

We again would like to remark that operator B iterates over sets instead of functions. Hence, if
there are multiple equilibria, we can find all of them. By definition, for any (x, z, v) ∈ graph(V ∗),
under the action of operator B, we can generate a new vector (x+, z+, y, v+) that can be extended
into a SCE {x(zt), y(zt)}t≥0. Since the fixed point of operator B is an upper semicontinuous
correspondence, it is possible to select a measurable policy function y = gy(x, z, v), a transition
function v+ (z+) = gv(x, z, v; z+), and continuation values for the endogenous predetermined
variables x+ so that ϕ (x+, x, y, z) = 0. Let us summarize these future equilibrium values over
the extended state space as g(x, z, v; z+) = (x+, z+, v+). Then, g is a Markovian equilibrium
selection.4

To summarize, the set of SCE {x(zt), y(zt)}t≥0 admits a recursive representation in an expanded
state space. Our recursive equilibrium algorithm rests upon iteration of sets under a monotone
operator B. For a well-chosen initial correspondence, the iteration process converges to the
Markov equilibrium correspondence V ∗. We now proceed to the numerical implementation of
the algorithm and to study its approximation properties.

4. NUMERICAL IMPLEMENTATION

In this section, we develop a numerical implementation of operator B and study its con-
vergence and accuracy properties. For models with multiple equilibria, the fixed point of the
numerical algorithm converges uniformly to the Markov equilibrium correspondence as the
mesh size of the discretization converges to zero. For models with a unique equilibrium, our re-
sults imply that the accuracy of the numerical approximation is of the same order of magnitude
as the mesh size of our discretization.

For dynamic games, Judd et al. (2003) and Judd and Yeltekin (2010) develop an approxima-
tion procedure with good accuracy properties. Essentially, their approximation method works
well for convex equilibrium correspondences. The convexity of the equilibrium correspon-
dence may be achieved via a public randomization device. Randomization over the original
set of strategies seems quite appealing in game theoretic settings. Such ex post convexification,
however, may arbitrarily expand the equilibrium set of a competitive economy and may not
be compatible with individual optimization behavior. Note that by construction operator B is
monotone and maps compact sets into compact sets, but it does not preserve convexity.

We now proceed as follows: First, we partition the state space into a finite set of J
simplices with mesh size h. Compatible with this partition, we consider a sequence of
step correspondences, which take constant set-values on each simplex. Step correspondences
are the analog of step functions and have good approximation properties. We also introduce a
finite-dimensional outer approximation over the image of the step correspondences; this outer
approximation is made up of � cubes or finite-dimensional elements. Then, combining these
approximations, we obtain a computable operator Bh,� with accuracy parameters (h, �). Under
the action of operator Bh,�, we construct a sequence of correspondences that converge to a
fixed point containing equilibrium correspondence V ∗. We shall study accuracy properties of
the algorithm as we refine our discretizations over (h, �).

4.1. The Numerical Algorithm. Assume that all equilibrium state vectors (x, z, v) belong to
some set S, which is a subset of the product space S = X × Z × Y . Let

{
Xj

}J
j=1 be a finite family

4 It should be clear that g(·; z+) denotes a coordinate function of g(·) corresponding to the successor node z+|z.
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of simplices with nonempty interior such that ∪j X j = X and int(Xj ) ∩ int(Xj ′
) is empty for

every pair Xj , Xj ′
. Define the mesh size h of this discretization as follows:

h = max
j

diam
{
Xj} .(14)

For any multivalued mapping V : X × Z → 2Y , where 2Y denotes the subsets of vectors for
space Y containing the required auxiliary variables, an approximation V h compatible with the
partition

{
Xj

}
takes on constant set-values V h(x, z) on each simplex Xj . More precisely,

V h(x, z) = ∪x∈Xj V (x, z), for each given z and all x ∈ Xj .(15)

This definition of step correspondence V h will include all equilibrium values and preserve
the monotonicity property over the discretized process. Analogously, over each Xj we define
operator Bh(V ) as Bh(V )(x, z) = ∪x∈Xj B(V )(x, z) for each given z and all x ∈ Xj . As before,
one can prove that Bh has a fixed-point solution. To obtain a computable representation of these
correspondences, we also discretize the image space. For a given set V , we say that C� (V ) ⊇ V
is an �-element outer approximation of V if C� (V ) can be generated by � elements. We require
this numerical representation to preserve monotonicity: V ⊂ V̂ implies C� (V ) ⊂ C�(V̂ ). This
is essential to guarantee monotonicity of a computable version of operator B. We also require
lim�→∞ C� (V ) = V.

Combining these approximations, we can construct a new operator Bh,� as follows: We first
define the step correspondence Bh(V ) of B(V ). Then, each set-element of Bh(V ) is adjusted by
the �-element outer approximation to get C�

(
Bh(V )

)
.

Therefore, the output of our numerical algorithm would be summarized by correspondences
V h,�

n under the action of a globally convergent operator Bh,�. From the application of operator
Bh,� on V h,�

n , we can choose an approximate policy function y = gy,h,�
n (x, z, v) and a transition

function v+ (z+) = gv,h,�
n (x, z, v; z+). From the computed selections we can generate approxi-

mate SCE paths {xt(zt), yt(zt)}∞t=0. Sections 5 and 6 illustrate examples of such operators and
their application to different dynamic models.

4.2. Convergence and Accuracy Properties. We finally show that our discretized operator
Bh,� has good convergence properties. The fixed point of this operator V ∗,h,� contains equi-
librium correspondence V ∗, and it converges uniformly to this limit point as we refine the
approximations. The proof of this result extends the convergence arguments of Beer (1980) to
a dynamic setting.

THEOREM 2. For given h, �, let V0 ⊇ V ∗. Let V h,�
n = Bh,�(V h,�

n−1) for all n ≥ 1. Then, (i)
V h,�

n ⊇ V ∗ for all n, (ii) V h,�
n → V ∗,h,� as n → ∞, and (iii) V∗,h,� → V ∗ as h → 0 and � → ∞.

As stated in the theorem, three points are to be emphasized from these results. First, the set
of numerical solutions always contains the equilibrium correspondence. Second, the iteration
process is globally convergent. Finally, as we refine these approximations, the fixed point of our
numerical algorithm shrinks to the equilibrium correspondence.

We now establish uniform convergence over accuracy parameters (h, �). Hence, the approxi-
mation error is directly correlated with the mesh size of the discretizations. For correspondences
V h,�

n and V , consider the distance d(graph(V h,�
n ), graph(V )), where d refers to the Hausdorff

metric.

THEOREM 3. Under the conditions of Theorem 2, for any given ε > 0 there are �̂, ĥ, n̂ such that
the distance d(graph(V h,�

n ), graph(V ∗)) ≤ ε for all � ≥ �̂, h ≤ ĥ, n ≥ n̂.
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Hence, for any sufficiently close discretization (�, h, n), all approximate solutions (x, z, v) are
within an ε-ball of graph(V ∗). Furthermore, an ε-ball of graph(V h,�

n ) contains graph(V ∗). This
important approximation result comes directly from the construction of our numerical operator
Bh,� that preserves equilibrium solutions and compactness over the iteration process. As already
remarked, if the equilibrium correspondence V ∗ is just a function, then Theorem 3 implies the
existence of error bounds for the approximate solutions. Indeed, these bounds follow directly
from the size of the errors of the discretization procedure under parameters (h, �).

5. STOCHASTIC OLG ECONOMIES

OLG models have become quite relevant in the analysis of several macro issues, such as
the funding of social security, the optimal profile of savings, and investment over the life
cycle, the effects of various fiscal and monetary policies, and the evolution of future interest
rates and asset prices under current demographic trends.5 As already stressed, there are no
known convergent procedures for the computation of sequential competitive equilibria in OLG
models even for frictionless economies with complete financial markets. Our approach delivers
a reliable, computable algorithm for the solution of competitive equilibria in a general class
of OLG models. As shown later, the application of standard numerical methods that build on
the existence of a continuous policy function is not adequate for the computation of these
economies. Indeed, a continuous Markov equilibrium may not exist—or there could be a
vast multiplicity of equilibria. Citanna and Siconolfi (2010) establish generic existence of this
Markovian property of equilibrium under the additional assumption that the number of agents
is sufficiently large. Of course, for computational reasons many economies of practical interest
contain a limited number of agents that are given as model primitives; furthermore, this recursive
representation is not necessarily continuous.

