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1 Introduction

Economic agents often make dynamic discrete choices, such as whether to stay at home or take

a job and which job to take, when to replace a car and which new car to buy, when to invest in

a project and which project to invest, and so on. When making these decisions people often face

imperfect information about payoffs. People must choose what information to acquire and when

to acquire it given their limited attention to the available information.

We adopt the rational inattention (RI) framework introduced by Sims (1998, 2003) to study

the optimal information acquisition and choice behavior in a dynamic discrete choice model. In

the model a decision maker (DM) can choose a signal about a payoff-relevant state of the world

before taking an action in each period. The state follows a finite Markov chain with a transition

kernel depending on the current states and actions. The DM receives flow utilities, that depend

on the current states and chosen actions, and pays a utility cost to acquire information, that is

proportional to the reduction in the uncertainty measured by the entropy of his beliefs. The DM’s

objective is to maximize the expected discounted utility less the cost of the information he acquires.

We call this problem the dynamic RI problem. While we focus our analysis on the case with the

Shannon entropy (Shannon (1948)), our approach applies to general uniformly posterior-separable

(UPS) information cost functions introduced by Caplin and Dean (2013) (henceforth CD) and

Caplin, Dean, and Leahy (2018b) (henceforth CDL)).

We make three contributions to the literature. First, we characterize the solution to the dynamic

RI problem using the posterior-based approach. We find that the optimal choice rule in the case of

the Shannon entropy cost is consistent with the dynamic logic behavior (Rust (1987)) with respect

to payoffs that differ from the DM’s true payoffs by an endogenous additive term. Following Steiner,

Stewart, and Matějka (2017) (henceforth SSM), we call this term a default rule or a predisposition,

which depends on the history of actions but does not depend on the history of states. Relative

to the dynamic logit behavior with the DM’s true payoffs, the default rule increases the relative

payoffs associated with actions that are chosen with a high probability on average across all states

at a given history.

Solving the dynamic RI problem is difficult because the current information acquisition affects

future beliefs, which in turn influence the continuation value in a nonlinear way. We prove that the

continuation value is actually convex in the revised prior beliefs following any history (reached with

positive probabilities). By dynamic programming, the current choice and the continuation value

are linked by the Bellman equation. It is unclear whether this dynamic programming problem is

concave. SSM (2017) argue that the solution can be obtained by ignoring the effect of information

acquisition on future beliefs. They also argue that one can treat the continuation value as fixed

when optimizing at each history and apply the static RI solution of CD (2013) and Matějka and
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McKay (2015) (henceforth MM) sequentially. The key step behind their approach is to transform

the dynamic RI problem into a control problem by choosing a default rule and a state-dependent

choice rule separately. Applying first-order conditions with respect to these variables separately

yields the dynamic logit solution.

There is an implicit concavity assumption behind the choice-based approach of SSM (2017).

Their optimality conditions are derived from the coordinate-wise first-order conditions, which are

necessary, but may not be sufficient if the optimization problem is not jointly concave. SSM (2017)

suggest to use the sufficient conditions in CD (2013) and CDL (2018a). However, these conditions

are invalid if the optimization problem is not jointly concave once the impact of the current choice

on the future beliefs is taken into account. We give a counterexample to illustrate the issue of

the nonconcavity and show that the first-order conditions together with the CD and CDL type

conditions can lead to nonoptimal solutions.

Our posterior-based approach is built on the insights of CD (2013) in a static model and takes

into account the issue of joint concavity in a dynamic setting. We derive the posterior-based

Bellman equation using the predictive distribution as the state variable. This distribution given

any history can be viewed as the prior belief about the future states at that history. It is revised

from the current posterior through the state transition kernel. For the posterior-based approach to

work, we need the net utility function to be concave in the current posterior. In our dynamic model

the net utility function consists of the current net utility and the continuation value. As discussed

earlier the continuation value is convex in the predictive distribution (prior beliefs) and hence the

current posterior. On the other hand, the current net utility is concave in the current posterior.

We prove that the overall net utility is concave if and only if the difference between the discounted

entropy of the prior belief about the future states and the entropy of the current posterior given

the same history is convex. This assumption is satisfied if the discount factor is between zero and

one for the Shannon entropy cost.

The same intuition applies to the choice-based approach discussed earlier. The current choice

rule affects the current posterior and hence the predictive distribution of the future states. Thus the

convexity of the continuation value may dominate the concavity of the current payoffs in the choice

rule. Without checking concavity, the first-order Kuhn-Tucker conditions can lead to a nonoptimal

solution.

Our second contribution is to propose a Markovian characterization of the optimal RI solution

and an efficient algorithm to solve a Markovian solution. For a Markovian solution, the predictive

distribution of the next-period states depends only on the current action, the default rule depends

only on the last period action, and the choice rule depends only on the current state and the last

period action. This Markovian property allows us to characterize the dynamic logit solution using

a computable system of nonlinear difference equations.
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Our algorithm extends the forward-backward Arimoto-Blahut algorithm of Tanaka, Sandberg,

and Skoglund (2018) (henceforth TSS) to infinite-horizon models with discounting. This algorithm

is based on the Arimoto-Blahut algorithm for solving static channel capacity and rate distortion

problems in information theory in the engineering literature (Arimoto (1972) and Blahut (1972)).

It is a block coordinate descent algorithm applied to a special class of objective functions (Bertsekas

(2016)). A sufficient condition for convergence is that the objective function is concave. We show

that this condition is satisfied in our model so that the forward-backward Arimoto-Blahut algorithm

converges to the optimal solution to the dynamic RI problem.

Our third contribution is to apply our theoretical results and numerical methods to solve some

economic examples based on a matching state problem often studied in the literature (e.g., CD

(2013), SSM (2017), and CDL (2018a)). We show that RI can help explain some phenomena

documented in the psychology literature, such as status quo bias, confirmation bias, and belief

polarization. We find that the status quo bias discussed by SSM does not arise when the decision

horizon is sufficiently long. The reason is that the probability of switching states in the future is

getting larger if the horizon is longer. Thus the DM has incentives to acquire new information and

take a different action. We also show that there is a positive feedback between beliefs and actions

when the state transition kernel depends on actions. This property is useful to understand the

preceding behavioral biases. We also apply our algorithm to solve a medium-scale dynamic model

with 10 states and 10 actions and analyze the dynamics of consideration sets.

As discussed earlier, our paper is closely related to CD (2013), MM (2015), SSM (2017), and

CDL (2018a,b). SSM (2017) is the first paper that extends the static model of MM (2015) to a

dynamic setting and derives the dynamic logit rule.1 SSM apply the locally invariant posterior

(LIP) property in CD (2013) to show that interior solutions are Markovian. Our characterization

allows for corner solutions and the proof is different from theirs. Our paper also fills a gap in their

analysis that the optimization objective must be jointly concave. More importantly, we adopt the

posterior-based approach, which delivers more structures for our dynamic analysis and applies to

a large class of UPS information cost functions. By contrast, the choice-based approach of SSM

typically fails for cost functions not based on the Shannon entropy. Complementing SSM (2017), we

derive a more general system of optimality conditions that facilitates the efficient forward-backward

Arimoto-Blahut algorithm to solve large-scale models numerically. We also extend the SSM model

to allow the state transition kernel to depend on actions. This generalization permits us to study

a wide range of economic and psychological behavior.

Our paper is also related to Hébert and Woodford (2018) and Zhong (2019), who adopt the

posterior-based approach to study optimal stopping problems under RI with general information

1See Mattsson and Weibull (2002) and Fudenberg and Strzalecki (2015) for related models.
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cost functions in the continuous-time setup.2 Unlike their papers, ours is the first to study optimal

control problems, for which the concavity of the objective function in dynamic models is important

for the optimality of the first-order conditions. We show that such concavity is determined by the

convexity of the difference between the discounted generalized entropy of the prior beliefs about

the future states and the generalized entropy of the current posterior.

Most existing work on RI has focused on models with a continuous choice set, which are typi-

cally set up in the linear-quadratic-Gaussian framework (e.g., Peng and Xiong (2006), Luo (2008),

Maćkowiak and Wiederholt (2009), Mondria (2010), Van Nieuwerburgh and Veldkamp (2010), Miao

(2019), and Miao, Wu, and Young (2019)). Woodford (2009) is the first paper that studies a dy-

namic binary choice problem under RI (the problem of a firm that decides each period whether to

reconsider its price). Jung et al (2018) show that rationally inattentive agents can constrain them-

selves voluntarily to a discrete choice set even when the initial choice set is continuous. See Sims

(2011) and Maćkowiak, Matějka and Wiederholt (2018) for surveys and references cited therein.

2 Model

2.1 Setup

Consider a T -period decision problem with T ≤ ∞ and time is denoted by t = 1, 2, ..., T. Uncertainty

is represented by a discrete finite state space X ≡ {1, 2, ...,m} and a prior distribution µ1 ∈ ∆ (X) ,

where we use ∆ (Z) to denote the set of distributions on any finite set Z. The decision maker (DM)

makes choices from a finite action set denoted by A satisfying |X| ≥ 2 and |A| ≥ 2. We can allow

the action set A to depend on the current state as in the literature on Markov decision processes

(Rust (1994) and Puterman (2005)), without affecting our key results but complicating notation.

The state transition kernel is given by π (xt+1|xt, at) ∈ ∆ (X|X ×A) , where ∆ (X|X ×A) denotes

the set of all conditional distributions for the state xt+1 ∈ X given the state xt ∈ X and the action

at ∈ A for t ≥ 1.3 SSM (2017) show that one can redefine the state space so that the state transition

kernel is independent of the action. We allow such dependence so that our model is more flexible

in applications and is also consistent with the literature on Markov decision processes (Rust (1994)

and Puterman (2005)).

The DM receives flow utilities that depend on the current states and actions only. The period

utility function is given by a bounded function u : X × A → R. For the finite-horizon case with

T < ∞, we allow u to be time dependent and include a terminal utility function uT+1 : X → R.

SSM (2017) allow u to depend on the entire history of states and actions, which may generate

2The posterior-based approach is often applied in the Bayesian persuasion literature. See Kamenica (2018) for a
survey and the references cited therein.

3As convention we define a conditional probability P (C|B) = P (C ∩B) /P (B) whenever P (B) > 0; otherwise,
set P (C|B) = 0 until further notice.
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history-dependent solutions.

Prior to choosing an action in any period t, the DM can acquire costly information about

the history of the state xt, where we use xt to denote the history {x1, x2, ..., xt} . More accurate

information will lead to better choices, but are more costly, with entropy-based costs to be discussed

later. As SSM (2017) show, we do not need to model the endogenous choice of the information

structure separately. Instead we can reformulate the problem in which the DM makes stochastic

choices and signals correspond to actions directly. As CD (2013) argue, we can also identify signals

with the corresponding posteriors. Thus we will focus on the model with stochastic choices (see

Lemma 6 in Appendix E for the UPS information cost).

Define a (state-dependent) choice rule p as a sequence of conditional probability distributions

p =
{
pt
(
at|xt, at−1

)
∈ ∆

(
A|Xt ×At−1

)
: all

(
xt, at−1

)
, 1 ≤ t ≤ T

}
.

The joint distribution of the state and action trajectories is denoted by
{
µt+1

(
xt+1, at

)}
, which

is uniquely determined by the initial state distribution µ1 ∈ ∆ (X) , the state transition kernel

π (xt+1|xt, at) , and the choice rule p by a recursive formula

µt+1

(
xt+1, at

)
= π (xt+1|xt, at) pt

(
at|xt, at−1

)
µt
(
xt, at−1

)
(1)

for any t ≥ 1. Set a0 = ∅ so that p1

(
a1|x1, a0

)
= p1 (a1|x1) and µ1

(
x1, a0

)
= µ1 (x1) .

The choice rule p generates expected discounted utility

J
(
xT+1,p

)
= E

[
T∑
t=1

βt−1u (xt, at) + βTuT+1 (xT+1)

]
,

where β ∈ (0, 1) denotes the discount factor and the expectation is taken with respect to the joint

distribution µT+1 for
(
xT+1, aT

)
.

2.2 Information Cost

We model the information cost using the Shannon entropy-based directed information in informa-

tion theory (Massey (1990)). To handle the infinite-horizon case, we incorporate discounting.

Definition 1 For a discount factor β ∈ (0, 1), the discounted directed information from the stochas-

tic process XT to the stochastic process Y T is defined as

Iβ
(
XT → Y T

)
=

T∑
t=1

βt−1I
(
Xt;Yt|Y t−1

)
,

where I
(
Xt;Yt|Y t−1

)
denotes the conditional mutual information defined as

I
(
Xt;Yt|Y t−1

)
= E

[
ln

Qt
(
Xt, Yt|Y t−1

)
Qt (Xt|Y t−1)Qt (Yt|Y t−1)

]
. (2)
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Here the expectation is taken with respect to the joint distribution of Xt and Y t denoted by Qt, and

Qt
(
Xt, Yt|Y t−1

)
, Qt

(
Xt|Y t−1

)
, and Qt

(
Yt|Y t−1

)
denote the induced conditional distributions for

any 1 ≤ t ≤ T .

The directed information measures directional information flow from XT to Y T and is different

from the mutual information, which quantifies the amount of information that can be obtained

about a random variable by observing another. The mutual information says little about causal

relationships, because it is symmetric. By contrast, the directed information is asymmetric and

is a measure of the predictive information transfer given observations. If β = 1, the discounted

directed information reduces to the standard directed information I
(
XT → Y T

)
in information

theory (Massey (1990)).

There are several equivalent definitions of the conditional mutual information. The definition

in (2) is equivalent to

I
(
Xt;Yt|Y t−1

)
= H

(
Xt|Y t−1

)
−H

(
Xt|Y t

)
= H

(
Yt|Y t−1

)
−H

(
Yt|Xt, Y t−1

)
,

where H (·|·) denotes the conditional Shannon entropy which measures the amount of information

about one variable given another variable.4 The first equality in the above equation states that

the conditional mutual information I
(
Xt;Yt|Y t−1

)
measures the reduction of uncertainty about

Xt after observing an additional data Yt given the history of data Y t−1. This expression is critical

for the posterior-based approach. The interpretation for the second equality is similar, which is

critical for the choice-based approach.

In our model we adopt the discounted directed information for the stochastic processes of states

and actions, xT and aT :

Iβ
(
xT → aT ; p

)
=

T∑
t=1

βt−1I
(
xt; at|at−1

)
, (3)

where the joint distribution for xt and at satisfies µt
(
xt, at

)
= pt

(
at|xt, at−1

)
µt
(
xt, at−1

)
. Since

this distribution depends on the choice rule p, we introduce an argument p to the discounted

directed information in (3). SSM (2017) essentially adopt the same cost function.

Our approach also applies to a general class of information cost functions that satisfy the UPS

property introduced by CD (2013) and CDL (2018b). By contrast, the choice-based approach

of SSM (2017) typically does not work for cost functions other than the Shannon entropy. We

will illustrate this point in Section 3.4 and Appendix E. In the main text we shall focus on the

Shannon entropy-based cost function, which is consistent with much of the literature and allows us

to compare with the literature more easily.

4See Cover and Thomas (2006) for a standard textbook reference for entropy, mutual information, and related
notions.
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2.3 Decision Problem

We now formulate the dynamic discrete choice problem under RI as follows:

Problem 1 (dynamic RI problem)

max
p∈Π

J
(
xT+1,p

)
− λIβ

(
xT → aT ; p

)
, (4)

where Π ≡
T∏
t=1

∆
(
A|Xt ×At−1

)
and λ > 0.

The second term in (4) measures the information cost corresponding to the information transfer

from the state process xT to the action process aT . The parameter λ measures the marginal cost

of information in utility units. When λ = 0, the problem is reduced to the standard Markov

decision process formulation described in Puterman (2005) and Rust (1994). When λ > 0, there

is a tradeoff between information acquisition and utility maximization. Acquiring more precise

information about the state of the system helps the DM make a better choice. But this causes the

control actions to be statistically more dependent on the state, which generates a larger information

cost.

It is straightforward to show that there exists a solution to Problem 1 because the space Π is

compact and the objective function is continuous on Π (see Proposition 1 in SSM (2017)).

3 Preliminaries and Basic Intuition

In this section we first present the solution in the static case analyzed by CD (2013), MM (2015), and

CDL (2018a). We then study the two-period case and illustrate the difficulty of the dynamic model

and our solution approach. Finally we discuss the extension to the general UPS cost functions.

3.1 Static Case

When T = 1 and uT+1 = 0, we obtain the following static problem analyzed by MM (2015), CD

(2013), and CDL (2018a).

Problem 2 (choice-based static RI problem) Choose p ∈ ∆ (A|X) to solve

V (µ) ≡ max E [u (x, a)]− λI (x; a) =
∑
x,a

p (a|x)µ (x)

[
u (x, a)− λ ln

p (a|x)

q (a)

]
, (5)

subject to

q (a) =
∑
x

p (a|x)µ (x) , a ∈ A, (6)

where the prior distribution µ ≡ {µ (x)} is given.
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Following SSM (2017) we call q a default rule. CD (2013), MM (2015), and CDL (2018a)

establish the following result:

Proposition 1 The choice rule {p (a|x)} and the default rule {q (a)} are an optimal solution to

Problem 2 if and only if they satisfy conditions (6),

p (a|x) =
q (a) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

, (7)

if µ (x) > 0, and ∑
x

µ (x) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

≤ 1, (8)

with equality if q (a) > 0. The optimal posterior satisfies

µ (x|a) =
µ (x) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

if q (a) > 0.

This result appears in Gallager (1968, Theorem 9.4.1) and Berger (1971, Theorem 2.5.2).5 For

a better understanding of our analysis of the dynamic model, we present the main arguments of

the proof according to the choice-based approach. We first define a function

F (p, q) ≡
∑
x,a

µ (x) p (a|x)

(
u (x, a)− λ ln

p (a|x)

q (a)

)
,

and verify that F (p, q) is jointly concave in (p, q) . Blahut (1972, Theorem 4) establishes the fol-

lowing result:

Lemma 1 Let p ∈ ∆ (A|X) be fixed. Then maxq∈∆(A) F (p, q) is a concave optimization problem

and the optimal solution is given by q (a) =
∑

x µ (x) p (a|x) .

This lemma implies that the static RI problem is equivalent to the following optimization

problem:

max
p∈∆(A|X), q∈∆(A)

F (p, q) . (9)

For fixed q and for any x with µ (x) > 0, optimization over p (a|x) gives the expression in (7), which

is a function of q. We write it as p∗(q) and then obtain

F (p∗ (q) , q) =
∑
x

µ (x)λ ln
∑
a

q (a) exp (u (x, a) /λ) , (10)

which is a concave function of q. Now use the necessary and sufficient Kuhn-Tucker condition for

q ∈ ∆ (A) to derive (8).

From the derivation above we deduce that equations (6) and (7) are coordinate-wise first-order

necessary conditions for the problem in (9). These two equations together with (8) for the problem

5See Denti, Marinacci, and Montrucchio (2019) for the general continuous states and actions case.
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in (10) are necessary and sufficient conditions for optimality. Notice that condition (6) is implied

by conditions (7) and (8) and all these first-order conditions are sufficient for optimality if the

function F (p, q) is jointly concave. Such concavity is ensured in the static RI problem.

When the sets X and A are large, the computation of the optimal stochastic choice is compli-

cated. Arimoto (1972) and Blahut (1972) propose the following efficient algorithm:

1. Start with a guess q(0) (a) > 0 for all a or p(0) (a|x) > 0 for all (x, a) .

2. Compute

q(k) (a) =
∑
x

µ (x) p(k−1) (a|x) ,

p(k) (a|x) =
q(k) (a) exp (u (x, a) /λ)∑
a′ q

(k) (a′) exp (u (x, a′) /λ)
.

3. Iterate on k ≥ 1 until convergence.

Since F (p, q) is jointly concave in p and q, every limit point of the sequence generated by the

Arimoto-Blahut algorithm is a global maximizer of F. To understand the intuition for this algorithm

and (8), we combine the above two equations to derive

q(k+1) (a) =

[∑
x

µ (x) exp (u (x, a) /λ)∑
a′ q

(k) (a′) exp (u (x, a′) /λ)

]
q(k) (a) .

The term in brackets is the left side of (8) and determines if q (a) rises or falls. The algorithm can

converge to two limit points. One limit is q (a) > 0 and the term in brackets is equal to one, a case

that includes q (a) = 1, or the term in brackets is less than one and the other limit is q (a) = 0.

Condition (7) represents a twist in state-dependent choice in the direction of the high payoff states.

Condition (8) ensures that these twists average out to one. If they do not then the probability of

an action needs to be raised or lowered accordingly.

Next we present the posterior-based approach of CD (2013). Observe that one can equivalently

rewrite the joint distribution as µ (x, a) = µ (x) p (a|x) = q (a)µ (x|a) , and decompose the prior

into

µ (x) =
∑
a

µ (x|a) q (a) , (11)

where µ (x|a) ∈ ∆ (X|A) denotes the posterior distribution if q (a) > 0. If q (a) = 0, we simply set

µ (x|a) = 0. Now Problem 2 becomes:

Problem 3 (posterior-based RI problem) Choose {µ (x|a)} ∈ ∆ (X|A) and q ∈ ∆ (A) to solve

V (µ) = max E [u (x, a)]− λI (x; a) =
∑
x,a

q (a)µ (x|a)

(
u (x, a)− λ ln

µ (x|a)

µ (x)

)
subject to (11).
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Following CD (2013) and CDL (2018a), we rewrite this problem as

V (µ) = max
q,µ(·|·)

∑
a

q (a)Na (µ (·|a)) , V (µ) = V (µ)− λH (µ) (12)

subject to (11), where Na (µ (·|a)) denotes the net utility of action a defined as

Na (µ (·|a)) ≡
∑
x

µ (x|a)u (x, a) + λH (µ (·|a)) ,

and H (µ) = −
∑

x µ (x) lnµ (x) is the entropy of µ, which does not affect the optimization.

Notice that Na (µ (·|a)) is concave in µ (·|a), but the problem in (12) is not jointly concave in q

and µ (·|·) due to the cross product term as pointed out by CD (2013). Thus one cannot simply use

the Kuhn-Tucker conditions to solve this problem. CD (2013) instead propose a geometric approach

from the convex analysis and derive conditions that are equivalent to those in Proposition 1.

The following result is critical for the dynamic model and its proof together with all other proofs

are given in Appendix A.

Proposition 2 (i) The optimal posteriors µ (·|a) for all chosen actions a such that q (a) ∈ (0, 1)

are independent of the prior µ ∈ ∆ (X) in the convex hull of these posteriors. (ii) The optimal

payoff for the static RI problem is given by

V (µ) =
∑
x

µ (x) Ṽ (x) =
∑
x

µ (x) V̂ (x)− λH (µ) , (13)

where for µ (x) > 0

Ṽ (x) = λ ln

[∑
a

q (a) exp (u (x, a) /λ)

]
, V̂ (x) = Ṽ (x)− λ lnµ (x) ,

and V̂ (x) is independent of the prior µ ∈ ∆ (X) in the convex hull of the optimal posteriors µ (·|a)

for all chosen actions a such that q (a) ∈ (0, 1) . (iii) V (µ) is concave, V (µ) is convex, and for

µ (i) ∈ (0, 1) , i = 1, ...,m− 1,

∂V (µ)

∂µ (i)
= V̂ (i)− V̂ (m) ,

∂V (µ)

∂µ (i)
= Ṽ (i)− Ṽ (m) .

Part (i) is the LIP property discovered by CD (2013). The first equality in (13) can be derived

using either the choice-based or posterior-based approach. The second equality and the local

invariance property for V̂ (x) are our new finding and can be best understood using the geometric

approach of CD (2013). Specifically, µ (·|a) is the tangent point of the net utility associated with

the chosen action a and V̂ (x) satisfies

V (µ) =
∑
a

q (a)Na (µ (·|a)) =
∑
x

V̂ (x)µ (x) ,
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at the optimum. The value V (µ) is the height above µ (x) of the convex hull connecting Na (µ (·|a))

for all chosen actions a. The value V̂ (x) is the height of the hyperplane containing this convex hull

at the point with µ (x) = 1 and µ (x′) = 0 for all x′ 6= x. This value is independent of the prior

µ in that convex hull. This result does not appear in the literature and is critical for the analysis

of the dynamic model. Notice that we need at least two chosen actions to form a convex hull. If

there is only one chosen action a, then q (a) = 1 and the posterior is the same as the prior. In this

case the convex hull is a degenerate singleton. Part (iii) follows from part (ii) and the convexity of

V (µ) poses difficulty of the dynamic RI problem.

[Insert Figure 1 Here.]

Figure 1 is similar to Figure 5 of CDL (2018a) in the case with two states {x, x′} and two actions

{a, b} . Net utilities are represented by the two solid curves. The concavification V (µ) is the concave

envelope of these two curves. The optimal posteriors µ (·|a) and µ (·|b) are given by the tangent

points at which the hyperplane supports the two net utility functions. The value V̂ (x) is given by

the height of the hyperplane at the point with µ (x) = 1. Both the optimal posteriors, V̂ (x) , and

V̂ (x′) are invariant to changes of µ (x′) within the interval (µ (x′|a) , µ (x′|b)) . If µ (x′) ∈ (0, µ (x′|a)],

then q (a) = 1 and µ (x′|a) = µ (x′) . If µ (x′) ∈ [µ (x′|b) , 1], then q (b) = 1 and µ (x′|b) = µ (x′) .

3.2 Two-Period Case

As a prelude for our dynamic analysis we study the two-period case with T = 2 and uT+1 = 0. The

decision problem is given by

max
p1, p2

E [u (x1, a1) + βu (x2, a2)]− λI (x1; a1)− λβI
(
x2; a2|a1

)
, (14)

where p1 (a1|x1) ∈ ∆ (A|X) and p2

(
a2|x2, a1

)
∈ ∆

(
A|X2 ×A

)
and the joint distribution µ2

(
x2, a2

)
satisfies (1). In Section 4.1 we will show that we only need to focus on choice rules that depend

on the current state only without loss of performance. We thus assume that p2 takes the form

p2 (a2|x2, a1) and hence I
(
x2; a2|a1

)
= I (x2; a2|a1) .

To apply the posterior-based approach, we rewrite the objective function in (14) as

J (q1, µ1 (·|·) , q2, µ2 (·|·)) ≡ E [u (x1, a1) + βu (x2, a2)]− λI (x1; a1)− λβI (x2; a2|a1)

=
∑
a1,x1

q1 (a1)µ1 (x1|a1)

[
u (x1, a1)− λ ln

µ1 (x1|a1)

µ1 (x1)

]

+β
∑

a1,a2,x2

q1 (a1) q2 (a2|a1)µ2

(
x2|a2

) [
u (x2, a2)− λ ln

µ2

(
x2|a2

)
µ2 (x2|a1)

]
,

where q1 ∈ ∆ (A) , q2 ∈ ∆ (A|A) , µ1 (·|·) ∈ ∆ (X|A) , µ2 (·|·) ∈ ∆
(
X|A2

)
, and for all x2 ∈ X,

a1 ∈ A,
µ2 (x2|a1) ≡

∑
a2

µ2

(
x2|a2

)
q2 (a2|a1) =

∑
x1

π (x2|x1, a1)µ1 (x1|a1) . (15)
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We consider interior solutions with q1 (a1) > 0 and q2 (a2|a1) > 0 for simplicity. Our analysis also

applies to corner solutions as discussed in Section 4. We call µ2 (x2|a1) the predictive distribution

of x2 given a1 if q1 (a1) > 0. Equation (15) shows that this predictive distribution can be written in

two ways: (1) marginalizing the posterior distribution µ2

(
x2|a2

)
of x2 given a2 over the conditional

distribution q2 (a2|a1) of a2 given a1; (2) marginalizing the transition kernel π (x2|x1, a1) over the

distribution µ1 (x1|a1) of x1 given a1.

Now we formulate the two-period RI problem as follows:

Problem 4 Choose q1 ∈ ∆ (A) , q2 ∈ ∆ (A|A) , µ1 (·|·) ∈ ∆ (X|A) , and µ2 (·|·) ∈ ∆
(
X|A2

)
to solve

max J (q1, µ1 (·|·) , q2, µ2 (·|·))

subject to (15) and µ1 (x1) =
∑

a1
q1 (a1)µ1 (x1|a1) for all x1 ∈ X.

We solve Problem 4 by dynamic programming using the predictive distribution as the state

variable. First consider the RI problem in period 2 for q1 (a1) > 0 :

V2 (µ2 (·|a1)) = max
∑
x2,a2

q2 (a2|a1)µ2

(
x2|a2

) [
u (x2, a2)− λ ln

µ2

(
x2|a2

)
µ2 (x2|a1)

]
(16)

subject to

µ2 (x2|a1) =
∑
a2

µ2

(
x2|a2

)
q2 (a2|a1)

for all x2 ∈ X such that µ2 (x2|a1) > 0. The choice variables are µ2

(
·|a2
)

and q2 (·|a1) . Taking

the predictive distribution µ2 (·|a1) as the prior at history a1, we view this problem as a static RI

problem studied in the previous subsection.

By Proposition 2, we have

V2 (µ2 (·|a1)) =
∑
x2

µ2 (x2|a1) Ṽ2 (x2, a1) , (17)

where

Ṽ2 (x2, a1) = λ ln

[∑
a2

q2 (a2|a1) exp (u (x2, a2) /λ)

]
, (18)

and q2 (a2|a1) is an optimal solution. Moreover, the function

V̂2 (x2, a1) ≡ Ṽ2 (x2, a1)− λ lnµ2 (x2|a1) , (19)

and the optimal posterior µ2

(
·|a2
)
∈ (0, 1) are independent of the prior µ2 (·|a1) in the convex hull

of the optimal posteriors µ2

(
·|a2
)

for all a2 such that q2 (a2|a1) > 0. Since the history a1 enters

the problem in (16) through µ2 (·|a1) only, µ2

(
·|a2
)

is independent of a1 and can be written as

µ2 (·|a2) . Similarly, V̂2 (x2, a1) is also independent of a1 and can be written as V̂2 (x2) .