5.1. The Economic Environment. At each date, a new generation made up of two agents
appears in the economy. Each agent is alive for two periods. Let (i, zt) denote an agent of type
i = 1, 2 born at date-event zt = (z0, z1, . . . , zt). There are two perishable commodities available
for consumption at any given date event. Let good 1 be the numeraire commodity and p the
relative price of good 2. There are two assets. The first asset is a one-period risk-free bond
trading at price qb(zt). The second is a Lucas tree, trading at price qs(zt). The tree generates
a random stream of dividends d(zt). Let (θb,i,zt

, θs,i,zt
) be a pair of bond and share holdings of

agent (i, zt) . Shares cannot be sold short: θs,i,zt ≥ 0. Each individual faces the following budget
constraint:

p(zt) · ci,zt
(zt) + θb,i,zt

(zt)qb(zt) + θs,i,zt
(zt)qs(zt) ≤ p(zt) · ei,zt

(zt),(16)

p(zt+1) · ci,zt
(zt+1) ≤ θb,i,zt

(zt)(17)

+ θs,i,zt
(zt)[d(zt+1) + qs(zt+1)] + p(zt+1) · ei,zt

(zt+1) all zt+1|zt.

The utility function Ui is separable over consumptions of different dates:

Ui(ci,zt
; zt, zt+1) = ui(ci,zt

(zt), zt) + β
∑

zt+1∈Z

vi(ci,zt
(zt+1), zt+1)π(zt+1|zt).(18)

ASSUMPTION 2. For each z ∈ Z, the one-period utility functions ui(·, z), vi(·, z) : R+ → R ∪
{−∞} are increasing, strictly concave, and continuous. These functions are also continuously
differentiable at every interior point c > 0.

5 For instance, see Conesa et al. (2009), Geanakoplos et al. (2004), Gourinchas and Parker (2002), Imrohoroglu et al.
(1995), Storelesletten et al. (2004), and Ventura (1999).
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As before, a SCE is a collection of vectors {(ci,zt
(zt), ci,zt

(zt+1), θi,zt
(zt))2

i=1, p(zt), q(zt)}t≥0, such
that each consumption-savings plan {ci,zt

(zt), ci,zt
(zt+1), θi,zt

(zt)} solves the constrained utility
maximization of the agent, and goods and assets markets clear.

Note that, in this economy the aggregate commodity endowment is bounded by a portfolio-
trading plan (Santos and Woodford, 1997), and hence asset pricing bubbles cannot exist in a
SCE. Therefore, equilibrium asset prices must be bounded at each date. It follows that the
existence of a SCE can be established by standard methods (e.g., Balasko and Shell, 1980;
Schmachtenberg, 1988).

5.2. Lack of Recursive Equilibria on the Natural State Space. Let us first discuss the model
specification of Kubler and Polemarchakis (2004), where the real asset is not available. The
intertemporal objective of agent of type 1 is given by

− 1024(
c1,zt

1

)4 + Ezt+1|zt

[
− 1024(

c1,zt

1 (zt+1)
)4 − 1(

c1,zt

2 (zt+1)
)4

]
,

whereas that of an agent of type 2 is given by

− 1(
c2,zt

1

)4 + Ezt+1|zt

[
− 1(

c2,zt

1 (zt+1)
)4 − 1024(

c2,zt

2 (zt+1)
)4

]
.

Each individual receives a random endowment of good 1 in her first period of life. Specifically,
e1,zt

1 (zt) = 10.4, e2,zt

1 (zt) = 2.6 if zt = z1, and e1,zt

1 (zt) = 8.6313, e2,zt

1 (zt) = 4.3687 if zt = z2. En-
dowments during the second period of life are deterministic and include positive amounts of
both goods. Namely, e1,zt

(zt+1) = (12, 1) and e2,zt
(zt+1) = (1, 12).

Kubler and Polemarchakis (2004) show that bond holdings turn out to be equal to zero
in the two states. To determine consumption when old we must know the realization of the
endowment when young.6 Bond holdings and current shocks are not enough to pin down
the dynamic behavior of equilibrium. In other words, the model does not admit a Markov
equilibrium representation over the natural state space. The specific configuration of equilibrium
is as follows: At any state history zt−1 with zt−1 = z1 and for any possible value of the shock
today (c1,zt−1

1 (zt), c1,zt−1

2 (zt)) = (10.4, 2.6), (c2,zt−1

1 (zt), c2,zt−1

2 (zt)) = (2.6, 10.4), and q = 1, p = 1.

Similarly, for any state history zt−1 with zt−1 = z2 and for any possible value of the shock today
(c1,zt−1

1 (zt), c1,zt−1

2 (zt)) = (8.4, 1.4), (c2,zt−1

1 (zt), c2,zt−1

2 (zt)) = (4.6, 11.6), and q = 1, p = 7.9.

What would happen if we approximate this economy by standard methods? To answer this
question, we applied a projection method with collocation and piecewise linear interpolation.
This collocation method approximates the Euler equation to search for a continuous equilibrium
function over the natural state space. The computed equilibrium function delivers reasonable
Euler equation residuals (i.e., of the order of 10−5) and a researcher may be led to believe that
this function is a good approximate solution; however, the computed prices and allocations are
quite different from those of the exact equilibrium (Table 1).

The relative price of good 2 is a function of the endowment in the previous period. The price is
not signaled by the natural state space, as there is no trade among generations. The equilibrium
relative price of good 2 can take on two values, and asset holdings take on one single value.
This observation may explain the large differences in Table 1 between the simulated moments
generated by the true and computed solutions. Indeed, the computed function by the projection
method takes on a single value for the relative price of good 2 midway between the two possible
equilibrium values.

6 Because of an indeterminacy problem of the Euler equation, we can approximate the equilibrium of this more
limited economy by letting the stock of trees go to zero.
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TABLE 1
STATISTICAL PROPERTIES OF THE TRUE EQUILIBRIUM VS. AN EQUILIBRIUM GENERATED BY THE PROJECTION METHOD

Statistics q c1,zt−1

1 c1,zt−1

2 c2,zt−1

1 c2,zt−1

2

(μtrue, μprojection) (1.0, 0.6) (9.7, 9.7) (2.0, 1.7) (3.6, 3.8) (11.0, 11.3)
(σ2

true, σ
2
projection) (0.0, 0.05) (1.0, 0.2) (0.36, 0.81) (1.0, 0.09) (0.36, 0.08)

NOTES: Statistics: Mean μ and variance σ2.

5.3. The Recursive Equilibrium Algorithm. A recursive representation of equilibria can be
readily recovered on an enlarged state space composed of the natural state variables and the
shadow values of investment as auxiliary variables. For the present economy of Kubler and
Polemarchakis (2004), the Markov equilibrium correspondence can be defined as

V ∗ (θ0, z0) =

⎧⎪⎨⎪⎩
(

Dcv
1(c1,z0

(z0) , z0), Dcv
2(c2,z0

(z0) , z0)
)

:{(
ci,zt

(zt) , ci,zt (
zt+1|zt

)
, θi,zt (

zt+1
))2

i=1 , p(zt), q (zt)
}

t≥0
is a SCE

⎫⎪⎬⎪⎭ .(19)

Operator B will build on the first-order and market-clearing conditions. After some algebra,
these conditions can be written as follows:

12 + p + θ

4p 1/5 + p
+ 4 + 48p − 4θ

p 1/5 + 4p
= 13,(20)

q(
e1

1(z) − qθ
)5 = π[z+ = z1|z](

12 + p(z+) + θ+
1 + 0.25p(z+)4/5

)5 + 1 − π[z+ = z1|z](
12 + p(z+) + θ+
1 + 0.25p(z+)4/5

)5 ,(21)

q(
e2

1(z) + qθ
)5 = π[z+ = z1|z](

1 + 12p(z+) − θ+
1 + 4p(z+)4/5

)5 + 1 − π[z+ = z1|z](
1 + 12p(z+) − θ+

1 + 4p(z+)4/5

)5 .(22)

Then, for each given (z, θ) and m ∈ V (z, θ) we have that m ∈ BV (z, θ) if there are
(q, p, z+, θ+, m (z+)) such that

12 + p + θ

4p 1/5 + p
+ 4 + 48p − 4θ

p 1/5 + 4p
= 13,(23)

q(
e1

1(z) − qθ
)5 = Em1

+,(24)

q(
e2

1(z) + qθ
)5 = Em2

+.(25)

The numerical implementation of our recursive equilibrium algorithm is quite simple in this
model. The only equilibrium portfolio is θ = 0. However, to test the algorithm we consider
a slightly larger domain [θ, θ], with θ < 0 < θ. Our family of simplices is given by the set of N
intervals of the form [θ + nh, θ + (n + 1)h] for n = 1, 2, . . . , N − 1, and h is such that θ = θ + Nh.