13



By dynamic programming, the problem in period 1 is to choose {µ1 (x1|a1)} and {q1 (a1)} to

solve:

V1 (µ1) = max
∑
a1,x1

q1 (a1)µ1 (x1|a1)

[
u (x1, a1)− λ ln

µ1 (x1|a1)

µ1 (x1)

]
(20)

+β
∑
a1

q1 (a1)V2 (µ2 (·|a1))

subject to µ1 (x1) =
∑

a1
q1 (a1)µ1 (x1|a1) for all x1 ∈ X and

µ2 (x2|a1) =
∑
x1

π (x2|x1, a1)µ1 (x1|a1) for all x2 ∈ X. (21)

The link between the problems in the two periods is through the predictive distribution µ2 (x2|a1)

in (21).

We transform the problem in (20) into a posterior-based form similar to (12). Substituting (17),

(19), and (21) into (20) yields

V1 (µ1) = max
q1,µ1(·|·)

∑
a1

q1 (a1)Na1
G (µ1 (·|a1))− λH (µ1) , (22)

where we define the net utility associated with action a1 as

Na1
G (µ1 (·|a1)) ≡

∑
x1

µ1 (x1|a1) û (x1, a1)− λG (µ1 (·|a1)) .

Here the new utility function is given by

û (x1, a1) = u (x1, a1) + β
∑
x2

π (x2|x1, a1) V̂2 (x2) ,

and the entropy cost is given by

G (µ1 (·|a1)) = βH (µ2 (·|a1))−H (µ1 (·|a1)) , (23)

where µ2 (·|a1) satisfies (21).

The problem in (22) is similar to, but different from that in (12) due to additional terms

introduced by the problem in period 2. We arrange terms suitably in (22) in order to apply the

general method of CD (2013) that works for general information cost functions. We need the net

utility Na1
G (µ1 (·|a1)) to be concave in µ1 (·|a1) so that the supporting hyperplane theorem can be

applied. Since we have shown that V̂2 (x2) is independent of the prior µ2 (·|a1) in the convex hull of

posteriors µ2 (·|a2) for all chosen actions a2 by Proposition 2 and µ1 (·|a1) affects the objective in

the second period only through µ2 (·|a1) , we deduce that V̂2 (x2) is independent of µ1 (·|a1) . Thus

û (x1, a1) is independent of µ1 (·|a1) .

Now the concavity of the net utility function Na1
G (µ1 (·|a1)) is equivalent to the convexity of

G. This property holds for general UPS information cost functions as shown in Appendix E. Since

the Shannon entropy is a concave function, it is not obvious that G is a convex function.
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Lemma 2 For any β ∈ (0, 1] and a1 ∈ A with q1 (a1) > 0 the function G (µ1 (·|a1)) is convex in

µ1 (·|a1) and the net utility Na1
G (µ1 (·|a1)) is concave in µ1 (·|a1) .

We can then apply Lemmas 1 through 3 in CD (2013) to derive the necessary and sufficient

conditions for optimality for the two-period problem. These conditions can be equivalently written

in the choice-based form as in Proposition 1. In particular, the choice rule {p1 (a1|x1)} in period 1

is with respect to the payoff v1 (x1, a1) = u (x1, a1)+β
∑

x2
π (x2|x1, a1) Ṽ2 (x2, a1) . We will present

these conditions in Propositions 6, 7, and 10 for the general dynamic RI problem. We prefer

the choice-based form because it is easier to solve numerically using our algorithm described in

Section 4.3. SSM (2017) apply the choice-based approach to derive similar conditions. In the next

subsection we will illustrate the pitfall of this approach in dynamic models.

3.3 Nonconcavity

In this subsection we provide an example to illustrate that concavity is important for the choice-

based approach of SSM (2017) to work. Without concavity, the Kuhn-Tucker first-order conditions

are not sufficient for optimality. We still consider the two-period RI problem in (14) and focus on

interior solutions.

SSM (2017) propose a method by first breaking down the dynamic RI problem into a sequence

of static RI problems and then applying Proposition 1 to each static problem. Adapting their

method and using Lemma 1, we find that the RI problem in (14) is equivalent to the following

control problem

V1 (µ1) ≡ max
p1,p2,q1,q2

F (p1, p2, q1, q2) , (24)

where p1 ∈ ∆ (A|X) , p2 ∈ ∆ (A|X ×A) , q1 ∈ ∆ (A) , q2 ∈ ∆ (A|A), and

F (p1, p2, q1, q2) =
∑
a1,x1

µ1 (x1) p1 (a1|x1)

[
u (x1, a1)− λ ln

p1 (a1|x1)

q1 (a1)

]
(25)

+β
∑

a1,a2,x2

µ2 (x2, a1) p2 (a2|x2, a1)

[
u (x2, a2)− λ ln

p2 (a2|x2, a1)

q2 (a2|a1)

]
,

where the joint distribution µ2 (x2, a1) satisfies

µ2 (x2, a1) =
∑
x1

π (x2|x1, a1) p1 (a1|x1)µ1 (x1) = µ2 (x2|a1) q1 (a1) . (26)

Notice that F may not be jointly concave, but is coordinate-wise concave. If p1, p2, q1, and

q2 are optimal solutions to (24), then they are also coordinate-wise optimal. We can then use the

coordinate-wise first-order conditions to characterize the optimal solution.

By dynamic programming, we write the problem in period 2 as

W2 ({µ2 (x2, a1)}) ≡
∑
a1

q1 (a1) W̃2 (a1) , (27)
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where for q1 (a1) > 0

W̃2 (a1) ≡ max
p2,q2

∑
a2,x2

µ2 (x2|a1) p2 (a2|x2, a1)

[
u (x2, a2)− λ ln

p2 (a2|x2, a1)

q2 (a2|a1)

]
. (28)

This is the same as the static RI problem in (5) with prior µ2 (·|a1). We can use Proposition 1 to

derive {p2 (a2|x2, a1)} and {q2 (a2|a1)}.
By Proposition 2, the value function satisfies

W̃2 (a1) =
∑
x2

µ2 (x2|a1) Ṽ2 (x2, a1) =
∑
x2

µ (x2|a1) V̂ (x2)− λH (µ2 (·|a1)) , (29)

where

Ṽ2 (x2, a1) = λ ln
∑
a2

q2 (a2|a1) exp [u (x2, a2) /λ] , V̂ (x2) = Ṽ2 (x2, a1)− lnµ2 (x2|a1) , (30)

and V̂ (x2) is independent of µ2 (·|a1) in the convex hull of optimal posteriors for chosen actions.

It follows from (26), (27), and (29) that

W2 ({µ2 (x2, a1)}) =
∑
x2,a1

µ2 (x2, a1) Ṽ2 (x2, a1) =
∑

x2,x1,a1

π (x2|x1, a1) p1 (a1|x1)µ1 (x1) Ṽ2 (x2, a1) .

Notice that W̃2 (a1) = V2 (µ2 (·|a1)) .

By dynamic programming, we rewrite the period 1 objective function in (24) as

∑
a1,x1

µ1 (x1) p1 (a1|x1)

[
u (x1, a1) +

∑
x2

π (x2|x1, a1) Ṽ2 (x2, a1)− λ ln
p1 (a1|x1)

q1 (a1)

]
. (31)

SSM (2017) suggest to treat the problem in period 1 as a static RI problem with exogenous payoff

v1 (x1, a1) ≡ u (x1, a1) +
∑
x2

π2 (x2|x1, a1) Ṽ2 (x2, a1) ,

and derive coordinate-wise first-order conditions with respect to p1 and q1 for fixed p2 and q2.

We find that the first-order conditions for p1, q1, p2, and q2 are the same as those derived

using the posterior-based approach in the previous subsection. The CD and CDL type sufficient

conditions are also the same. This result holds for any horizon T ≥ 2 as shown in Propositions 6

and 7 and Appendix C. There is an implicit concavity assumption behind the derivations above.

We need the objective function in (31) to be jointly concave in p1 and q1. SSM (2017) argue that

one can treat the continuation value Ṽ2 (x2, a1) as fixed by ignoring the effect of p1 and q1 on future

beliefs µ2 (x2|a1).

Since µ2 (x2|a1) satisfies

µ2 (x2|a1) =
∑
x1

π (x2|x1, a1)µ1 (x1|a1) =

∑
x1
π (x2|x1, a1) p1 (a1|x1)µ1 (x1)

q1(a1)
, (32)

16



and Ṽ2 (x2, a1) satisfies (30), we know that p1 and q1 affect Ṽ2 (x2, a1) in a nonlinear way. Taking

this impact into account, we use (30) and (32) to rewrite (31) as

∑
x1

µ1 (x1)

[∑
a1

p1 (a1|x1) û (x1, a1) + λΦ (p1, q1;x1)

]
, (33)

where we define

û (x1, a1) ≡ u (x1, a1) + β
∑
x2

π (x2|x1, a1)
[
V̂2 (x2) + λ lnµ1 (x1)

]
,

and

Φ (p1, q1;x1) ≡
∑
x2,a1

π (x2|x1, a1) p1 (a1|x1) ln

[∑
x′1
π (x2|x′1, a1) p1 (a1|x′1)

]β
p1 (a1|x1) [q1 (a1)]β−1

.

Now the concavity of the optimization problem is equivalent to the concavity of Φ (p1, q1;x1) .

In Lemma 4 of Appendix C we show that Φ (p1, q1;x1) is indeed concave in p1 and q1 if β ∈ (0, 1].

Taking first-order conditions for (33) give the same result as in Proposition 6 and the sufficient

conditions in Proposition 7 guarantee the optimality of these conditions.

We provide a numerical example to illustrate that Φ (p1, q1;x1) is not concave if β > 1 is suffi-

ciently large. The intuition is that the convexity of the continuation value Ṽ2 (x2, a1) in µ2 (x2|a1)

may dominate the concavity of the payoff in period 1. We introduce discounting to the example in

Section 4.1 of SSM (2017). Let X = A = {1, 2} , u (xt, at) = 1 if xt = at and u (xt, at) = 0 if xt 6= at

for t = 1, 2. Let µ1 (1) = 0.5 and λ = 1. The state transition kernel πt+1 (xt+1|xt, at) is independent

of at and satisfies πt+1 (xt+1|xt, at) = 1 − γ if xt+1 = xt, and πt+1 (xt+1|xt, at) = γ, otherwise, for

t = 1.

Let γ = 0.2 and β = 10.6 We numerically find that the following interior solution satisfies all

first-order conditions including the CD and CDL type sufficient conditions: q1(1) = q1(2) = 1/2,

q2(2|2) = q2(1|1) = 0.376, p1(1|1) = p1 (2|2) = 0.406, p2 (1|1, 1) = 0.621, p2 (1|1, 2) = 0.819,

p2 (1|2, 1) = 0.181, p2 (1|2, 2) = 0.379, and µ2(x2|a1) = 0.4435 if x2 = a1; = 0.5565, otherwise.

Figure 2 plots the continuation value W̃2 (a1 = 1) as a function of the prior belief µ2 (x2 = 1|a1 = 1)

at history a1 = 1, the contour of the period 1 objective in (31) as a function of p1 (1|1) and

p1 (1|2), and the contour of Φ (p1, q1;x1 = 1) as a function p1 (1|1) and p1 (1|2) . We have used∑
x1
p1 (a1|x1)µ1 (x1) to replace q1 (a1) in the last two functions. Figure 2 shows that the first two

functions are convex and the last function is not concave. Thus the solution given above is not

optimal, even though it satisfies all Kuhn-Tucker first-order conditions.

[Insert Figure 2 Here.]

6One can reinterpret the discount factor β as a scaling factor for the utility function and the marginal information
cost in period 2.
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3.4 UPS Cost Functions

In this subsection we show that our approach applies to the UPS information cost functions in-

troduced by CD (2013) and CDL (2018b), but the choice-based approach of SSM (2017) may not.

Replace the mutual information I (x, a) in Problem 2 by the UPS information cost function defined

as

CH (µ, µ (·|·) , q) = H (µ)−
∑
a

q (a)H (µ (·|a)) ,

where H : ∆ (X) → R+ is a concave function and µ (x) =
∑

a q (a)µ (x|a) . Clearly, observing

information reduces uncertainty so that CH (µ, µ (·|·) , q) ≥ 0. We may view H as a generalized

entropy and the Shannon entropy is a special case with H (ν) = −
∑

ν ν (x) ln ν (x) . For a UPS

cost function, the net utility function is concave in the static case. We can then apply Lemmas 1

through 3 of CD (2013) to characterize the solution.

In Appendix E we study a two-period RI problem and show that the concavity of the total net

utility function is equivalent to the convexity of the function G defined in (23), where H is the

generalized entropy defined here. As long as G is convex, we can still apply Lemmas 1 through 3

of CD (2013) in the static case to characterize the solution in the dynamic case. The UPS cost

functions also satisfy the LIP property (CD (2013) and CDL (2018b)), which is important for

dynamic models. This property allows us to derive Markovian solutions that facilitate efficient

numerical methods.

To illustrate why the choice-based approach may not work for general UPS cost functions, we let

H be the weighted entropy (Belis and Guiasu (1968)) defined as H (ν) = −
∑

xw (x) ν (x) ln ν (x) ,

where the weighting function satisfies w (x) ≥ 0 and
∑

xw (x) = 1. In this case the cost function

becomes

CH(µ, µ(·|·), q) =
∑
x,a

w(x)q (a)µ (x|a) ln
µ (x|a)

µ (x)
=
∑
x,a

w(x)µ(x)p(a|x) ln
p(a|x)

q(a)
.

Following the choice-based approach described in Section 3.1, we define

F (p, q) =
∑
a,x

µ(x)p(a|x)

[
u(x, a)− λw(x) ln

p(a|x)

q(a)

]
.

One can check that Lemma 1 does not hold in general so that the static RI problem is not equivalent

to the problem in (9) for general UPS cost functions. Similarly, Lemma 2 in SSM (2017) also fails

for general UPS cost functions in dynamic models. Thus the coordinate-wise first-order conditions

for p and q cannot be used to characterize the solutions to dynamic RI problems.

4 Main Results

In this section we characterize solutions by dynamic programming, provide necessary and sufficient

first-order conditions for optimality, and describe a numerical algorithm to solve these conditions.
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4.1 Dynamic Programming

We start by the finite-horizon case T < ∞ in Problem 1. We adopt the joint distribution{
µt
(
xt, at−1

)}
as the state variable and define the value function as

Wt

({
µt
(
xt, at−1

)})
= max

{pk}Tk=t
E

[
T∑
k=t

βk−t
(
u (xk, ak)− λI

(
xk; ak|ak−1

))]
(34)

+βT+1−kEuT+1 (xT+1)

for t ≥ 1, where each pk ∈ ∆
(
A|Xk ×Ak−1

)
and the expectation is taken with respect to the

marginal distribution of xT and aT induced by the recursive equation (1) starting at
{
µt
(
xt, at−1

)}
.

By the principle of optimality (Stokey, Lucas with Prescott (1989)), the value function satisfies

the Bellman equation

Wt

({
µt
(
xt, at−1

)})
= max

pt
E [u (xt, at)]− λI

(
xt; at|at−1

)
+ βWt+1

({
µt+1

(
xt+1, at

)})
(35)

subject to (1), for t = 1, 2, ..., T, with the terminal condition

WT+1

({
µT+1

(
xT+1, aT

)})
= EuT+1 (xT+1) . (36)

The dynamic programming problem (35) is complicated to solve in general because of the history

dependence. Following Proposition 1 of TSS (2018), we can show that this problem can be sim-

plified. Specifically the search for the optimal stochastic choice rules can be restricted to the class

of rules of the form pt
(
at|xt, at−1

)
without loss of performance. For this class of rules, the mutual

information satisfies I
(
xt; at|at−1

)
= I

(
xt; at|at−1

)
and the value function depends only on the

marginal distribution µt
(
xt, a

t−1
)
.7

We now generalize this result to the infinite-horizon case as T →∞.