The only equilibrium price for the bond is q = 1. This value together with the definition of the
shadow values of investment are now used to set up our discretization for the initial step
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correspondence. Let θ ∈[θ + nh, θ + (n + 1)h]. Then,

V h,�
0 (θ, z) =

⋃
i,j

{
(m1, m2) ∈

[
1

e1(z) − (θ + nh) − i�
,

1
e1(z) − (θ + nh) − (i + 1)�

]

×
[

1
e2(z) + (θ + (n + 1)h) − j�

,
1

e2(z) + (θ + (n + 1)h) − (j + 1)�

]}
for i = 1, . . . , Ni, j = 1, . . . , Nj , and e1(z) − (θ + nh) − (Ni + 1)� = (θ + (n + 1)h), and e2(z) +
(θ + (n + 1)h) − (Nj + 1)� = e2(z) + (θ + nh). This specification is also very convenient be-
cause we have partitioned the image of the correspondence into Ni × Nj pieces at each
element of the simplex of the domain of asset holdings. Iteration of operator Bh,� will
eliminate those pieces that cannot be linked to a continuation value. After k iterations,
correspondence V h,�

k is conformed by the union of those pieces that have not been elim-
inated. Operator Bh,� is then defined as follows: For any given simplex, an element (i, j)
of V h,�

k remains in Bh,�V h,�

k = V h,�

k+1 if there is at least one θ ∈ [θ + nh, θ + (n + 1)h], and
a pair (m1, m2) ∈ [ 1

e1(z)−(θ+nh)−i�, 1
e1(z)−(θ+nh)−(i+1)� ] × [ 1

e2(z)+(θ+(n+1)h)−j�, 1
e2(z)+(θ+(n+1)h)−(j+1)� ],

for which we can find (q, p, z+, θ+, m (z+)) satisfying conditions (23–25).

6. INTERNATIONAL RISK SHARING

A growing literature has developed to explore the performance of business cycle models
under market imperfections leading to limited risk sharing. As documented in various papers
(e.g., Backus et al., 1992), standard versions of the neoclassical growth model cannot account for
certain comovements of macroeconomic aggregates. We now show that our reliable algorithm
can naturally be applied to the computation of two-country models with real and financial
frictions.

6.1. The Economic Environment. We just outline an economy in the spirit of Kehoe and
Perri (2002) in which we include shocks on preferences and taxes. There are two countries with a
representative household in each country. Each economy is affected by a vector of shocks z that
follow a Markov chain. There is a unique aggregate good. Production technologies are country
specific. Labor and capital stocks cannot be moved across countries, but limited international
borrowing is possible. Assets include physical capital and bonds.

The representative household of country i = 1, 2 has preferences over stochastic sequences
of consumption and labor given by the utility function

E

[ ∞∑
t=0

βtui (ci
t, li

t, zt
)]

.(26)

Function ui(·, ·, zt) : R
2 → R is increasing in ci ≥ 0 and decreasing in li ∈ [0, 1], strictly concave,

and twice continuously differentiable. Stochastic consumption plans
(
ci

t

)
t≥0 are financed by

commodity endowments, after-tax capital returns, labor income, and lump-sum transfers. These
values are expressed in terms of the single good, which is taken as the numeraire commodity
of the system at each date-event, zt. For a given rental rate ri

t and wage wi
t in country i, the

representative household offers ki
t(zt−1) ≥ 0 units of capital accumulated from the previous

period and supplies li
t(zt) units of labor.

One-period bonds can be traded at all times. Let bi(zt, ξl
t+1(zt)) denote bond holdings of agent

i, where ξl
t+1(zt) is a representative element of a given partition of the possible successors zt+1|zt.

Hence, ∪lξ
l
t+1(zt) equals the set of all zt+1|zt, and ξl′

t+1(zt) ∩ ξl
t+1(zt) = 0 whenever l′ �= l. A bond

is a promise to deliver one unit of the consumption good whenever zt+1 ∈ ξl
t+1(zt), and zero



SIMULATION OF DYNAMIC ECONOMIES 97

otherwise. This specification allows for a full set of state contingent bonds if ξl
t+1(zt) is a unique

element for each l. An uncontingent bond pays one unit of the good for any possible future
state. Let q(zt, ξl

t+1(zt)) be the price of a bond issued at zt.
The representative household of country i is subject to the following sequence of budget

constraints:

ci
t(zt) + ki

t+1(zt) + bi
(
zt, ξl

t+1(zt)
)
q
(
zt, ξl

t+1(zt)
) = wi

t (zt) li
t (zt)(27)

+(
1 − τi

k(Ki)
)
ri

t(zt)ki
t(zt−1) + (1 − δ)ki

t(zt−1) + ei
t(zt) + bi

(
zt−1, ξl

t(zt−1)
) + T i

t (zt)

for all zt, t ≥ 0, given ki
0.

Endowments ei
t(zt) are strictly positive and depend only on the current realization of the

shock zt. Capital income is taxed according to function τk, which may depend on the aggregate
capital stock, Ki

t, or some other state variables. This tax function is assumed to be positive,
continuous, and bounded away from 1. Tax revenues are rebated back to the representative
consumer as lump-sum transfers T i

t (zt) = τi
k(Ki)ri

t (zt) Ki
t (zt) .

As in Kehoe and Perri (2002), we consider two scenarios for financial markets: a debt-
constrained economy and a liquidity-constrained economy. In the debt-constrained economy,
consumers have a complete menu of contingent bonds. Financial markets would be therefore
complete, except for the fact that there are constraints on debt holdings. Debt repudiation is
possible and entails permanent exclusion from financial markets. As a result, holdings of debt
are constrained by the following individually rational constraint at every possible node zt:

Ezt

∞∑
τ=t

(
βi)τ

ui (ci
τ, li

τ, zτ

) ≥ V i,aut(Ki
t−1(zt), zt), for all t ≥ 0.(28)

Here, V i,aut is the expected discounted utility value for autarky as a result of zero bond trading
for country i at all dates after zt. Hence, Ki

t−1(zt) is the average level of physical capital of country
i starting at node zt. It is important to stress that the representative agent in each country makes
choices on her capital holdings, ki

t, assuming that the average value of the stock of capital Ki
t−1

is given. As is typical in many models with externalities, no individual agent realizes that her
choices affect the aggregate borrowing constraint (28). Therefore, in this setting the constraint
set is convex, and so the first-order approach can be used to characterize equilibria.

In the liquidity-constrained economy, households can trade quantities bi(zt) of a single un-
contingent bond that yields one unit of the commodity for all states, subject to the following
exogenous constraint:

bi(zt) ≥ −�i,(29)

where �i > 0.
Because of constant-returns-to-scale technologies, we can focus on the problem of a repre-

sentative firm without loss of generality. After observing the current shock z, the firm rents Ki

units of capital and hires Li units of labor. The total quantity produced of the single aggregate
good is given by a production function Ai

tF
(
Ki

t, Li
t

)
, where Ai

t is a TFP index and F
(
Ki

t, Li
t

)
is

the direct contribution of the firm’s inputs to the production of the aggregate good. At every
date-event zt, factors of production are demanded by the firm to the point in which the marginal
productivity of capital equals the rental rate ri

t, and the marginal productivity of labor equals
the wage wi

t. We shall maintain the following standard conditions on production function F .
Let D1F (K, L) be the derivative of F with respect to K.
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ASSUMPTION 3. F : R+ × R+ → R+ is increasing, concave, continuous, and linearly homo-
geneous. This function is continuously differentiable at each interior point (K, L); moreover,
limK→∞ D1F (K, L) = 0, for all L > 0.