Proposition 3 Consider the infinite-horizon RI problem in (4) with T =∞.

(i) There exists an optimal choice rule of the form p̂ =
{
p̂t
(
at|xt, at−1

)}∞
t=1

.

(ii) Under the choice rule p̂, we have

I
(
xt; at|at−1

)
= I

(
xt; at|at−1

)
for all t ≥ 1.

(iii) As T → ∞, the T -horizon value function Wt

({
µt
(
xt, at−1

)})
converges to the infinite-

horizon value function which depends only on the marginal distribution
{
µt
(
xt, a

t−1
)}
.

By this proposition we can write the one-period payoff as

E [u (xt, at)]− λI
(
xt; at|at−1

)
=

∑
xt,at

µt
(
xt, a

t
) [
u (xt, at)− λ ln

µt
(
xt|at

)
µt (xt|at−1)

]

=
∑
xt,at

µt
(
at−1

)
qt
(
at|at−1

)
µt
(
xt|at

) [
u (xt, at)− λ ln

µt
(
xt|at

)
µt (xt|at−1)

]
,

7The key to the proof is to apply the additivity property of the Shannon mutual information.
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where µt
(
at−1

)
, qt
(
at|at−1

)
, µt

(
xt|at

)
, and µt

(
xt|at−1

)
denote the marginal distribution of at−1,

the conditional distribution of at given history at−1, the posterior distribution of xt given at, and

the predictive distribution of xt given at−1, respectively.

Noticing that µt
(
at
)

= µt
(
at−1

)
qt
(
at|at−1

)
, we can write the value function as

Wt

({
µt
(
xt, a

t−1
)})

=
∑
at−1

µt
(
at−1

)
Vt
(
µt
(
·|at−1

))
,

whenever µt
(
at−1

)
> 0, where Vt

(
µt
(
·|at−1

))
satisfies the Bellman equation

Vt
(
µt
(
·|at−1

))
= max

∑
xt,at

qt
(
at|at−1

)
µt
(
xt|at

) [
u (xt, at)− λ ln

µt
(
xt|at

)
µt (xt|at−1)

]
(37)

+β
∑
at

qt
(
at|at−1

)
Vt+1

(
µt+1

(
·|at
))

subject to

µt
(
xt|at−1

)
=

∑
at

qt
(
at|at−1

)
µt
(
xt|at

)
all xt ∈ X, (38)

µt+1

(
xt+1|at

)
=

∑
xt

π (xt+1|xt, at)µt
(
xt|at

)
all xt+1 ∈ X. (39)

The choice variables are qt
(
·|at−1

)
∈ ∆ (A) and µt

(
·|at, at−1

)
∈ ∆ (X) for all at ∈ A. Equations

(38) and (39) give two ways to decompose the predictive distribution. In the finite-horizon case

with T <∞, there is a terminal condition

VT+1

(
µT+1

(
·|aT

))
=
∑
xT+1

µT+1

(
xT+1|aT

)
uT+1 (xT+1) .

Notice that qt
(
at|at−1

)
= µt

(
xt|at

)
= 0 whenever µt

(
xt|at−1

)
= 0. At the initial date we set

µ1

(
x1, a

0
)

= µ1

(
x1|a0

)
≡ µ1 (x1), µ1

(
a0
)
≡ 1, q1

(
a1|a0

)
≡ q1 (a1) , and p1 (a1|x1, a0) ≡ p1 (a1|x1) .

We also have V1

(
µ1

(
·|a0
))

= W1

({
µ1

(
x1, a

0
)})

.

We will focus on the analysis of the Bellman equation in (37), in which the predictive dis-

tribution µt
(
·|at−1

)
> 0 is used as the state variable and the choice variables are the posterior{

µt
(
xt|at

)}
∈ ∆ (X|A) and the default rule

{
qt
(
at|at−1

)}
∈ ∆ (A) given at−1. After obtaining the

optimal solutions for
{
µt
(
xt|at

)}
and

{
qt
(
at|at−1

)}
, we can derive the stochastic choice rule using

the Bayes rule:

pt
(
at|xt, at−1

)
=
µt
(
xt|at

)
qt
(
at|at−1

)
µt (xt|at−1)

. (40)

4.2 Markovian Logit Rule

The solution to the dynamic RI problem may be history dependent, making both analytical char-

acterizations and numerical methods complicated. Unlike SSM (2017), we will adopt the posterior-

based approach to provide a dynamic logit rule characterization in Appendix B. To simplify the

analysis, here we focus on Markovian solutions.
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Definition 2 An optimal solution to the dynamic RI problem in (4) is Markovian if, for any

two histories at−1 and
{
bt−2, at−1

}
reached with positive probabilities and any t ≤ T , the implied

predictive distributions satisfy µt(xt|at−1) = µt(xt|at−1, b
t−2).

Intuitively, the predictive distribution is the state variable in the posterior-based dynamic pro-

gramming problem. If this state variable is history independent, then the optimal solution will also

be history independent. We thus have the following result.

Proposition 4 For a Markovian solution to the dynamic RI problem in (4), the choice rule

pt(at|xt, at−1) and the default rule qt(at|at−1) take the form of pt(at|xt, at−1) and qt(at|at−1), re-

spectively, for any t ≤ T .

In Appendix F we provide two numerical examples to illustrate Definition 2 and Proposition 4.

We say that a solution to the dynamic RI problem in (4) is interior if qt(at|at−1) > 0 for any action

at ∈ A and all t ≥ 1.

Proposition 5 An interior solution is Markovian.

Now we provide necessary and sufficient conditions for Markovian solutions, which may not be

interior, using the posterior-based approach.

Proposition 6 (necessary conditions) Let β ∈ (0, 1). Then the Markovian solution to the dynamic

RI problem in (4), {pt (at|xt, at−1)}Tt=1 and {qt (at|at−1)}Tt=1 , is characterized by the following sys-

tem of difference equations for t = 1, 2, ..., T :

pt (at|xt, at−1) =
qt (at|at−1) exp (vt (xt, at) /λ)∑
a′t
qt (a′t|at−1) exp (vt (xt, a′t) /λ)

for µt (xt, at−1) > 0, (41)

qt (at|at−1) =
∑
xt

pt (at|xt, at−1)µt (xt|at−1) for µt (at−1) > 0, (42)

where

vt (xt, at) = u (xt, at) + β
∑
xt+1

π (xt+1|xt, at) Ṽt+1 (xt+1, at) , (43)

Ṽt (xt, at−1) = λ ln
∑
at

qt (at|at−1) exp (vt (xt, at) /λ) , (44)

µt+1 (xt+1, at) =
∑

xt,at−1

π (xt+1|xt, at) pt (at|xt, at−1)µt (xt, at−1) , (45)

µt (xt|at−1) =
µt (xt, at−1)

µt (at−1)
for µt (at−1) =

∑
xt

µt (xt, at−1) > 0. (46)
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The value functions satisfy

Wt ({µt (xt, at−1)}) =
∑

xt,at−1

µt (xt, at−1) Ṽt (xt, at−1) , (47)

Vt (µt (·|at−1)) =
∑
xt

µt (xt|at−1) Ṽt (xt, at−1) . (48)

In the finite-horizon case with T <∞, there is a terminal condition ṼT+1 (xT+1, aT ) = uT+1 (xT+1) .

Proposition 6 shows that if the Markovian solution for {pt (at|xt, at−1)} and {qt (at|at−1)} solves

the dynamic RI problem, then it also solves the static RI problem with the prior belief at history

at−1, µt (xt|at−1) , and payoff function vt (xt, at) .

The realized continuation value Ṽt (xt, at−1) satisfies (44) and the expected optimal continuation

value at time t is given by (47). The value function for the posterior-based dynamic programming

satisfies (48). As in SSM (2017), the optimal choice rule is consistent with the dynamic logit rule

with payoffs vt (xt, at) /λ+ ln qt (at|at−1) (Rust (1987)):

pt (at|xt, at−1) =
exp [vt (xt, at) /λ+ ln qt (at|at−1)]∑
a′t

exp [vt (xt, a′t) /λ+ ln qt (a′t|at−1)]
.

The payoff differs from the DM’s true payoff vt (xt, at) /λ by a predisposition term, ln qt (at|at−1).

The predisposition increases the relative payoff associated with actions that are chosen with high

probability on average across all states given the DM’s last acquired information.

Proposition 6 is related to Theorem 1, Proposition 3, and Lemma 6 of SSM (2017), who show

that the dynamic RI problem can be characterized by solving a sequence of static RI problems.

Our characterization complements theirs and facilitates numerical computations presented in the

next subsection. In Appendix C we modify the choice-based approach of SSM (2017) and establish

the concavity of the objective function. Then we derive the same conditions as in Proposition 6 for

interior solutions only. The next result presents sufficient conditions.

Proposition 7 (sufficient conditions) Suppose that the dynamic RI problem in (4) with β ∈ (0, 1)

has an optimal Markovian solution. If conditions (41) through (46) and the following condition are

satisfied ∑
xt

µt (xt|at−1) exp (vt (xt, at) /λ)∑
a′t
qt (a′t|at−1) exp (vt (xt, a′t) /λ)

≤ 1, t = 1, 2, ..., T,

with equality if qt (at|at−1) > 0, then {pt (at|xt, at−1)}Tt=1 and {qt (at|at−1)}Tt=1 are an optimal

Markovian solution.

We stress that the additional sufficient condition is valid only for jointly concave problems.

Such concavity for dynamic RI models is difficult to establish using the choice-based approach. We

resolve this issue using the posterior-based approach of CD (2013).
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4.3 Numerical Methods

The conditions presented in Proposition 6 are a system of nonlinear difference equations, which is

nontrivial to solve both analytically and numerically. To solve this system numerically, we extend

the forward-backward Arimoto-Blahut algorithm proposed by TSS (2018) to our infinite-horizon

model. We present the algorithm in Appendix D. Here we sketch the key idea.

We classify the difference equations in Proposition 6 into two groups. Equations (42), (45), and

(46) form the first group, which characterizes {µt (xt, at−1)} , {µt (xt|at−1)} , and {qt (at|at−1)},
and equations (41), (43), and (44) form the second group, which characterizes {pt (at|xt, at−1)} ,
{vt (xt, at)} and {Ṽt (xt, at−1)}. If the solution for {pt (at|xt, at−1)} , {vt (xt, at)} and {Ṽt (xt, at−1)}
is known, the equations in the first group can be solved forward in time to obtain {µt (xt, at−1)} ,
{µt (xt|at−1)} , and {qt (at|at−1)} .On the other hand, if the solution for {µt (xt, at−1)} , {µt (xt|at−1)} ,
and {qt (at|at−1)} is known, the equations in the second group, which can be viewed as Bell-

man equations, can be solved backward in time to compute {pt (at|xt, at−1)} , {vt (xt, at)} and

{Ṽt (xt, at−1)}. Thus, to solve these sequences simultaneously, we use the following iterative method:

First, fixing the horizon T <∞, perform the forward computation using the current best guess of the

second group of unknowns, and then perform the backward computation using the updated guess

of the first group of unknowns. Repeat this forward-backward iteration until convergence to obtain

the solution for the T -horizon problem. Increase T until the value function Wt ({µt (xt, at−1)})
converges to obtain the solution for the infinite-horizon problem. Discounting by β ∈ (0, 1) is

important for the last convergence.

The algorithm above generalizes the Arimoto-Blahut algorithm, which can be viewed as a block

coordinate descent algorithm in multivariate convex optimization problems (Bertsekas (2016)). A

sufficient condition for the convergence is that the objection function is jointly concave. We have

shown that this condition is satisfied in our model so that the forward-backward Arimoto-Blahut

algorithm converges to the optimal solution to the dynamic RI problem. We will use this algorithm

to solve some numerical examples in the next section. Whenever a Markovian solution exists, our

algorithm will find such a solution. But if a Markovian solution does not exist, our algorithm will

find a Markovian solution that approximates the true history-dependent solution. We can design

a similar algorithm for the history-dependent solution in Proposition 10 of Appendix B. This

algorithm becomes complicated for long-horizon problems as the history increases with the horizon

and becomes infeasible under infinite-horizon.

5 Applications

In this section we apply our results to a matching state problem often studied in the literature

(SSM (2017), CD (2013) and CDL (2018a)). This problem can be used to describe many economic
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decisions, e.g., consumer choices, project selection, and job search. Suppose that X = A and the

utility function satisfies u (xt, at) = 1 if xt = at; and u (xt, at) = 0, otherwise. We assume that

the transition kernel is independent of actions in Section 5.1 as in SSM (2017) and allow it to

depend on actions in Section 5.2. In these two subsections we also assume that |X| = |A| = 2 and

µ1 (x1 = 1) = 0.5. In Section 5.3 we allow |X| = |A| > 2 and study the dynamics of consideration

sets.

5.1 Transition Kernel Independent of Actions

As in SSM (2017), we assume π (xt+1|xt, at) = γ whenever xt+1 6= xt for any at ∈ A. We use this

example to illustrate that rationally inattentive behavior exhibits the status quo bias over a short

horizon, but not over an infinite horizon. Moreover, the infinite-horizon behavior exhibits inertia.

For comparison, the optimal solution for the case without information cost (λ = 0) is to choose an

action to match the state in each period.

With information cost λ > 0, we first consider the infinite-horizon stationary case, in which

pt (at|xt, at−1) , qt (at|at−1) , and µt (xt|at) do not depend on time. By equations (38) and (39), we

have

q (1|1)µ (2|1) + q (2|1)µ (2|2) = (1− γ)µ (2|1) + γµ (1|1) .

By symmetry µ (1|1) = µ (2|2) and q (1|1) = q (2|2) . Then we obtain

q (at = 1|at−1 = 1) = q (at = 2|at−1 = 2) = 1− γ,

as long as µ (2|1) 6= µ (1|1) . By symmetry the initial default rule satisfies q1 (a1 = 1) = 1/2. Using

equations (41) through (47), we can determine the optimal stochastic rule {pt} and the path

of optimal payoffs {Wt} . Using the forward-backward Arimoto-Blahut algorithm, we numerically

verify the above interior solution and find that there is no transition in this example. The solution

immediately reaches the stationary case in period 2.

Our solution above verifies part 1 of Proposition 5 in SSM (2017), which considers more general

payoff functions and transition probabilities. The DM’s choices exhibit inertia. That is, when

the exogenous state is more persistent, the DM’s choice behavior is also more persistent. For our

example, they have the same persistence.

It is interesting to compare with the finite-horizon solution. SSM (2017) study the two-period

case and their Proposition 4 shows that when γ is sufficiently small, q2 (1|1) = q2 (2|2) = 1 and

Pr (a1 = a2) = 1. That is, if the probability of changing states is sufficiently small, the DM’s

behavior exhibits status quo bias in the sense that he acquires information only in the first period

and relies on that information in both periods. Through extensive numerical experiments, we find

that this result does not hold in the infinite-horizon case. In particular, we always have the interior
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solution described above for any γ ∈ (0, 1) given µ1 (x1 = 1) = 0.5.8

[Insert Figure 3 Here.]