6.2. Competitive Equilibrium.

DEFINITION 1. A SCE is a tax function τi
k(K), and a collection of vectors ({ci

t(zt),
li
t(zt), ki

t+1(zt), bi(zt, ξl
t+1(zt)), Ki

t+1(zt), Li
t(zt), ri

t(zt), wi
t(zt)}i=1,2, q(zt, ξl

t+1(zt)))t≥0 that satisfy the
following conditions:

(i) Constrained utility maximization: For i = 1, 2, the sequence {ci
t, li

t, ki
t+1, bi

t}t≥0 solves the
maximization problem for the objective (26) subject to the sequence of budget constraints
(27) as well as constraint (28) for the debt-constrained economy and constraint (29) for
the liquidity-constrained economy.

(ii) Market clearing in all the markets: Goods, capital, labor, and bond markets.

We are just extending the definition of SCE of Kehoe and Perri (2002) with the addition of
taxes. Note that in this economy international borrowing allows for imports of the aggregate
good produced abroad—available for consumption and investment—but the representative
firm can only hire local inputs—capital and labor.

There does not seem to be a general proof of existence of competitive equilibria for infinite-
horizon economies with distortions. We are aware of a related contribution by Jones and
Manuelli (1999), but their analysis is not directly applicable to models with incomplete markets
or externalities. Hence, the Appendix outlines a proof of the following result.

PROPOSITION 1. A SCE exists.

6.3. Bounds on Equilibrium Allocations and Prices. The Appendix shows the existence of
positive constants Kmax and Kmin such that for every equilibrium sequence of physical capital
vectors {ki

t+1(zt))}t≥0, if Kmax ≥ ∑2
i=1 ki

0(z0) ≥ Kmin then Kmax ≥ ∑2
i=1 ki

t+1(zt) ≥ Kmin for all
zt. Hence, in what follows the domain of aggregate capital will be restricted to the interval
[Kmin, Kmax]. We also show that every equilibrium sequence of factor prices {ri

t(zt), wi
t(zt)}t≥0 is

bounded.
To build operator B, we need to bound the equilibrium shadow values of investment.

For this purpose, we introduce the following dynamic programming argument: We de-
fine an auxiliary value function of an individual sequential optimization problem. For a
given sequence of factor and bond prices and aggregate capital (r0(z0), w0(z0), q(z0), K(z0))=
{rt(zt), wt(zt), qt (zt) , Kt+1 (zt)}t≥0, let

J i(ki
0, bi

0, z0, r0(z0), w0(z0), q(z0), K(z0)
) = max E

∞∑
t=0

βtui(ct(zt), lt(zt), zt)(30)

subject to the sequence of budget constraints (27) as well as constraint (28) for the debt-
constrained economy, and constraint (29) for the liquidity-constrained economy for given ini-
tial conditions ki

0, bi
0. That is, J i(ki

0, bi
0, z0, r0(z0), w0(z0), q(z0), K(z0)) is the maximum utility

attained for initial ki
0, bi

0, over an expected future sequence of equilibrium prices and tax re-
bates.

For every bounded sequence (r0(z0), w0(z0), q(z0), K(z0)), the value function
J i(ki

0, z0, bi
0, r0(z0), w0(z0), q(z0), K(z0)) is well defined, and continuous. Moreover, mapping

J i(·, ·, z0, r0(z0), w0(z0), q(z0), K(z0)) is increasing, concave, and differentiable with respect to
ki

0 and bi
0 (cf. Rincon-Zapatero and Santos, 2009). Let Dk,bJ i(·, ·, z0, r0(z0), w0(z0), q(z0), K(z0))

be the partial derivative of function J i(·, ·, z0, r0(z0), w0(z0), q(z0), K(z0)) with respect to
(k0, b0). Then, Dk,bJ i(·, ·, z0, r0(z0), w0(z0), q(z0), K(z0)) varies continuously with (ki

0, bi
0, r0(z0),
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w0(z0), q(z0), K(z0)). The next result readily follows from these regularity properties of the
value function.

PROPOSITION 2. For all SCE ({ci
t(zt), li

t(zt), ki
t+1(zt), bi(zt, ξl

t+1(zt)), Ki
t+1(zt), Li

t(zt), ri
t(zt),

wi
t(zt)}i=1,2, )t≥0 with Kmax ≥ ∑2

i=1 ki
0(z0) ≥ Kmin, there is a constant vector γ̂ = (γ, γ), for γ > 0

such that 0 ≤ Dk,bJ i(·, ·, z0, r0(z0), w0(z0), q(z0), K(z0)) ≤ γ̂, for all zt.

The proof is sketched in the Appendix. Observe that these bounds apply to the following
types of utility functions: (i) Both function u(·, ·, z) and its derivative are bounded; (ii) function
u(·, ·, z) is bounded, and its derivative function is unbounded; and (iii) both function u(·, ·, z)
and its derivative are unbounded. Phelan and Stacchetti (2001) deal with case (i) and Kubler
and Schmedders (2003) consider utility functions of type (iii). We provide a uniform method of
proof that covers all three cases as well as production functions with bounded and unbounded
derivatives and exogenous and endogenous constraints. As a matter of fact, Proposition 2 fills
an important gap in the literature for production economies with heterogeneous consumers
and market frictions, since no general results are available on upper and lower bounds for
equilibrium allocations and prices.

For any initial distribution of capital k0 = (k1
0, k2

0), bonds b0 = (b1
0, b2

0), and a given shock z0,

the shadow values of investment that belong to the equilibrium correspondence are defined as

V ∗ (k0, b0, z0) =
{ {Dk,bJ i(ki

0, bi
0, z0, r0(z0), w0(z0), q(z0), K(z0))}i=1,2 :

There is a SCE

}
.(31)

Hence, the set V ∗ (k0, b0, z0) contains all current equilibrium shadow values of investment
returns mi

0, for every household i.

COROLLARY 1. Correspondence V ∗ is nonempty, compact-valued, and upper semi-
continuous.

This corollary is a straightforward consequence of Propositions 1 and 2. These bounds insure
that our operator B maps compact sets into compact sets (cf. Assumption 1). The construction
of B follows the same steps of the preceding section.

6.4. The Recursive Equilibrium Algorithm. The natural state space is conformed by the
space of shocks and the distribution of wealth (namely, individual country holdings of the capital
stock and bonds). Because of financial and real frictions, auxiliary variables are also needed
to guarantee a recursive representation of equilibria. For the economy with exogenous debt
limits, we enlarge the state space with the shadow values of investment. For the economy with
endogenous debt limits, we enlarge the state space with both the shadow values of investment,
m, and values of participation, p.

Note that in equilibrium b1(zt, ξl
t+1(zt)) = −b2(zt, ξl

t+1(zt)). Hence, in the sequel we let b be
the share holdings of country 1. Then, the equilibrium correspondence V ∗(b, k1, k2, z1, z2) is a
map from the space of possible values for each country’s capital stock and shocks, and bond
holdings for agent 1, into the set of possible equilibrium values for the auxiliary variables.

For the economy with exogenous constraints, both b, q are scalars, and the shadow values of
investment are defined as

mi
k(b, k1, k2, z1, z2) = (

Ai(zi)Fk(ki, li) + (1 − δ)
)

ui
c,(32)

mi
b(b, k1, k2, z1, z2) = qui

c.(33)

We can now build operator B from the first-order and market-clearing conditions. For any
pair of equilibrium values for the shadow values of investment (m1, m2) ∈ V ∗(b, k1, k2, z1, z2),
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there must be bond prices q, multipliers λ, tomorrow’s bond holdings, b+, capitals, k1
+, k2

+,
and shadow values of investment (m1

+, m2
+) ∈ V ∗(b+, k1

+, k2
+, z1

+, z2
+) such that the short-run

equilibrium conditions

ui
c = λi + βiEmi

+(34)

ui
cAiFL = ui

l(35)

are satisfied. Here λi ≥ 0, with strict inequality only if today’s borrowing constraint binds. As
before, E is the expectations operator.