The intuition behind the above result is the following. In the two-period case, when γ is

sufficiently small, the DM believes that any state in period 1 is more likely to remain the same in

period 2. Thus the DM does not want to acquire new information and just follows the first period

choice. However, when the horizon becomes longer, future states are more likely to switch. In

particular, the switching probability is given by 1− (1− γ)T , which increases to 1 for γ ∈ (0, 1) as

T → ∞. Thus it is more valuable to acquire new information when the decision horizon is longer.

But when the decision horizon is sufficiently short, the DM will not acquire any information, e.g.,

in the terminal period.

Figure 3 illustrates the analysis above. The parameter values are T = 10, µ1 (x1 = 1) = 0.5,

λ = 1, γ = 0.03, and β = 0.8. We find that q1 (a1 = 1) = 1/2 by symmetry and

qt (at = 1|at−1 = 1) =


0.97 for t = 2, 3, ..., 6,
0.973 for t = 7,

1 for t = 8, 9, 10.

The left panel of Figure 2 presents the paths of pt (at = 1|xt = 1, at−1 = 1) and pt (at = 1|xt = 1, at−1 = 2) .

At time 1, they are the same because a1 is not present. Then pt (at = 1|xt = 1, at−1 = 1) increases

to 1 and pt (at = 1|xt = 1, at−1 = 2) decreases to zero, consistent with the inertia behavior shown

in Proposition 5 of SSM (2017). We also find that, when T → ∞, there is no terminal time and

qt (at = 1|at−1 = 1) = 0.97 = 1− γ for all t ≥ 2.

Our analysis indicates that it is rational inattention combined with the short horizon that

generates status quo bias. This bias does not exist under infinite horizon. The inertia behavior

exists in both finite- and infinite-horizon settings.

5.2 Transition Kernel Depends on Actions

We now show that the results are very different when the state transition kernel depends on actions.

For simplicity, assume that π (xt+1|xt, at) = α ∈ [0, 1] if xt+1 = at, for t ≥ 1. That is, the probability

that the state in the next period confirms the current action is equal to α and is independent of

the current state. We use this example to show that status quo bias can persist in the long run

and confirmation bias and belief polarization can also arise.

Notice that the optimal solution in the case without information cost (λ = 0) is always to

choose an action to match the state in each period as in the previous subsection. Next consider

the two-period case with costly information acquisition (λ > 0).

8We have a full characterization of interior solutions under both finite and infinite horizons for general initial
priors and any number of states and actions. The result is available upon request. Also see Proposition 9.

25



Proposition 8 Consider the two-period RI model with β = 1 and u3 (x3) = 0. Let π (xt+1|xt, at) =

α ∈ [0, 1] whenever xt+1 = at. Let α∗ ≡ exp(1/λ)
exp(1/λ)+1 and α∗∗ ≡ 1

exp(1/λ)+1 . Then the solution satisfies

q1 (1) = 1/2 and Pr (a2 = a1) = 1 for α > α∗ and q1 (1) = 1/2 and Pr (a2 6= a1) = 1 for α < α∗∗.

For α ∈ (α∗, α∗∗) , the solution is interior with

q2 (1|1) = q2 (2|2) =
α (exp (1/λ) + 1)− 1

exp (1/λ)− 1
.

This proposition shows that the status quo bias can emerge. In particular, if α is sufficiently

large, the DM believes that there is a high probability that x2 confirms a1 and thus he does not

reverse his decision. But if α is sufficiently small, he reverses his decision.

Using numerical methods, we find that the solutions for any T > 2 are similar to those for

T = 2. This result is different from the case in which the state transition kernel is independent

of actions. In that case the status quo bias does not occur under infinite horizon because the

probability that the state will eventually switch is equal to 1. By contrast, for the model in this

subsection, the state transition probability is independent of the current state, but dependent on

the current action. If the probability that the state in the next period matches the current action

is sufficiently high, the DM will not reverse his initial decision in that Pr (at = a1) = 1 for all t > 1.

On the other hand, if this probability is sufficiently low, the DM will reverse his initial decision

forever in that Pr (at = a′1) = 1 for all t > 1 and a′1 6= a1.

[Insert Figure 4 Here]

Figure 4 illustrates the transition dynamics for the parameter values λ = 1, β = 0.8, and α = 0.9.

We find that there is no transition and the solution becomes stationary from the second period on.

There is a positive feedback between beliefs and actions in the model of this subsection. When

the DM believes that the state in the next period is sufficiently likely to be consistent with the

DM’s current action, he will choose the same action in the next period in order to match the state.

In this case he acquires information only in period 1 and uses the same information in the future.

Even though the realized state in the future is different from his initial action, he still mistakenly

sticks to the initial chosen action because processing new information is costly.

The model here also has implications for the confirmation bias and the belief polarization in the

psychology literature. Confirmation bias is the tendency to search for, interpret, favor, and recall

information in a way that confirms one’s preexisting beliefs or hypotheses. This behavior happens

in our model because the DM will stick to his initial choice if he entertains a strong belief that the

future state is likely to be consistent with his current action. If there are more individuals, belief

polarization may occur. Suppose that two individuals with the same prior about the states have

different beliefs about state transition probabilities. One believes the future state is more likely to

be consistent with the current action, and the other believes the opposite. Then after the same
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state is realized over time, each one believes his own belief is correct: individual 1 will choose the

same action as the initial one. The other will always choose the action different from the initial

one.

5.3 Dynamics of Consideration Sets

In this subsection we allow any finite number of actions and states and study how consideration

sets evolve over time. Let |X| = |A| = m > 2. CDL (2018a) define the consideration set as the set

of actions which are chosen with positive probabilities in a static setup. In our dynamic model the

DM’s choices depend on past information or actions. Since we focus on Markovian solutions, we

define a consideration set at date t conditional on at−1 as

Bt (at−1) = {at ∈ A : qt (at|at−1) > 0 for µt (at−1) > 0} .

Notice that we require that at−1 be chosen with a positive probability unconditionally in the last

period for this definition to be well defined.

We first consider the case in which the transition kernel does not depend on actions. The

following result characterizes the steady-state behavior and shows that the status quo bias in the

sense that Pr (at = at−1) = 1 does not emerge under infinite horizon.

Proposition 9 For the infinite-horizon matching state problem under RI, let π (xt+1|xt, at) = 1−γ
if xt+1 = xt; and π (xt+1|xt, at) = γ/ (m− 1) , otherwise. For any symmetric interior solution in

the long run, q (at|at−1) = 1− γ if at = at−1 and q (at|at−1) = γ/ (m− 1) if at 6= at−1.

We are unable to provide an analytical characterization of the transition dynamics. Thus we

use the forward-backward Arimoto-Blahut algorithm to solve numerical examples. Set m = 10,

µ1 (k) = 1−δ
1−δ10 δ

k−1 for 1 ≤ k ≤ 10, δ = 0.8, β = 0.5, λ = 1, and γ = 0.2. According to this prior

distribution, the DM believes state i is more likely than state j if 1 ≤ i < j ≤ m. For the static

case we are able to replicate the numerical results in CDL (2018a). Figure 5 presents the solution

for the infinite-horizon case. We find that the solution converges to the steady state characterized

in Proposition 9 starting from period 6 on.

[Insert Figure 5 Here]

In period 1 the DM chooses the first 5 actions/alternatives as they have high prior probabilities.

Thus the consideration set in period 1 is B1 = {1, 2, 3, 4, 5} . The DM makes ‘mistakes’ in that for

each of the chosen alternatives a1 ∈ B1, the probability of it in fact matching the state is about

µ1 (x1 = a1|a1) = 0.40 < 1. The posterior is identical for all a1 ∈ B1 despite the fact that states

have different prior probabilities as shown in CDL (2018a). Moreover, the posterior distribution

µ1 (·|a′1) is a permutation of µ1 (·|a1) for a′1, a1 ∈ B1. For example, µ1 (1|1) = µ1 (2|2) = 0.40,
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µ1 (1|2) = µ1 (2|1) , and µ1 (i|1) = µ1 (i|2) for all i = 3, 4, ..., 10. This property holds true for any

period and thus we only consider the history at = 1 in Figure 4.

Moving to period 2, states have a high probability (0.8) to remain the same. The new prior

at history a1 = 1 is the predictive distribution µ2 (x2|a1 = 1) , which still puts a large weight on

state 1, but the weights on other states are spread out. The posterior µ2 (x2|a2 = 1) has a similar

property. Moreover, the DM chooses action 1 with a high probability given that he already chose

a1 = 1, q2 (a2 = 1|a1 = 1) = 0.88.

Similar pattern persists as time goes by. From period 2 on, the consideration set Bt (at−1 = 1)

strictly increases over time until all alternatives are chosen in period 6. In the meantime, qt (at|at−1 = 1)

slowly declines to its steady state value of 0.80. The posterior distribution converges to the steady

state: µ (1|1) = 0.33, µ (i|1) = 0.074 for all i 6= 1.

Next we consider the case in which the transition kernel depends on actions. For simplicity, let

π (xt+1|xt, at) = α if xt+1 = at; and π (xt+1|xt, at) = (1− α) / (m− 1) , otherwise. We find that

the results are very different from those in the case in which the transition kernel is independent

of actions discussed earlier. But they are similar to those in Section 5.2.

We are unable to establish a theoretical result like Proposition 8. Through extensive numerical

experiments, we find the following results for the infinite-horizon case. Due to the positive feedback

between belief and behavior, when the DM believes that the state in the next period is sufficiently

likely to be consistent with his current action (i.e., α is sufficiently large), he will choose the same

action in the next period in order to match the state, i.e., qt (at|at−1) = 1 for at = at−1. In this case

he acquires information only in period 1 and uses the same information in the future. His behavior

exhibits a status quo bias.

In the other extreme, if α is sufficiently small, the DM believes that the state is unlikely to match

the action. He will not choose the same action in the next period, i.e., qt (at|at−1) = 0 for at = at−1.

Moreover he will choose any other action with an equal probability, i.e., qt (at|at−1) = 1/ (m− 1)

for all at 6= at−1, due to the symmetry of the model specification.

For intermediate values of α, the solution is interior and characterized by the logit rule as in

Proposition 6. For space consideration we omit the discussion here.

The results for the finite- and infinite-horizon cases are similar. Figure 6 presents the solutions

for the three-period model with T = 3. We still use the previous parameter values except for

different transition kernels. The top three panels show the results for α = 0.6, which illustrate the

status quo bias. The bottom three panels show the results for α = 0.02. In this case the DM will

not choose action 1 in period 2 even though he chooses it in period 1 with the highest probability.

The reason is that he believes the state in period 2 will move away from state 1 with probability

0.98, and thus his revised prior belief µ2 (x2|a1) at history a1 = 1 puts a small weight on state 1.

The consideration set in period 2 conditional on a1 = 1 is B2 (a1 = 1) = {2, ..., 10} . Despite the
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fact that q2 (a2 = 1|a1 = 1) = 0, the unconditional probability of a2 = 1 is µ2 (a2 = 1) = 0.6 so

that we can compute q3 (a3|a2 = 1) . We find that the consideration set in period 3 conditional on

a2 = 1 is B3 (a2 = 1) = {2, 3, ..., 10} .

[Insert Figure 6 Here]

6 Conclusion

We adopt the posterior-based approach to study dynamic RI problems and provide a transparent

characterization of optimal solutions for the case with the Shannon entropy similar to the dynamic

logit rule. We provide an efficient algorithm to solve the optimal solutions and apply our model

to explain some behavioral biases. We also study the connection with the choice-based approach

and show that, without checking the concavity of the objective function, first-order Kuhn-Tucker

conditions can lead to nonoptimal solutions for dynamic RI problems. Unlike the choice-based

approach, our approach applies to general UPS cost functions that satisfy a convexity condition

on the difference between the discounted generalized entropy of the prior beliefs about the future

states and the generalized entropy of the current posterior. Because this large class of cost functions

can help explain some behavior that violates the predictions of the RI models with the Shannon

entropy cost (CDL (2018b)), our approach should find wide applications in dynamic settings.
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Online Appendix

A Proofs

Proof of Proposition 1: See MM (2015) and CDL (2018a). Q.E.D.

Proof of Lemma 1: See Theorem 4 of Blahut (1972). Q.E.D.

Proof of Proposition 2: (i) It follows from Corollary 1 of CD (2013).

(ii) By MM (2015) and CD (2013), the optimal posterior satisfies

µ (x|a) =
µ (x) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

if q (a) > 0.

We can then compute that

V (µ) =
∑
a

q (a)Na (µ (·|a)) =
∑
a

q (a)
∑
x

µ (x|a) [u (x, a)− λ lnµ (x|a)]

=
∑
a

q (a)
∑
x

µ (x) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

u (x, a)

−λ
∑
a

q (a)
∑
x

µ (x) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

ln
µ (x) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

= −λ
∑
a

q (a)
∑
x

µ (x) exp (u (x, a) /λ)∑
a′ q (a′) exp (u (x, a′) /λ)

ln
µ (x)∑

a′ q (a′) exp (u (x, a′) /λ)

= λ
∑
x

µ (x) ln

[∑
a′

q
(
a′
)

exp
(
u
(
x, a′

)
/λ
)]
− λ

∑
x

µ (x) lnµ (x) .

Define Ṽ (x) as in the proposition for µ (x) > 0. Then the optimal expected payoff is

V (µ) = V (µ) + λ
∑
x

µ (x) lnµ (x) =
∑
x

µ (x) Ṽ (x) .

Let V̂ (x) ≡ Ṽ (x)− λ lnµ (x) . Then it satisfies

V (µ) =
∑
x

V̂ (x)µ (x) .

By CD (2013), µ (·|a) is independent of the prior µ ∈ ∆ (X) in the convex hull of µ (·|a) for all a

such that q (a) ∈ (0, 1) . Since V̂ (x) is the height of the hyperplane containing that convex hull at

the point with µ (x) = 1 and µ (x′) = 0 for all x′ 6= x. This value is independent of the prior µ

in the convex hull spanned by the optimal posteriors. Notice that if the convex hull is a singleton

(i.e., q (a) = 1 for some a), then µ (x|a) = µ (x) and V̂ (x) depends on µ.

(iii) Since V (µ) is the concavification of the net utilities, it is concave. Next consider the

problem in (5). Let θ ∈ (0, 1) , µ, µ′ ∈ ∆ (X) , and

µ∗ = θµ+ (1− θ)µ′.
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Let p∗ (a|x) and q∗ (a) be the associated optimal solution. Then

q∗ (a) =
∑
x

p∗ (a|x)µ∗ (x) = θq∗1 (a) + (1− θ) q∗2 (a) ,

where

q∗1 (a) =
∑
x

p∗ (a|x)µ (x) , q∗2 (a) =
∑
x

p∗ (a|x)µ′ (x) .

Since the Shannon entropy is a concave function, we deduce that

V
(
θµ+ (1− θ)µ′

)
=

∑
x,a

p∗ (a|x)µ∗ (x)

[
u (x, a)− λ ln

p∗ (a|x)

q∗ (a)

]
=

∑
x,a

p∗ (a|x)µ∗ (x) [u (x, a)− λ ln p∗ (a|x)]− λH (q∗)

≤ θ
∑
x,a

p∗ (a|x)µ (x)

[
u (x, a)− λ ln

p∗ (a|x)

q∗1 (a)

]
+ (1− θ)

∑
x,a

p∗ (a|x)µ′ (x)

[
u (x, a)− λ ln

p∗ (a|x)

q∗2 (a)

]
≤ θV (µ) + (1− θ)V

(
µ′
)
.

Thus V (µ) is convex. It follows from (13) that

V (µ) =
m−1∑
i=1

µ(i)
[
V̂ (i) + λ lnµ(i)

]
+

[
1−

m−1∑
i=1

µ(i)

]
V̂ (m)

+λ

[
1−

m−1∑
i=1

µ(i)

]
ln

[
1−

m−1∑
i=1

µ(i)

]
.

If µ is in the convex hull of the optimal posteriors for at least two chosen actions, then V̂ is

independent of µ in that convex hull. We obtain

∂V (µ)

∂µ(i)
=
[
V̂ (i)− λ lnµ(i)

]
−
[
V̂ (m) + λ lnµ(m)

]
= Ṽ (i)− Ṽ (m), i = 1, . . . ,m− 1.

If q (a) = 1 for some action a, then µ (x|a) = µ (x) . Thus V (µ) =
∑

x µ (x)u (x, a) and Ṽ (x) =

u (x, a) . The above formula still holds. CDL (2018a) show that the set ∆ (X) can be partitioned

into sets of priors, each of which is associated with a given consideration set. The derivative formula

above applies to each set of priors and crosses boundaries of neighboring sets continuously. The

formula for ∂V (µ) /∂µ (i) follows from (12). Q.E.D.

Proof of Lemma 2: Define G̃(µ1(·|a1), µ̃2(·|a1)) as

G̃(µ1(·|a1), µ̃2(·|a1)) =
∑
x1,x2

π(x2|x1, a1)µ1(x1|a1) ln
µ1(x1|a1)

[µ̃2(x2|a1)]β
.
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Therefore

G(µ1(·|a1)) = G̃
(
µ1(·|a1),

∑
x1

π(·|x1, a1)µ1(x1|a1)
)
.

Notice that G̃(µ1(·|a1), µ̃2(·|a1)) is a convex combination of µ1(x1|a1) ln µ1(x1|a1)

[µ̃(x2|a1)]β
for all x1 and x2.

The expression µ1(x1|a1) ln µ1(x1|a1)

[µ̃(x2|a1)]β
is a jointly convex function of µ1(x1|a1) and µ̃2(x2|a1) for any

β ∈ (0, 1]. Therefore, G̃ is jointly convex in µ1(·|a1) and µ̃2(·|a1).

For any θ ∈ [0, 1] and µ1(·|a1), µ′1(·|a1),

G
(
θµ1(·|a1) + (1− θ)µ′1(·|a1)

)
= G̃

(
θµ1(·|a1) + (1− θ)µ′1(·|a1), θ

∑
x1

π(·|x1, a1)µ1(x1|a1) + (1− θ)
∑
x1

π(·|x1, a1)µ′1(x1, a1)
)

≤ θG̃
(
µ1(·|a1),

∑
x1

π(·|x1, a1)µ1(x1|a1)
)

+ (1− θ)G̃
(
µ′1(·|a1),

∑
x1

π(·|x1, a1)µ′1(·|a1)
)

= θG(µ1(·|a1)) + (1− θ)G(µ′1(·|a1)),

where the inequality follows from the definition of a jointly convex function. Q.E.D.

Proof of Proposition 3: We study Problem 1 with T = ∞ by dynamic programming. To

distinguish between the finite- and infinite-horizon cases, we use W T
t to denote the value function

when the horizon is T <∞. For any t ≥ 1, define the infinite-horizon value function as

Wt

({
µt
(
xt, at−1

)})
= max
{pk}∞k=t

E

[ ∞∑
k=t

βk−t
(
u (xk, ak)− λI

(
xk; ak|ak−1

))]
, (A.1)

where pk ∈ ∆
(
A|Xk ×Ak−1

)
and the expectation is taken with respect to the distribution induced

by µt, pk, and the state transition kernel π for k ≥ t. By the principle of optimality it satisfies the

Bellman equation

Wt

({
µt
(
xt, at−1

)})
= max

pt
E [u (xt, at)]− λI

(
xt; at|at−1

)
+ βWt+1

(
{µt+1

(
xt+1, at

)
}
)

subject to the law of motion (1). We now study the solution to this Bellman equation, which is a

non-stationary dynamic programming problem.

Define ∆ (X∞ ×A∞) as the space of all probability distributions on the set X∞ × A∞. Let

this space be endowed with the weak convergence topology. Under this topology ∆ (X∞ ×A∞) is

compact. Define V as the space of all sequences of bounded and continuous functions f ≡ {ft}∞t=1

that map ∆ (X∞ ×A∞) into the real line. Define the sup-norm on this space:

‖f‖ = sup
t≥1

sup
µ∈∆(X∞×A∞)

ft (µ) <∞, f ∈ V.
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Then V is a Banach space under this norm. Each marginal distribution µt
(
xt, at−1

)
∈ ∆

(
Xt ×At−1

)
can be embedded in the space ∆ (X∞ ×A∞) by identifying µt

(
xt, at−1

)
as µt

((
xt, at−1

)
×X∞ ×A∞

)
.

Define an operator T on V as follows:

(T f)t
({
µt
(
xt, at−1

)})
= max

pt
E [u (xt, at)]− λI

(
xt; at|at−1

)
(A.2)

+βft+1

({
µt+1

(
xt+1, at

)})
for t ≥ 1, subject to (1), where {ft}∞t=1 ∈ V. Then we can verify that T f = {(T f)t}

∞
t=1 ∈ V.

Moreover, T satisfies the Blackwell sufficient conditions for β ∈ (0, 1) and thus it is a contraction

mapping. By the contraction mapping theorem, T has a unique fixed point {Wt}∞t=1 satisfying the

Bellman equation:

Wt

({
µt
(
xt, at−1

)})
= max

pt
E [u (xt, at)]− λI

(
xt; at|at−1

)
+ βWt+1

({
µt+1

(
xt+1, at

)})
,

subject to (1).

Now consider the limit of the finite-horizon problem. Define a sequence of functions
{
W T
t

}∞
t=1
∈

V, where
{
W T
t

}T+1

t=1
satisfies (35) and (36) and W T

t = 0 for t > T + 1. Since T is a contraction

mapping, we know that

lim
k→∞

T kW̄ = W, (A.3)

for any W̄ ∈ V. Let W̄ (µ (x∞, a∞)) = EuT+1 (xT+1) for any bounded uT+1 and any t ≥ 1 and let

k = T + 1− t. Then using (35), (36), and (A.2) we can verify that(
T kW̄

)
t

= W T
t . (A.4)

As T →∞, we have k →∞. It follows from (A.3) that

lim
k→∞

(
T kW̄

)
t

= lim
T→∞

W T
t = Wt.

Equation (A.4) is the same as the finite-horizon problem in (35) and (36).

It follows from TSS (2018) that there exists an optimal plan of the form pT = {pTt
(
at|xt, at−1

)
}Tt=1

for any finite T -horizon RI problem. Since the space
∞∏
t=1

∆
(
A|X ×At−1

)
is compact, there is a

subsequence such that pTk converges to a limit p̂ = {p̂t
(
at|xt, at−1

)
}∞t=1. Since pT is optimal, we

have

W T
t

(
{µt

(
xt, at−1

)
}
)

= E [u (xt, at)]− λI
(
xt; at|at−1

)
+ βW T

t+1

(
{µt+1

(
xt+1, at

)
}
)
,

where the expectation is taken with respect to the distribution µt
(
xt, at

)
induced by pT and the

state transition kernel and

µt+1

(
xt+1, at

)
= π (xt+1|xt, at) pTt

(
at|xt, at−1

)
µt
(
xt, at−1

)
. (A.5)
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Taking limit as Tk →∞, we have

Wt

(
{µt

(
xt, at−1

)
}
)

= E [u (xt, at)]− λI
(
xt; at|at−1

)
+ βWt+1

(
{µt+1

(
xt+1, at

)
}
)
,

where the expectation is taken with respect to the distribution induced by p̂ and the state transition

kernel and

µt+1

(
xt+1, at

)
= π (xt+1|xt, at) p̂t

(
at|xt, at−1

)
µt
(
xt, at−1

)
. (A.6)

Thus the choice rule p̂ = {p̂t
(
at|xt, at−1

)
}∞t=1 is optimal for the infinite-horizon RI problem.

The proof of part (i) is completed. The proofs of the other two parts follow from TSS (2018)

closely and is omitted here. Q.E.D.

Proof of Propositions 4: By the definition of the Markovian solution, we can compute that

µt+1(xt+1|at) =
µt+1(xt+1, at)

µt+1(at)
=

∑
at−1 µt+1(xt+1, at, a

t−1)∑
at−1 µt+1(at, at−1)

=

∑
at−1 µt+1(xt+1|at, at−1)µt+1(at, a

t−1)∑
at−1 µt+1(at, at−1)

= µt+1(xt+1|at, at−1).

(A.7)

Therefore, we can replace the history dependent predictive distribution µt+1(·|at, at−1) by the his-

tory independent predictive distribution µt+1(·|at).
By LIP property of CD (2013), the optimal posterior µt+1

(
xt+1|at+1

)
at history at is indepen-

dent of the priors µt+1

(
xt+1|at

)
in the convex hull of the optimal posteriors associated with at least

two chosen actions at+1. Thus µt+1

(
xt+1|at+1

)
is independent of at. By a similar computation to

(A.7), we obtain µt+1

(
xt+1|at+1

)
= µt+1 (xt+1|at+1) . If there is only one chosen action at+1, then

the optimal posterior µt+1

(
xt+1|at+1

)
is the same as the prior at at, µt+1

(
xt+1|at

)
, which is equal

to µt+1 (xt+1|at) by (A.7). For both cases we have µt+1

(
xt+1|at+1

)
= µt+1 (xt+1|at+1, at) using a

similar computation in (A.7).

The predictive distribution has the decomposition

µt+1(xt+1|at) =µt+1(xt+1|at, at−1) =
∑
at+1

qt+1(at+1|at, at−1)µt+1(xt+1|at+1, a
t)

=
∑
at+1

qt+1(at+1|at, at−1)µt+1(xt+1|at+1, at).

Therefore q(at+1|at, at−1) is independent of at−1 and can be replaced by qt+1(at+1|at). Finally,

pt+1(at+1|xt+1, a
t) =

µt+1(xt+1|at+1)qt+1(at+1|at)
µt+1(xt+1|at)

=
µt+1(xt+1|at+1, at)qt+1(at+1|at)

µt+1(xt+1|at)
= pt+1(at+1|xt+1, at),

for any µt+1(xt+1|at) > 0. Replacing the history dependent choice rule and default rule by their

history independent version does not change the value of the dynamic RI problem. Therefore the

optimal choice rule and default rule are both history independent. Q.E.D.
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Proof of Proposition 5: The first period predictive distribution is the prior µ1. The second

period predictive distribution is µ2(·|a1). Because the solution is interior, q2(a2|a1) > 0 for any

a2 ∈ A. Then all predictive distributions µ2(·|a1) for different a1 are in the interior of the convex

hull spanned by optimal posteriors µ2(·|a2). By the LIP property, µ2(·|a2) takes the form µ2(·|a2).

The third period predictive distribution is determined by

µ3(x3|a2) =
∑
x2

π(x3|x2, a2)µ2(x2|a2),

which does not depend on a1. We can show that µt+1

(
xt+1|at

)
takes the form of µt+1 (xt+1|at)

using the same argument by induction. Thus an interior solution is Markovian. Q.E.D.

Proof of Propositions 6 and 7: When the solution is Markovian, we verify the optimality

conditions for history-dependent solution in Proposition 10 of Appendix B are equivalent to their

history-independent analogue stated in Propositions 6 and 7.

For a Markovian solution, it follows from (A.7) that µt(xt|at−1) = µt(xt|at−1) for any his-

tory at−1 such that µt(a
t−1) > 0. Proposition 4 implies that pt(at|xt, at−1) = pt(at|xt, at−1) and

qt(at|at−1) = qt(at|at−1). Therefore vt(xt, a
t) in (B.4) takes the form of vt(xt, at) in (43) and

Ṽt(xt, a
t−1) in (B.5) takes the form of Ṽt(xt, at−1) in (44). Therefore (B.1) and (B.2) are equivalent

to (41) and (42). It remains to verify (45) and (46), we start from the history-dependent law of

motion in (B.6). The left-hand side can be transformed into

µt+1(xt+1, a
t) = µt+1(xt+1|at) qt(at|at−1)µt(a

t−1) = µt+1(xt+1|at) qt(at|at−1)µt(a
t−1),

where the second equality follows from replacing the history-dependent predictive distribution and

the default rule by their history-independent versions. On the right-hand side of (B.6),

pt(at|xt, at−1)µt(xt, a
t−1) = pt(at|xt, at−1)µt(xt|at−1)µt(a

t−1) = pt(at|xt, at−1)µt(xt|at−1)µt(a
t−1).

Combining the preceeding two equations with (B.6), we obtain

µt+1(xt+1|at)qt(at|at−1)µt(a
t−1) = µt(a

t−1)
∑
xt

π(xt+1|xt, at)pt(at|xt, at−1)µt(xt|at−1).

Because µt(a
t−1) > 0 and µt(at−1) > 0, multiplying both sides by µt(at−1)

µt(at−1)
yields

µt+1(xt+1|at)µt(at, at−1) =
∑
xt

π(xt+1|xt, at)pt(at|xt, at−1)µt(xt, at−1).

Summing over at−1 on both sides, we confirm (45) and (46). Q.E.D.
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Proof of Proposition 8: There are two types of solutions. By symmetry of the problem, we

first solve for a symmetric interior solution satisfying q1 (a1 = 1) = 1/2 and q2 (1|1) = q2 (2|2) = z.

By Proposition 6, we compute

Ṽ2 (1, 1) = Ṽ2 (2, 2) = λ ln [z exp (1/λ) + 1− z] ,

Ṽ2 (1, 2) = Ṽ2 (2, 1) = λ ln [(1− z) exp (1/λ) + z] ,

v1 (1, 1) = v1 (2, 2) = 1 + βαṼ2 (1, 1) + β (1− α) Ṽ2 (2, 1) ,

v1 (1, 2) = v1 (2, 1) = βαṼ2 (2, 2) + β (1− α) Ṽ2 (1, 2) .

It follows from µ1 (1) = 1/2 that the DM’s initial value is given by

V1 =
1

2
λ ln

1

2
[exp (v1 (1, 1) /λ) + exp (v1 (1, 2) /λ)]

+
1

2
λ ln

1

2
[exp (v1 (2, 1) /λ) + exp (v1 (2, 2) /λ)]

= λ ln
1

2
[exp (v1 (1, 1) /λ) + exp (v1 (1, 2) /λ)] .

Thus maximizing V1 is equivalent to maximizing(
ze

1
λ + 1− z

)βα [
(1− z) e

1
λ + z

]β(1−α)
.

This is a concave function of z. The first-order condition gives

z =
α (exp (1/λ) + 1)− 1

exp (1/λ)− 1
.

Thus, if

α∗∗ ≡ 1

exp (1/λ) + 1
< α <

exp (1/λ)

exp (1/λ) + 1
≡ α∗,

then the optimal solution is interior z ∈ (0, 1) . If α ≥ α∗, the solution is at the corner z = 1. If

α ∈ [0, α∗∗] , the solution is at the other corner z = 0. We then obtain the desired result.