Analogously, for the economy with endogenous constraints, given a tuple of equilib-
rium shadow values of investment and participation, (m1, m2, p 1, p 2) ∈ V ∗(b, k1, k2, z1, z2),
it must be possible to find continuation values that satisfy the following short-run equilibrium
conditions:

ui
c = ζiβiπ[zi

+|zi]mi
+,(36)

ui
cAiFL = ui

l,(37)

p i = u + βiEp i
+.(38)

In the Euler equation above, ζi ≥ 1 is a ratio of multipliers corresponding to the par-
ticipation constraints. Therefore, ζi > 1 only if tomorrow’s participation constraint is
binding.

As before, we start with a correspondence V0 ⊇ V ∗. It is easy to bound this initial candidate
V0, since the lowest value of the endowment is a lower bound for consumption, and the marginal
utility of consumption can be used to bound asset prices as discounted values of dividends. It is
also straightforward to derive bounds for the value of participation p0.

For the purposes of presentation, let us just deal with the scenario of the exogenous borrowing
constraint (29) where values of participation are not required. For given (b, k1, k2, z1, z2),
operator B dictates that (m1, m2) ∈ BVn(b, k1, k2, z1, z2) if we can find continuation shadow
values of investment (m1

+, m2
+) ∈ Vn(b+, k1

+, k2
+, z1

+, z2
+), a bond price q, and multipliers (λ1, λ2)

such that optimality conditions (34–35) are satisfied. If we cannot find continuation values that
satisfy the previous conditions, then (m1, m2) /∈ BVn(b, k1, k2, z1, z2). A new correspondence
Vn+1 = B(Vn) is defined after proceeding with these computations over every possible value
(b, k1, k2, z1, z2).

Iterating over operator B we get new candidate values for the shadow values of investment
and values for participation over the short-run equilibrium conditions (36–38). Our algorithm
can then be used to generate a sequence of approximations to the equilibrium correspondence
via the recursion Vn+1 = B(Vn).

For the numerical implementation of the algorithm, we assume prespecified intervals for the
values of bond and capital holdings. We then partition the state space over a set of vertex points
with grid size h. The step correspondence approximating V0 over each element in the partition
of the state sijl ≡ [bi, bi+1] × [k1

j , k1
j+1] × [k2

l , k2
l+1] can be defined as

V h
0 (b, k1, k2, z1, z2) = ∪(b,k1,k2,z1,z2)∈sijl

V0(b, k1, k2, z1, z2).(39)

The image of this correspondence comprises the shadow values of investment (m1, m2).
Hence, a simple outer approximation C�

(
Bh(V )

)
would be a finite collection of hypercubes for

vectors (m1, m2). This completes the numerical implementation of operator Bh,�, defined over
computable step correspondences.
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TABLE 2
STATISTICAL PROPERTIES OF THE ECONOMIES WITH COMPLETE MARKETS AND WITH EXOGENOUS OR ENDOGENOUS CONSTRAINTS

Data Complete markets Liquidity constrained Debt constrained Preferences/tax shocks

Bilateral correlations
Consumption 0.32 0.8003 −0.8767 0.2264 −0.36
GDP 0.51 −0.5947 −0.7568 0.0170 −0.28
Investment 0.29 −0.9117 −0.9953 0.6037 0.41
Labor 0.43 −0.9341 −0.8714 −0.1062 0.19

We use our method to compute SCE of this two-country model with endogenous and ex-
ogenous borrowing constraints. In both scenarios, we find that the equilibrium correspondence
converges to a function (up to numerical accuracy of 10−6), which indicates that the SCE is
unique for given initial conditions. This is the only model of the article where computational
time is a substantial issue. The basic form of our algorithm is fairly easy to implement: It only
requires searching for continuation values over the short-run equilibrium conditions required
by operator B. As this process of search is independent across states, it is straightforward to
use parallel computing. In terms of running times, as in most algorithms the choice of initial
guess matters greatly. The initial guess we employed was the solution of a similar economy but
with complete markets and no distortions, which can easily be secured with a standard dynamic
programming algorithm. Our grid considers 51 equally spaced points for K and 501 points for
m for each country i = 1, 2. We ran our C++ MPI code using an IBM Server 1350 Cluster, with
50 Xeon 2.3 GHz processors. The average time per iteration of operator B was 24 minutes. The
program took 94 iterations to converge to a desired level of accuracy. These times were lower
in the liquidity-constrained economy.

6.5. Quantitative Experiments. We now explore the quantitative implications of the above
two financial scenarios. For comparison purposes, we will also report results for the model with
complete markets to be solved under standard dynamic programming techniques.

We assume a one-period utility with stochastic shock νi(z):

ui(c, l, z) = νi(z)

[
cη(1 − l)1−η

]1−σ

1 − σ
,(40)

and a Cobb–Douglas production function:

AF (K, L) = AKα(L)1−α.(41)

We shall use the following standard parameter values: α = 0.36, η = 0.36, and σ = 2. From quar-
terly data, we let β = 0.99 and δ = 0.025. We consider a discrete VAR process for the technology
shocks with four possible states: (A1 = 0.95613, A2 = 0.95613), (A1 = 0.95613, A2 = 1.04480),
(A1 = 1.04480, A2 = 0.95613), (A1 = 1.04480, A2 = 1.04480). These states evolve according to
the transition matrix

π =

⎡⎢⎢⎢⎢⎢⎣
0.83022 0.07849 0.07803 0.01326

0.10821 0.77567 0.00865 0.10747

0.10971 0.00793 0.77629 0.10607

0.01354 0.07934 0.07960 0.82752

⎤⎥⎥⎥⎥⎥⎦ .

Table 2 reports the simulated moments for the complete-markets economy, the debt-
constrained economy, and the liquidity-constrained economy in which the borrowing limit
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�i = 0. The resulting simulated sample moments are in line with those reported in Kehoe and
Perri (2002), who use a slightly different calibration and a different computational method.

Only the debt-constrained economy offers a chance of generating reasonable correlations.
In the first three scenarios, preferences are nonstochastic (ν(z) = 1), and there are no taxes
(τ = 0). The last column of Table 2 reports a slightly different experiment for the liquidity-
constrained economy with stochastic preferences and taxes. The idea is to see how shocks on
preferences and taxes may improve the performance of the liquidity-constrained economy. We
assume that νi = 1.05 if Ai > 1, and νi = 0.95 if Ai ≤ 1. Hence, the representative household is
more optimistic (or more willing to consume) in the event of a good productivity shock. Also,
τi = 0.30 if Ai > 1, and τi = 0.25 if Ai ≤ 1. That is, taxes are also procyclical. With respect to the
liquidity-constrained economy, this last calibration improves some of the bilateral correlations;
still, it does not do as well for the correlations of consumption c and GDP.

In summary, in this section we apply our reliable algorithm to a two-country general equi-
librium model with several real and financial frictions: incomplete markets, exogenous and
endogenous constraints, preference shocks, and taxes. We establish bounds for equilibrium
allocations and prices as a key condition for the numerical implementation of our algorithm.
Our model simulations broadly confirm the findings of Kehoe and Perri (2002): Endogenous
debt constraints seem instrumental to fix some international business cycles anomalies. We here
obtain a related result with procyclical preference shocks and taxation to improve the cross-
country correlation of capital and labor. Our computational method can accommodate some
other extensions (e.g., time-to-build, adjustment costs) or can be applied to related models of
international investment (Bai and Zhang, 2010).

7. CONCLUDING REMARKS

This article provides a theoretical framework for the numerical simulation of dynamic
competitive-market economies in which the welfare theorems may fail to hold because of mar-
ket frictions or the existence of an infinite number of generations. This includes various macro-
economic models with heterogeneous agents, incomplete financial markets, endogenous and
exogenous borrowing constraints, taxes, and money. Equilibrium solutions are not amenable
to computation using social planning problems because of the existence of real and finan-
cial frictions. They are not amenable to computation by projection methods with continuous
equilibrium functions because a continuous recursive representation of equilibrium may not
exist. And they are not amenable to computation by perturbation methods because the er-
godic region may be quite large: Agents accumulate assets to accommodate idiosyncratic and
aggregate risks. All these computational methods may actually generate large approximation
errors.

To overcome these rather limiting technicalities, we propose a reliable recursive equilibrium
algorithm. Our approach is intended to be quite general—available characterizations of equi-
libria are usually model dependent. We consider an abstract framework that covers equilibrium
models with various real and financial frictions and resource and participation constraints.
Convexity assumptions are not necessary, but certain mild continuity and time-separability
conditions must be satisfied. That is, the model must be recursive: An equilibrium solution
must be characterized by aggregate resource constraints and short-run optimality conditions
comprising only variables of two contiguous time periods, t and t + 1.

Under mild regularity conditions, we can define a nonempty Markov equilibrium correspon-
dence that generates the set of all sequential competitive equilibria. This correspondence lies in
an expanded state space and can be obtained as the fixed point of a monotone operator embed-
ding all aggregate constraints and short-run equilibrium conditions. The iteration process under
this operator is globally convergent for every initial guess containing the Markov equilibrium
correspondence.
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We provide a discretized version of this operator, which is also globally convergent. This
discretized operator iterates over correspondences instead of functions. As we refine the
discretization process, the fixed point of the discretized operator converges uniformly to the
Markov equilibrium correspondence on every compact subdomain. In the present general con-
text, uniform convergence is a very strong approximation result. Actually, for economies where
equilibrium is unique the nature of our approximation scheme makes it possible to derive
uniform error bounds.

In the numerical implementation of the algorithm, the choice of auxiliary variables conform-
ing the state space becomes critical. It is simplest to enlarge the state space with all endogenous
and exogenous variables, but then the algorithm may not be computable. In the above appli-
cations, the computation of equilibria relied on first-order conditions in which the auxiliary
variables were the shadow values of investment for each asset and for each agent. Under this
choice of the state space the Euler equations were linear—speeding up the computation process.
The linearity of the Euler equations was preserved in models with exogenous borrowing con-
straints. With endogenous borrowing constraints, continuation utility values were also added to
the state space. The final objective is to work with a minimal extension of the state space that
becomes operative at the computational stage.

Our quantitative analysis ends with the simulation of a stochastic overlapping generation
economy and a business cycle model of international trading along the lines of Kehoe and Perri
(2002). The OLGs economy was instrumental to illustrate some of the pitfalls that may occur
in the computation of equilibrium solutions for nonoptimal economies while using algorithms
that search for a continuous equilibrium function over the natural space of state variables.
These traditional algorithms cannot insure convergence of the approximate solution to the
given equilibrium fixed point. As a matter of fact, the computed solution contained large
approximation errors because of a poor choice of the state space.

In the numerical simulation of the two-country business cycle model, we contemplate various
scenarios for cross-country risk sharing in a full-blown economic setting with capital accumu-
lation, taxation, and preference shocks. Among all the financial arrangements, endogenous
borrowing constraints improve substantially the predictions of the model relative to the data.
This is in line with the findings of Kehoe and Perri (2002). As these authors point out, models
with additional frictions may be necessary to make the theory fully compatible with the data.
Under our recursive equilibrium algorithm, it was fairly easy to accommodate procyclical pref-
erence shocks and taxes. These extensions improve the cross-country correlation of investment
and labor.

All of these results add to a large body of literature in macroeconomics and finance intended
to overcome some severe limitations of the representative-agent paradigm. The quantitative
analysis of nonoptimal dynamic economies is certainly a nontrivial task. Hence, reliable methods
for the numerical approximation of these economies should prove very valuable. Feng (2012)
generalizes our computational approach to quantify the welfare loss of time inconsistency in an
economy with capital and labor taxation.

Of course, our methods must face some computational challenges, since iteration over corre-
spondences is much more costly than iteration over functions. The expansion of the state space
along with iteration over sets should certainly be manifested into an additional computational
burden. In the characterization of Markov equilibria, it is therefore imperative to select a set of
auxiliary variables with a view toward minimizing the computational cost. The development of
high-performance, parallel computing will certainly make our methods more attractive, as the
many computational tasks in our algorithm can be decentralized.

The numerical implementation of our algorithm starts with an initial correspondence of
potential equilibrium values. In most numerical work it is necessary to bound the ergodic
region. This task, however, may become much more delicate for nonoptimal economies, since
no general theory is available to bound asset prices and returns. In our applications above we
have developed various procedures to bound equilibrium allocations and prices by ruling asset
pricing bubbles and by defining a value function for each household over future equilibrium
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paths. This value function is convenient because it can embed exogenous and endogenous
borrowing constraints as well as other real and financial frictions. Hence, market imperfections
need not be explicitly considered to bound equilibrium allocations and prices. These techniques
should certainly be valuable to establish feasible bounds in related models with heterogeneous
agents and market distortions.

APPENDIX

A.1 Proofs. In this Appendix, we prove some key results formally stated in Sections 3 and
4. For convenience, we also offer a proof of existence for the model of Section 6 and establish
equilibrium bounds. All other claims in the article rely on similar arguments.

PROOF OF THEOREM 1. Let V̂0 ⊃ V ∗ and V̂i = B(V̂i−1) for all i ≥ 1. To insure monotone
convergence, let us now redefine these sets as Vn = ∪∞

i=nV̂i for all n ≥ 0. Then Vn = B(Vn−1)
and Vn ⊂ Vn−1 for all n ≥ 1. It follows that the sequence {Vn} must converge to a set V U .
Furthermore, V U = ∩∞

n=1Vn. Therefore, V U = B(V U). We next prove that V U = V ∗. Indeed,
by the monotonicity of operator B we get that V ∗ ⊂ V U ; also, V U ⊂ V ∗ since every fixed point
conforms an equilibrium—given that no transversality conditions are involved in this setting.
To complete the proof of the theorem, just note that V U ⊂ V ∗ ⊂ Vn for all n ≥ 1. Since we
have already established that Vn → V U , we get that Vn → V ∗. It is clear from these arguments
that V ∗ is the largest fixed-point of operator B. �

PROOF OF THEOREM 2.

(i) Obvious. Operator Bh,� is monotone, V0 ⊇ V ∗, and Bh,�(V ∗) ⊃ V ∗.
(ii) The proof follows similar arguments as that of Theorem 1. Actually, V h,�

n ⊃ V ∗,h,�, and
our discretized procedure allows for a finite number of set-values. Hence, pointwise
convergence implies uniform convergence.

(iii) Note that operator Bh,� converges to B as h → 0 and � → ∞. Since V ∗ ⊂ V ∗,h,�, we get
that V ∗,h,� → V ∗ as h → 0 and � → ∞. �

PROOF OF THEOREM 3. The proof goes by contradiction. Since X × Y is a compact set every
sequence must have a convergent subsequence; furthermore, graph(V ∗) is always a subset of
graph(V h,�

n ). Hence, if the assertion of Theorem 3 is not true there is a converging sequence
{(xh,�

n , z, vh,�
n )} → (x, z, v) with (xh,�

n , z, vh,�
n ) ∈ graph(V h,�

n ) and d(graph(V h,�
n ), graph(V ∗)) >

ε. As h → 0, � → ∞, and n → ∞, we must have (cf. Theorem 1) that (x, z, v) ∈ graph(V ∗).
However, this is in contradiction with the previous assertion that d(graph(V h,�

n ), graph(V ∗)) >

ε for all �, h, n. �

PROOF OF PROPOSITION 4. The existence of a SCE can be established by approximating the
infinite-horizon economy by a sequence of finite economies. This is the strategy followed by
Jones and Manuelli (1999), but their proof does not apply to sequential competitive economies.
Of course, the hardest part is to provide upper bounds for equilibrium quantities over all the
finite-horizon economies. These bounds follow from Proposition 2.