It remains to show that the corner solution in which q1 (1) = 1 is not optimal. Then we use

q1 (1) = 0 and Proposition 6 to derive

V1 =
1

2
v1 (1, 1) +

1

2
v1 (2, 1) ,

where v1 (1, 1) and v1 (2, 1) are given above. Since exp (x/λ) is a convex function x, we obtain that

1

2
v1 (1, 1) +

1

2
v1 (2, 1) < λ ln

1

2
[exp (v1 (1, 1) /λ) + exp (v1 (2, 1) /λ)] .

Since v1 (2, 1) = v1 (1, 2) for the above symmetric interior solution, we deduce that the corner

solution gives a smaller initial value than the above symmetric interior solution. Similarly the

other corner solution in which q1 (2) = 0 is not optimal. Q.E.D.
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Proof of Proposition 9: By (38) and (39), we have the two-way decomposition of the predictive

distribution for the long run stationary solution:

µ (xt = 1|at−1) = (1− γ)µ (1|at−1) +
m∑
i=2

γ

m− 1
µ (i|at−1) =

m∑
i=1

q (i|at−1)µ (1|at = i) .

By symmetry µ (i|i) is the same for all i, and µ (i|j) is the same for all i 6= j. We thus obtain the

desired result. Q.E.D.

B Dynamic Logit Rule

In this appendix we present the characterization of history-dependent solutions, which is used in

the proof of Propositions 6 and 7.

Proposition 10 Let β ∈ (0, 1). (i) The choice rule {pt(at|xt, at−1)}Tt=1 and the default rule

{qt(at|at−1)}Tt=1 are the optimal (history-dependent) solution to the dynamic RI problem in (4)

if and only if they satisfy the following system of difference equations for t = 1, 2, . . . , T :

pt
(
at|xt, at−1

)
=

qt
(
at|at−1

)
exp

(
vt
(
xt, a

t
)
/λ
)∑

a′t
qt (a′t|at−1) exp (vt (xt, a′t, a

t−1) /λ)
for µt

(
xt, a

t−1
)
> 0, (B.1)

qt
(
at|at−1

)
=
∑
xt

pt
(
at|xt, at−1

)
µt
(
xt|at−1

)
for µt

(
at−1

)
> 0, (B.2)

and the following condition is satisfied∑
xt

µt
(
xt|at−1

)
exp

(
vt
(
xt, a

t
)
/λ
)∑

a′t
qt (a′t|at−1) exp (vt (xt, a′t, a

t−1) /λ)
≤ 1, t = 1, 2, ..., T, (B.3)

with equality if qt
(
at|at−1

)
> 0. In (B.1), (B.2), and (B.3),

vt
(
xt, a

t
)

= u (xt, at) + β
∑
xt+1

π (xt+1|xt, at) Ṽt+1

(
xt+1, a

t
)
, (B.4)

Ṽt
(
xt, a

t−1
)

= λ ln
∑
at

qt
(
at|at−1

)
exp

(
vt
(
xt, a

t
)
/λ
)
, (B.5)

µt+1

(
xt+1, a

t
)

=
∑
xt

π (xt+1|xt, at) pt
(
at|xt, at−1

)
µt
(
xt, a

t−1
)
, (B.6)

µt
(
xt|at−1

)
=
µt
(
xt, a

t−1
)

µt (at−1)
for µt

(
at−1

)
=
∑
xt

µt
(
xt, a

t−1
)
> 0. (B.7)

(ii) The value functions satisfy

Wt

({
µt
(
xt, a

t−1
)})

=
∑

xt,at−1

µt
(
xt, a

t−1
)
Ṽt
(
xt, a

t−1
)
, (B.8)

Vt
(
µt
(
·|at−1

))
=

∑
xt

µt
(
xt|at−1

)
Ṽt
(
xt, a

t−1
)
. (B.9)

In the finite-horizon case with T <∞, there is a terminal condition ṼT+1

(
xT+1, a

T
)

= uT+1 (xT+1) .
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Proof: We start with the finite-horizon case with T <∞.

Step 1. In the last period at history aT−1, define value function as

VT
(
µT
(
·|aT−1

))
≡ max

∑
xT ,aT

qT
(
aT |aT−1

)
µT
(
xT |aT

) [
vT (xT , aT )− λ ln

µT
(
xT |aT

)
µT (xT |aT−1)

]
(B.10)

subject to

µT
(
xT |aT−1

)
=
∑
aT

qT
(
aT |aT−1

)
µT
(
xT |aT

)
, (B.11)

for all xT ∈ X such that µT
(
xT |aT−1

)
> 0, where

vT (xT , aT ) = u (xT , aT ) + β
∑
xT+1

π (xT+1|xT , aT )uT+1 (xT+1) .

The choice variables are qT
(
·|aT−1

)
∈ ∆ (A) and µT

(
·|aT , aT−1

)
∈ ∆ (X) for all aT ∈ A. Viewing

µT
(
·|aT−1

)
as the prior at history aT−1, this problem is the same as the static RI problem studied

in Section 3.1.

From Proposition 2, we have the solution

VT
(
µT
(
·|aT−1

))
= V T (µT (·|aT−1))− λH(µT (·|aT−1)),

where

V T (µT (·|aT−1)) =
∑
xT

µT (xT |aT−1)V̂T
(
xT , a

T−1
)
,

V̂T
(
xT , a

T−1
)

= ṼT
(
xT , a

T−1
)
− λ lnµT (xT |aT−1).

Here ṼT
(
xT , a

T−1
)

satisfies (B.5) for t = T. Equations (B.8) and (B.9) for t = T also follow from

Proposition 2.

Step 2. Now the decision problem at date T − 1 at history aT−2 is given by

VT−1

(
µT−1

(
·|aT−2

))
= max

∑
xT−1,aT−1

qT−1

(
aT−1|aT−2

)
µT−1

(
xT−1|aT−1

) [
u (xT−1, aT−1)− λ ln

µT−1

(
xT−1|aT−1

)
µT−1 (xT−1|aT−2)

]
+β

∑
aT−1

qT−1

(
aT−1|aT−2

)
VT
(
µT
(
·|aT−1

))
subject to

µT−1

(
xT−1|aT−2

)
=

∑
aT−1

qT−1

(
aT−1|aT−2

)
µT−1

(
xT−1|aT−1

)
, (B.12)

µT
(
xT |aT−1

)
=

∑
xT−1

π (xT |xT−1, aT−1)µT−1

(
xT−1|aT−1

)
, (B.13)
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for all xT−1 ∈ X such that µT−1

(
xT−1|aT−2

)
> 0. The choice variables are qT−1

(
aT−1|aT−2

)
and

µT−1

(
xT−1|aT−1

)
.

We rewrite the objective function in the problem above as

∑
xT−1,aT−1

qT−1

(
aT−1|aT−2

)
µT−1

(
xT−1|aT−1

) [
u (xT−1, aT−1)− λ ln

µT−1

(
xT−1|aT−1

)
µT−1 (xT−1|aT−2)

]
+β

∑
aT−1

qT−1

(
aT−1|aT−2

)
VT
(
µT
(
xT |aT−1

))
=

∑
aT−1

qT−1

(
aT−1|aT−2

)
N
aT−1

G

(
µT−1

(
·|aT−1

))
− λH

(
µT−1

(
·|aT−2

))
,

where we define the net utility as

N
aT−1

G

(
µT−1

(
·|aT−1

))
≡
∑
xT−1

µT−1

(
xT−1|aT−1

)
u (xT−1, aT−1)+βV T (µT (·|aT−1))−λG

(
µT−1

(
·|aT−1

))
.

Here the cost function G is

G
(
µT−1

(
·|aT−1

))
≡ βH

(
µT
(
·|aT−1

))
−H

(
µT−1

(
·|aT−1

))
.

It follows from Lemma 2 that G is convex in µT−1(·|aT−1). Moreover, Proposition 2 shows that V T

is concave in µT (·|aT−1), and hence concave in µT−1(·|aT−1) by (B.13). Therefore the net utility

N
aT−1

G is concave in µT−1(·|aT−1). We view the problem at T − 1 as a static RI problem with the

prior belief µT−1

(
·|aT−2

)
. We can apply Lemmas 1 through 3 of CD (2013) to derive the following

result:

Lemma 3 Given the prior µT−1

(
·|aT−2

)
> 0 at history aT−2, the posterior

{
µT−1(xT−1|aT−1)

}
and the default rule

{
qT−1

(
aT−1|aT−2

)}
are optimal for the RI problem in period T − 1 at history

aT−2 if and only if (i) (B.12) holds; (ii) for any aT−1, bT−1 ∈ A such that qT−1

(
aT−1|aT−2

)
> 0

and qT−1

(
bT−1|aT−2

)
> 0, and for any xT−1 ∈ X,

µT−1(xT−1|aT−1)

exp(vT−1(xT−1, aT−1)/λ)
=

µT−1(xT−1|bT−1, a
T−2)

exp(vT−1(xT−1, bT−1, aT−2)/λ)
, (B.14)

where vT−1(xT−1, a
T−1) for all chosen actions aT−1 ∈ A satisfies (B.4) for t = T ; and (iii) for any

aT−1 such that qT−1

(
aT−1|aT−2

)
> 0 and bT−1 such that qT−1

(
bT−1|aT−2

)
= 0,

∑
xT−1

µT−1(xT−1|aT−1) exp(vT−1(xT−1, bT−1, a
T−2)/λ)

exp(vT−1(xT−1, aT−1)/λ)
≤ 1, (B.15)

where vT−1(xT−1, bT−1, a
T−2) = u (xT−1, bT−1) .
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We only sketch the key step of the proof, which involves computing the slope of the net utility

function. Consider derivatives with respect to µT−1

(
1|aT−1

)
for illustration. We compute

∂G
(
µT−1

(
·|aT−1

))
∂µT−1 (1|aT−1)

= lnµT−1

(
1|aT−1

)
− lnµT−1

(
m|aT−1

)
−β
∑
xT

π (xT |1, aT−1) lnµT
(
xT |aT−1

)
+β
∑
xT

π (xT |m, aT−1) lnµT
(
xT |aT−1

)
.

Given λ > 0 and β ∈ (0, 1), it follows from the equation above that the partial derivative approaches

−∞ when µT−1(1|aT−1) approaches 0, holding µT−1(i|aT−1) fixed for i = 2, . . . ,m− 1. Therefore,

the optimal posterior µT−1(xT−1|aT−1) ∈ (0, 1) for all xT−1 ∈ X, whenever qT−1

(
aT−1|aT−2

)
> 0

and qT−1

(
bT−1|aT−2

)
> 0.

By Proposition 2, we can compute

∂N
aT−1

G

(
µT−1

(
·|aT−1

))
∂µT−1 (1|aT−1)

=
[
u(1, aT−1)− λ lnµT−1(1|aT−1)

]
−
[
u(m, aT−1)− λ lnµT−1(m|aT−1)

]
+β
∑
xT

π(xT |1, aT−1)
[
V̂T (xT , a

T−1) + λ lnµT (xT |aT−1)
]

−β
∑
xT

π(xT |m, aT−1)
[
V̂T (xT , a

T−1) + λ lnµT (xT |aT−1)
]

=
[
u(1, aT−1)− λ lnµT−1(1|aT−1)

]
−
[
u(m, aT−1)− λ lnµT−1(m|aT−1)

]
+β
∑
xT

π(xT |1, aT−1)ṼT (xT , a
T−1)− β

∑
xT

π(xT |m, aT−1)ṼT (xT , a
T−1)

=
[
vT−1(1, aT−1)− λ lnµT−1(1|aT−1)

]
−
[
vT−1(m, aT−1)− λ lnµT−1(m|aT−1)

]
,

where vT−1

(
xT−1, a

T−1
)

is defined in (B.4).

CD (2013) show that a necessary condition for optimality is that the slope of the net utility

function is the same for each chosen action aT−1 with qT−1

(
aT−1|aT−2

)
> 0 at its associated

posterior. Moreover, the equality holds state by state. We then obtain (B.14). By Proposition 2 of

CDL (2018a), the conditions in Lemma 3 are equivalent to the necessary and sufficient conditions

for the optimality of pT−1(aT−1|xT−1, a
T−2) and qT−1(aT−1|aT−2), stated in Proposition 10.

Step 3. We continue this process by backward induction until the initial period t = 1, complet-

ing the proof of the conditions for the optimality of history-dependent choice rules pt(at|xt, at−1)

and default rules qt(at|at−1), t = 1, . . . , T , for any finite horizon T <∞.
Step 4. As T →∞, the posterior-based value function at any time t, Vt

(
µt
(
·|at−1

))
, converges

to the corresponding value function in the infinite-horizon case by the method of discounted dynamic

programming as in the proof of Proposition 3. Similarly, Wt

({
µt
(
xt, a

t−1
)})

also converges to the
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value function in the infinite-horizon case as T → ∞. The limit points of the solution for the

finite-horizon case are the solution for the infinite-horizon RI problem. These limiting choice rule

and default rule satisfy their associated optimality conditions.

C Choice-based Approach

In this appendix we derive conditions as in Propositions 6 and 7 using the choice-based approach.

We consider interior solutions in the finite-horizon case and sketch the key steps only. We focus on

choice rules and default rules of the form pt (at|xt, at−1) and qt (at|at−1) .

The value function for the dynamic RI problem satisfies

Wt ({µt (xt, at−1)}) =
∑

xt,at−1

µt (xt, at−1) Ṽt (xt, at−1) =
∑

xt,at−1

µt (at−1)µt (xt|at−1) Ṽt (xt, at−1) ,

where Ṽt (xt, at−1) denotes the realized value function for µt (xt, at−1) > 0. Define the choice-based

value function at history at−1 as

W̃t (at−1) =
∑
xt

µt (xt|at−1) Ṽt (xt, at−1) .

Then W̃t (at−1) satisfies the Bellman equation

W̃t (at−1) = max
pt,qt

∑
at,xt

µt (xt|at−1) pt (at|xt, at−1)

[
u (xt, at)− λ ln

pt (at|xt, at−1)

qt (at|at−1)

]
+β
∑
at

qt(at|at−1)W̃t+1 (at) . (C.1)

Notice that W̃t (at−1) is the same as the posterior-based value function Vt (µt (·|at−1)) .

By backward induction and Proposition 2, we have

Ṽt+1 (xt+1, at) = V̂t+1 (xt+1) + λ lnµt+1 (xt+1|at) , (C.2)

where V̂t+1 (xt+1) is independent of the prior µt+1 (xt+1|at) at history at in the convex hull of the

optimal posteriors for all chosen actions at+1 and µt+1 (xt+1|at) satisfies

µt+1 (xt+1|at) =
∑
xt

π (xt+1|xt, at)µt (xt|at) =

∑
xt
π (xt+1|xt, at) pt (at|xt, at−1)µt (xt|at−1)

qt(at|at−1)
,

(C.3)

when qt(at|at−1) > 0.

Rewrite the objective function in (C.1) as

∑
xt

µt (xt|at−1)

[∑
at

pt (at|xt, at−1) û (xt, at) + λΦ (pt, qt;xt, at−1)

]
, (C.4)
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where we define

û (xt, at) ≡ u (xt, at) + β
∑
xt+1

π (xt+1|xt, at)
[
V̂t+1 (xt+1) + λ lnµt (xt|at−1)

]
,

and

Φ (pt, qt;xt, at−1) ≡
∑

xt+1,at

π (xt+1|xt, at) pt (at|xt, at−1) ln

[∑
x′t
π (xt+1|x′t, at) pt (at|x′t, at−1)

]β
pt (at|xt, at−1) [qt (at|at−1)]β−1

.