Hence, following Jones and Manuelli (1999), we consider the following steps for the
proof of a SCE: (i) Existence of an equilibrium for a finite horizon economy. This result
is covered by the general proofs of existence of competitive equilibria for economies
with taxes, externalities, and incomplete markets (Arrow and Hahn, 1971; Mantel, 1975;
Shafer and Sonneschein, 1976; Levine and Zame, 1996). (ii) Uniform bounds for equi-
librium allocations and prices of finite-horizon economies. As already pointed out, these
bounds are established in Proposition 2. (iii) Existence of SEC as a limit point of finite
equilibria. The preceding steps (i) and (ii) guarantee that there is a collection of vec-
tors ({ci

t(zt), li
t(zt), ki

t+1(zt), bi(zt, ξl
t+1(zt)), Ki

t+1(zt), Li
t(zt), ri

t(zt), wi
t(zt)}i=1,2, q(zt, ξl

t+1(zt)))t≥0
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that can be obtained as limits of equilibria of finite economies. It is obvious that for
such limiting solution the market clearing conditions must be satisfied at each zt and
that one period profits are maximized. Moreover, for each agent i the limiting allocation
(ci

t(zt), li
t(zt), ki

t+1(zt), bi(zt, ξl
t+1(zt)) must satisfy the sequence of budget constraints (27) as well

as the endogenous or exogenous constraints. This allocation is optimal since the discounted util-
ity function is continuous in the product topology over the set of feasible consumption/leisure
plans (ci

t(zt), 1 − li
t(zt))t≥0, which are preferred to the endowment allocation (ei

t(zt), 1)t≥0. This is
because feasible consumption plans (ci

t(zt))t≥0 are bounded above and the endowment process
(ei

t(zt))t≥0 is bounded below by a positive quantity and the endowment of leisure is always equal
to one.

PROOF OF PROPOSITION 2. We first show that there are positive constants Kmax and Kmin

such that for every equilibrium sequence of physical capital vectors (ki
t+1(zt)))t≥0, if Kmax ≥∑2

i=1 ki
0(z0) ≥ Kmin then Kmax ≥ ∑2

i=1 ki
t+1(zt) ≥ Kmin for all zt. The existence of Kmax follows

directly from Assumption 3, since the marginal productivity of capital converges to zero as K
goes to ∞ for every fixed 0 ≤ L ≤ 1. Also, it obvious that Kmin ≥ 0.

We now claim that there are constants rmax and wmax such that for every equilibrium sequence
of factor prices (ri

t(zt), wi
t(zt))t≥0 we have 0 ≤ ri

t(zt) ≤ rmax and 0 ≤ wi
t(zt) ≤ wmax for all zt. The

existence of wmax follows from continuity properties of the utility function. The household is
endowed with one unit of labor. Hence, if the wage is arbitrarily high, it would be optimal to
consume a large amount of consumption by giving up a small quantity of leisure. If along an equi-
librium path we have that ri

t is arbitrarily large, then ki
t must go to zero. From the Euler equation,

consumption ci
t must also go to zero. But this is not possible under either exogenous or endoge-

nous constraints, as ei
t > 0 is bounded below by a positive quantity, and in the debt constrained

economy the household can switch to autarky. Moreover, using a simple arbitrage argument, we
have that qt is also bounded. Hence, the value function J i(ki

0, bi
0, z0, r0(z0), w0(z0), q(z0), K(z0))

is well defined. As already pointed out, the derivative Dk,bJ i(·, ·, z0, r0(z0), w0(z0), q(z0), K(z0))
is continuous in (ki

0, bi
0, z0, r0(z0), w0(z0), q(z0), K(z0)).7 By a simple notational change it fol-

lows from (27) that function J i can be rewritten as J i(ai
0, bi

0, z0, r0(z0), w0(z0), q(z0), K(z0))
w0(z0), K(z0)), where ai

0 = ei
0(z0) + (1 − τ)r0ki

0. Then, we can conclude that 0 ≤
Dk,bJ i(ki

0, bi
0, z0, r0(z0), w0(z0), K(z0)) ≤ γ̂, since ei

0(z0) is bounded below by a positive num-
ber, and all feasible vectors (ki

0, bi
0, z0, r0(z0), w0(z0), K(z0)) lie in a compact set.

A.2 Numerical Algorithm.

A.2.1 The OLGs economy of Subsection 2.1. We discretize the state space with Ni equally
spaced intervals. We discretize the graph of V with Ni × Nj rectangles. We then test all points
inside each rectangle to check whether the one-period temporary equilibrium conditions are
satisfied. Our operator generates a new correspondence made up of those rectangles surviving
the test, and we use an index function to keep track of them. It is straightforward to extend
this construction to a multidimensional state state X. In such a case, we will use hype-cubes to
implement the discretization. The details are below.

7 Note that if bi
0 is a large negative number, then the value function is well defined, but the agent will switch to

autarky. In the autarky region the derivative of J i with respect to bi
0 is zero. Hence, at the point of switching to autarky,

the derivative of J i will not be continuous, but the differential is a compact correspondence.
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We partition the state space with X = ∪iXi = ∪i{x|x ∈ [x + (x − x) i−1
Ni−1 , x + (x − x) i

Ni−1 ]}.
For an initial value correspondence V (0) ⊇ V ∗, the discretization proceeds as follows:

V h,�,(0)(x) = ∪i,j V
h,�,(0)
i,j (x)

= ∪i,j

{
m|x ∈ Xi, m ∈

[
mXi + (mXi − mXi

)
j − 1

Nj − 1
, mXi + (mXi − mXi

)
j

Nj − 1

]}
,

where i = 1, . . . , Ni − 1, j = 1, . . . , Nj − 1, x = inf X, x = sup X, mXi = inf V (0)(x|x ∈ Xi),

mXi = sup V (0)(x|x ∈ Xi), h = (x−x)
Ni−1 , � = maxi

(mXi −mXi
)

Nj −1 . We also define an index function

g(0)(i, j) = 1 for all i ∈ {1, . . . , Ni − 1}, j ∈ {1, . . . , Nj }.
Now, here are the workings of the algorithm. At iteration n, consider any b ∈ Xi and m ∈

V h,�,(n)
i,j (b). If g(n)(i, j) = 1, then we test whether there is any b+ ∈ X and m+ ∈ V h,�,(n)(b+) such

that the one-period temporary equilibrium conditions can be satisfied. We let g(n+1)(i, j) = 1 in
the affirmative case; for otherwise, we let g(n+1)(i, j) = 0. We let g(n+1)(i, j) = 0 if g(n)(i, j) =
0. After completing the above procedure for all i, j , we update V h,�,(n+1)(b) ≡ B[V h,�,(n)] =
∪i,j {V h,�,(n)

i,j (b)|g(n+1)(i, j) = 1}. We repeat this whole procedure until convergence is reached;
namely, we set V ∗ = V h,�,(n+1)(x) if V h,�,(n+1)(x) = V h,�,(n)(x).

A.2.2 The overlapping generations economy of Subsection 5.3. We partition the state space
with X = ∪iXi = ∪i{x|x ∈ [x + (x − x) i−1

Ni−1 , x + (x − x) i
Ni−1 ]}. For an initial value correspon-

dence V (0) ⊇ V ∗, the discretization works as follows:

V h,�,(0)(x) = ∪i,j1,j2 V h,�,(0)
i,j1,j2

(x)

= ∪i,j1,j2

{(
m1, m2) |x ∈ Xi,

(
m1, m2) ∈

[
m1,Xi

j1−1, m1,Xi

j1

]
×

[
m2,Xi

j2−1, m2,Xi

j2

]}
,

where i = 1 . . . Ni − 1, j1, j2 = 1 . . . Nj − 1, x = inf X, x = sup X, m1,Xi

j1
= m1,Xi +

(m1,Xi − m1,Xi
) j1

Nj −1 , m2,Xi

j2
= m2,Xi + (m2,Xi − m2,Xi

) j2
Nj −1 , m1,Xi = inf V (0)(x, m2|x ∈ Xi),

m1,Xi = sup V (0)(x, m2|x ∈ Xi), m2,Xi = inf V (0)(x, m1|x ∈ Xi), m2,Xi = sup V (0)(x, m1|x ∈ Xi),

h = (x−x)
Ni−1 , � = max{maxi

(m1,Xi −m1,Xi
)

Nj1 −1 , maxi
(m2,Xi −m2,Xi

)
Nj2 −1 }. We also define an index function

g(0)(i, j1, j2) = 1, for all i ∈ {1, . . . , Ni − 1}, j1, j2 ∈ {1, . . . , Nj }. As you can read from the
definition of V h,�,(0)

i,j1,j2
(x), we now approximate the graph of V using Ni × Nj × Nj cubes.

Now, here are the workings of the algorithm. At iteration n, consider any θ ∈ Xi and
m ∈ V h,�,(n)

i,j1,j2
(θ). If g(n)(i, j1, j2) = 1, then we test whether there is any θ+ ∈ X and m+ ∈

V h,�,(n)(θ+) such that the one-period temporary equilibrium conditions can be satisfied. We
let g(n+1)(i, j1, j2) = 1 in the affirmative case; for otherwise, we let g(n+1)(i, j1, j2) = 0. We let
g(n+1)(i, j1, j2) = 0 if g(n)(i, j1, j2) = 0. After going through all i, j1, j2, we update V h,�,(n+1)(b) ≡
B[V h,�,(n)] = ∪i,j1,j2{V h,�,(n)

i,j1,j2
(b)|g(n+1)(i, j1, j2) = 1}. We repeat this whole procedure until con-

vergence is reached; namely, we set V ∗ = V h,�,(n+1)(x) if V h,�,(n+1)(x) = V h,�,(n)(x). Here is
some supplementary information regarding the iteration process:

(1) For each Xi and (m1, m2) ∈ V h,�,(n)
i,j1,j2

, if g(n)(i, j) = 1, we check the following conditions:

12 + p + θ

4p 1/5 + p
+ 4 + 48p − 4θ

p 1/5 + 4p
= 13(A.1)
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q(
e1

1(z) − qθ
)5 = Em1

+(A.2)

q(
e2

1(z) + qθ
)5 = Em2

+.(A.3)

If (A.1–A.3) are satisfied, we set g(n+1)(i, j1, j2) = 1. Otherwise, we set g(n+1)(i, j1, j2) = 0.
If g(n)(i, j1, j2) = 0, we set g(n+1)(i, j1, j2) = 0 without checking the above conditions.

(2) We go through all i = 1, . . . , Ni − 1, j1, j2 = 1, . . . , Nj − 1. We then update V h,�,(n) as
follows:

V h,�,(n+1)(x) ≡ B
[
V h,�,(n)(x)

] = ∪i,j1,j2

{
V h,�,(n)

i,j1,j2
(x)|g(n+1)(i, j1, j2) = 1

}
.

(3) Stop if V h,�,(n) = V h,�,(n+1) and set V ∗ = V h,�,(n+1). Otherwise, we restart from step 1
until convergence is reached.

A.2.3 The international risk sharing model of Subsection 6.5. We approximate both the state
space X and the graph of V with hype-cubes:

X = ∪iXi = ∪i
{
x|x ∈ [bi1−1, bi1 ] × [

k1
i2−1, k1

i2

] × [
k2

i2−1, k2
i2

] × Z × Z
}
,

where x = (b, k1, k2, z1, z2), i = (i1, i2, i3), i1, i2, i3 = 1, . . . , Ni − 1, bi1 = b + (b − b) i1
Ni−1 , k1

i2 =
k + (k − k) i2

Ni−1 , k2
i3 = k + (k − k) i3

Ni−1 , Z = {z1, . . . , zN}. For an initial value correspondence
V (0) ⊇ V ∗, the discretization works as follows:

V h,�,(0)(x) = ∪i,j V
h,�,(0)
i,j (x)

= ∪i,j

{
y|x ∈ Xi, y ∈

∏
�

[
m�,Xi

j�,m−1, m�,Xi

j�,m

]
×

[
p�,Xi

j�,p −1, p�,Xi

j�,p

]}
,

where y = (m1, m2, p 1, p 2), � = 1, 2 is the index for country, j�,m, j�,p = 1 . . . Nj − 1, j =
(j1,m, j2,m, j1,p , j2,p ), m�,Xi

j�,m
= m�,Xi + (m�,Xi − m�,Xi

) j�,m

Nj −1 , p�,Xi

j�,p
= p�,Xi + (p�,Xi − p�,Xi

) j�,p

Nj −1 ,

m�,Xi
and p�,Xi

are the inf of m�, p� for given (m−�, p−�) at Xi, and m�,Xi and p�,Xi are the sup

of m�, p�. Finally, � = max{max�
(m�,Xi −m�,Xi

)
Nj −1 , max�

(p�,Xi −p�,Xi
)

Nj −1 }.
We also define an index function g(0)(i, z1, z2, j) = 1. Now, here are the workings of the

algorithm:

(1) At iteration n, consider any x = (b, k1, k2, z1, z2) ∈ Xi and (m1, m2, p 1, p 2) ∈ V h,�,(n)
i,j (x).

If g(n)(i, z1, z2, j) = 1, then we test whether there is any x+ ∈ X and y =
(m1

+, m2
+, p 1

+, p 2
+) ∈ V h,�,(n)(x+) such that the one-period temporary equilibrium condi-

tions can be satisfied. More specifically, we test whether any of the cases (1–3) described
below are met. We let g(n+1)(i, z1, z2, j) = 1 in the affirmative case; for otherwise, we let
g(n+1)(i, z1, z2, j) = 0. If g(n)(i, z1, z2, j) = 0, we set g(n+1)(i, z1, z2, j) = 0 without checking
the above conditions.

(2) We go through all i, z1, z2, j . We then update V h,�,(n):

V h,�,(n+1)(x) ≡ B
[
V h,�,(n)(x)

]
= ∪i,j

{
V h,�,(n)

i,j (x)|g(n+1)(i, z1, z2, j) = 1
}

.(A.4)
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(3) Stop if V h,�,(n) = V h,�,(n+1) and set V ∗ = V h,�,(n). Otherwise, we restart from step 1 until
convergence is reached.

Here is some supplementary information regarding the iteration process:

CASE 1.

uc(c�, l�) − β
∑
z+

π(z+|z)m�
z+ = 0(A.5)

p� = u(c�, l�) + β
∑
z+

π(z+|z)p�
z+ > V i

aut(b, k1, k2, z1, z2)(A.6)

p�
z+ ∈ [p�

min(b+, k1
+, k2

+, z1
+, z2

+), p i
max(b+, k1

+, k2
+, z1

+, z2
+)](A.7)

p� ∈ [p�
min(b, k1, k2, z1, z2), p i

max(b, k1, k2, z1, z2)](A.8)

CASE 2.
� Country 1:

uc(c1, l1) − β
∑
z+

π(z+|z)m1
z+ > 0(A.9)

u(c1, l1) + β
∑
z+

π(z+|z)p 1
min(b+, k1

+, k2
+, z1

+, z2
+) ≤ V 1

aut(b, k1, k2, z1, z2)(A.10)

V 1
aut(b, k1, k2, z1, z2) ≤ u(c1, l1) + β

∑
z+

π(z+|z)p 1
max(b+, k1

+, k2
+, z1

+, z2
+)(A.11)

V 1
aut(b, k1, k2, z1, z2) ∈ [p 1

min(b, k1, k2, z1, z2), p 1
max(b, k1, k2, z1, z2)](A.12)

� Country 2:

uc(c2, l2) − β
∑
z+

π(z+|z)m2
z+ = 0(A.13)

p 2 = u(c2, l2) + β
∑
z+

π(z+|z)p 2
z+ > V 2

aut(b, k1, k2, z1, z2)(A.14)

p 2
z+ ∈ [p 2

min(b+, k1
+, k2

+, z1
+, z2

+), p 2
max(b+, k1

+, k2
+, z1

+, z2
+)](A.15)

p 2 ∈ [p 2
min(b, k1, k2, z1, z2), p 2

max(b, k1, k2, z1, z2)](A.16)

CASE 3.
� Country 1:

uc(c1, l1) − β
∑
z+

π(z+|z)m1
z+ = 0(A.17)

p 1 = u(c1, l1) + β
∑
z+

π(z+|z)p 1
z+ > V 1

aut(b, k1, k2, z1, z2)(A.18)

p 1
z+ ∈ [p 1

min(b+, k1
+, k2

+, z1
+, z2

+), p 1
max(b+, k1

+, k2
+, z1

+, z2
+)](A.19)

p 1 ∈ [p 1
min(b, k1, k2, z1, z2), p 1

max(b, k1, k2, z1, z2)](A.20)
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� Country 2:

uc(c2, l2) − β
∑
z+

π(z+|z)m2
z+ > 0(A.21)

V 2
aut(b, k1, k2, z1, z2) ≤ u(c2, l2) + β

∑
z+

π(z+|z)p 2
max(b+, k1

+, k2
+, z1

+, z2
+)(A.22)

V 2
aut(b, k1, k2, z1, z2) ∈ [p 2

min(b, k1, k2, z1, z2), p 2
max(b, k1, k2, z1, z2)](A.23)
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