Lemma 4 For any xt, at−1, the function Φ (pt, qt;xt, at−1) is jointly concave in pt (at|xt, at−1) and

qt (at|at−1) for any β ∈ (0, 1].

Proof: Write

Φ (pt, qt;xt, at−1) = β
∑

xt+1,at

π (xt+1|xt, at) pt (at|xt, at−1) ln

∑
x′t
π (xt+1|x′t, at) pt (at|x′t, at−1)

pt (at|xt, at−1)

− (1− β)
∑
at

pt (at|xt, at−1) ln
pt (at|xt, at−1)

qt (at|at−1)
.

The expression on the first line is concave in pt by an argument similar to the proof for Lemma 2.

The expression on the second line is equal to the negative of the relative entropy between pt and

qt, which is jointly concave. Thus we obtain the desired result. �

By this lemma we deduce that the objective function in (C.4) is jointly concave in pt and qt.

Thus the first-order Kuhn-Tucker conditions are necessary and sufficient for optimality. Consider

the Lagrange function∑
at,xt

µt (xt|at−1) pt (at|xt, at−1)

[
u (xt, at)− λ ln

pt (at|xt, at−1)

qt (at|at−1)

]
+ β

∑
at

qt(at|at−1)W̃t+1 (at) + ξt

(∑
at

p(at|xt, at−1)− 1
)
,

where ξt is the Lagrange multiplier associated with the constraint
∑

at
p(at|xt, at−1) = 1. For a

fixed qt and a fixed µt (xt|at−1), take the first-order condition with respect to pt(at|xt, at−1). We

first focus on the second term in the Lagrange function,

∂

∂pt(at|xt, at−1)
β
∑
at

qt(at|at−1)W̃t+1(at)

=β
∂

∂pt

∑
at,xt+1

q(at|at−1)µt+1(xt+1|at)
[
V̂t+1(xt+1) + λ lnµt+1(xt+1|at)

]
=β

∑
xt+1

π(xt+1|xt, at)µt(xt|at−1)
[
V̂t+1(xt+1) + λ lnµt+1(xt+1|at)

]
+ βλ

∑
xt+1

π(xt+1|xt, at)µt(xt|at−1)

=β
∑
xt+1

π(xt+1|xt, at)µt(xt|at−1)Ṽt+1(xt+1) + βλµt(xt|at−1),
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where the first and the third equalities follow from (C.2) and the second equality follows from

∂µt+1(xt+1|at)
∂pt(at|xt, at−1)

=
π(xt+1|xt, at)µt(xt|at−1)

qt(at|at−1)
.

Derivatives with respect to pt(at|xt, at−1) in the first and the third terms of the objective function

are

µt(xt|at−1)

[
u (xt, at)− λ ln

pt (at|xt, at−1)

qt (at|at−1)

]
− λµt(xt|at−1) + ξt.

Combining all above partial derivatives, we obtain the following first-order condition:

µt(xt|at−1)
[
u(xt, at) + β

∑
xt+1

π(xt+1|xt, at)Ṽt+1(xt+1, at)− λ ln
pt(at|xt, at−1)

qt(at|at−1)
+ βλ− λ

]
+ ξt = 0.

Dividing µt(xt|at−1) and exponentiating both sides, we obtain

qt(at|at−1) exp (vt(xt, at)/λ) exp

(
1− β − ξt

λµt(xt|at−1)

)
= pt(at|xt, at−1).

Summing at on both sides, we confirm

pt(at|xt, at−1) =
qt(at|at−1) exp (vt(xt, at)/λ)∑
a′t
qt(a′t|at−1) exp (vt(xt, a′t)/λ)

.

Other statements in Proposition 6 can be confirmed as well. Using Proposition 1 and Lemma

4, we can also derive the sufficient conditions as in Proposition 7.

D Forward-Backward Arimoto-Blahut Algorithm

The algorithm consists of the following steps.

Step 1. Initialize:

µ
(T,1)
1 (x1, a0) = µ1 (x1) ,

p
(T,0)
t (at|xt, at−1) = p(T,0) (at|xt, at−1) > 0 for t = 1, 2, ..., T,

φ
(k)
T+1 = 1 for k = 1, 2, ...,K,

for all xt ∈ X and at, at−1 ∈ A, where T is the horizon and K is a large integer.

Step 2. For k = 1, 2, ...,K until convergence do the following:

• (forward path) For t = 1, 2, ..., T do

µ
(T,k)
t+1 (xt+1, at) =

∑
xt,at−1

π (xt+1|xt, at) p(T,k−1)
t (at|xt, at−1)µ

(T,k)
t (xt, at−1) ,

q
(T,k)
t (at|at−1) =

∑
xt

p
(T,k−1)
t (at|xt, at−1)µ

(T,k)
t (xt|at−1) ,

µ
(T,k)
t (xt|at−1) =

µ
(T,k)
t (xt, at−1)∑

xt
µ

(T,k)
t (xt, at−1)

if
∑
xt

µ
(T,k)
t (xt, at−1) > 0.
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• (backward path) For t = T, T − 1, ..., 1 do

v
(T,k)
t (xt, at) = u (xt, at) + β

∑
xt+1

π (xt+1|xt, at)λ lnφ
(T,k)
t+1 (xt+1, at) ,

φ
(T,k)
t (xt, at−1) =

∑
at

q
(T,k)
t (at|at−1) exp

(
v

(T,k)
t (xt, at) /λ

)
,

p
(T,k)
t (at|xt, at−1) =

q
(T,k)
t (at|at−1) exp

[
v

(T,k)
t (xt, at) /λ

]
φ

(T,k)
t (xt, at−1)

.

Step 3. Return p
(T,K)
t (at|xt, at−1) and other variables.

For the infinite horizon case, we increase T until convergence.

E UPS Information Cost

In this section we study RI problems with UPS information cost functions introduced by CD (2013)

and CDL (2018b). We show that our approach can be applied to this general case.

E. 1 Static Case

Following CD (2013) and CDL (2018b), we define a uniformly posterior separable information cost

function as follows

CH (µ, µ (·|·) , q) = H (µ)−
∑
a

q (a)H (µ (·|a)) , (E.1)

whereH : ∆ (X)→ R+ is a concave function (called generalized entropy) and µ (x) =
∑

a q (a)µ (x|a) .

Clearly, observing information reduces uncertainty so that CH (µ, µ (·|·) , q) ≥ 0. The following spec-

ifications of H are interesting:

• Shannon entropy: H (ν) = −
∑

x ν (x) ln ν (x).

• Weighted entropy (Belis and Guiasu 1968):

H (ν) = −
∑
x

w (x) ν (x) ln ν (x) ,

where the weighting function satisfies w (x) ≥ 0 and
∑

xw (x) = 1.

• Tsallis entropy (Havrda and Charvat (1967) and Tsallis (1988)):

H (ν) =
1

σ − 1

∑
x

ν (x)
(

1− ν (x)σ−1
)
, σ > 0.

• Rényi entropy (Rényi (1961)):

H (ν) =
1

1− α
ln

(∑
x

ν (x)α
)
, α ∈ (0, 1) .
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The restriction of σ > 0 and α ∈ (0, 1) ensures the concavity of H. The Shannon entropy is

obtained as the limit as σ → 1 and α→ 1. Notice that the information cost function based on the

weighted φ-divergence,

C (µ, µ (·|·) , q) ≡
∑
a,x

q (a)Dw
φ (µ (·|a) ||µ) ,

may not satisfy the posterior-separability property, where

Dw
φ (µ (·|a) ||µ) ≡

∑
x

w (x)µ (x)φ

(
µ (x|a)

µ (x)

)
is called a w-weighted φ-divergence. The function φ : R+ → R+ satisfies φ′′ < 0, φ (1) = φ′ (1) = 0.

The Kullback-Laibler relative entropy is a special case with φ (z) = z ln z− z+ 1 and w (x) ≡ 1. In

this case the cost function becomes the Shannon mutual information.

Problem 5 (static RI problem with UPS cost)

V (µ) = max
q,µ(·|·)

E [u (x, a)]− λCH (µ, µ (·|·) , q)

subject to µ (x) =
∑

a q (a)µ (x|a), where λ > 0.

Define the net utility function as

Na
H (µ (·|a)) =

∑
x

µ (x|a)u (x, a) + λH (µ (·|a)) .

Then the problem becomes

V (µ) = max
q,µ(·|·)

∑
a

q (a)Na
H (µ (·|a))− λH (µ) . (E.2)

Since H is concave, the net utility function Na
H is concave so that Lemmas 1 through 3 in CD

(2013) can be applied to characterize optimal solutions.

E. 2 Two-period Case

We write the objective function in Problem 4 for the UPS cost case as

J (q1, µ1 (·|·) , q2, µ2 (·|·))

≡ E [u (x1, a1) + βu (x2, a2)]− λCH (µ1, µ1 (·|·) , q1)

−βλ
∑
a1

q1 (a1)CH (µ2 (·|a1) , µ2 (·|·, a1) , q2 (·|a1))

=
∑
a1,x1

q1 (a1) [µ1 (x1|a1)u (x1, a1) + λH (µ1 (·|a1))]− λH (µ1)

+β
∑

a1,a2,x2

q1 (a1)
{
q2 (a2|a1)

[
µ2

(
x2|a2

)
u (x2, a2) + λH

(
µ2

(
·|a2
))]
− λH (µ2 (·|a1))

}
,
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where µ1 (x1) =
∑

a1
q1 (a1)µ1 (x1|a1) and

µ2 (x2|a1) ≡
∑
a2

µ2

(
x2|a2

)
q2 (a2|a1) =

∑
x1

π (x2|x1, a1)µ1 (x1|a1) . (E.3)

We consider interior solutions with q1 (a1) > 0 and q2 (a2|a1) > 0 for simplicity. We solve

Problem 4 by dynamic programming using the predictive distribution as the state variable. First

consider the RI problem in period 2 for q1 (a1) > 0 :

V2 (µ2 (·|a1)) = max
∑
a2

q2 (a2|a1)Na
H

(
µ2

(
·|a2
))
− λH (µ2 (·|a1)) (E.4)

subject to

µ2 (x2|a1) =
∑
a2

µ2

(
x2|a2

)
q2 (a2|a1) ,

where we define the net utility as

Na2
H

(
µ2

(
·|a2
))

=
∑
x2

µ2

(
x2|a2

)
u (x2, a2) + λH

(
µ2

(
·|a2
))
.

The choice variables are µ2

(
·|a2
)

and q2 (·|a1) . Taking the predictive distribution µ2 (·|a1) as the

prior at history a1, we view this problem as a static RI problem and apply Lemmas 1 through 3 in

CD (2013) to characterize the solution in period 2.

As in Proposition 2, we can show that

V2 (µ2 (·|a1)) =
∑
x2

µ2 (x2|a1) V̂2 (x2, a1)− λH (µ2 (·|a1)) , (E.5)

where V̂2 (x2, a1) and the optimal posterior µ2

(
·|a2
)
∈ (0, 1) are independent of the prior µ2 (x2|a1)

in the convex hull of the optimal posteriors µ2

(
·|a2
)

for all a2 such that q2 (a2|a1) > 0. Since the

history a1 enters the problem in (16) through µ2 (·|a1) only, µ2

(
·|a2
)

is independent of a1 and can

be written as µ2 (·|a2) . Moreover V̂2 (x2, a1) is also independent of µ2 (x2|a1) and can be written as

V̂2 (x2) . Since H is concave, V2 is convex in µ2 (·|a1) in the preceding convex hull.

By dynamic programming, the problem in period 1 is to choose µ1 (x1|a1) and q1 (a1) to solve:

V1 ({µ1 (x1)}) = max
∑
a1,x1

q1 (a1) [µ1 (x1|a1)u (x1, a1) + λH (µ1 (·|a1))]− λH (µ1) (E.6)

+β
∑
a1

q1 (a1)V2 (µ2 (·|a1))

subject to µ1 (x1) =
∑

a1
q1 (a1)µ1 (x1|a1) for all x1 ∈ X and

µ2 (x2|a1) =
∑
x1

π (x2|x1, a1)µ1 (x1|a1) for all x2 ∈ X. (E.7)
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The link between the problems in the two periods is through the predictive distribution µ2 (x2|a1)

in (E.3).

Substituting (E.3) and (E.5) into (E.6) yields

V1 ({µ1 (x1)}) = max
q1,µ1(·|·)

∑
a1

q1 (a1)Na1
G (µ1 (·|a1))− λH (µ1) , (E.8)

where we define the net utility associated with action a1 as

Na1
G (µ1 (·|a1)) ≡

∑
x1

µ1 (x1|a1) û (x1, a1)− λG (µ1 (·|a1)) .

Here the new utility function is given by

û (x1, a1) = u (x1, a1) + β
∑
x2

π (x2|x1, a1) V̂2 (x2) ,

and the information cost is given by

G (µ1 (·|a1)) = βH (µ2 (·|a1))−H (µ1 (·|a1)) ,

where µ2 (·|a1) satisfies (E.3).

Since V̂2 (x2) is independent of µ1 (x1|a1) , û (x1, a1) is also independent of µ1 (·|a1) . Thus the

concavity of Na1
G is equivalent to the convexity of G. For the posterior-based approach to work, we

need the following condition to hold:

Condition 1 For any β ∈ (0, 1] and a1 ∈ A with q1 (a1) > 0 the function G (µ1 (·|a1)) is convex

in µ1 (·|a1) .

Since H is a concave function, it is not obvious that G is a convex function. We have shown in

Lemma 2 that G is convex for the Shannon entropy. We next show that this is also true for the

weighted entropy under a condition for the weighting function.

Lemma 5 For the weighted entropy, suppose that the transition kernel π(x2|x1) is independent of

actions and w(x1) =
∑

x2
w(x2)π(x2|x1) for any x1 and x2. Then for any β ∈ (0, 1], the function

G (µ1 (·|a1)) is convex in µ1 (·|a1) and the net utility Na1
G (µ1 (·|a1)) is concave in µ1 (·|a1).

Proof: We define the function

G̃ (µ1 (·|a1) , µ̃2 (·|a1))

=
∑
x1

w (x1)µ1 (x1|a1) lnµ1 (x1|a1)− β
∑
x1,x2

w (x2)π (x2|x1, a1)µ1 (x1|a1) ln µ̃2 (x2|a1)

=
∑
x1,x2

w(x2)π(x2|a1, a1)µ1(x1|a1) ln
µ1(x1|a1)

[µ̃2(x2|a1)]β
.
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The remaining proof is the same as that of Lemma 2. �

Let w be a stationary distribution of the state process. Then the condition in the lemma is

satisfied. It follows from this lemma that we can apply Lemmas 1 through 3 of CD (2013) to

characterize the optimal solution in period 1. For other generalized entropy functions, we need to

verify Condition 1 case by case.

E. 3 General Case

For the general dynamic case, we define the discounted UPS information cost as:

Definition 3 The discounted UPS information cost is given by

T∑
t=1

βt−1I
(
xt; at|at−1

)
, I
(
xt; at|at−1

)
≡
∑
at−1

µt
(
at−1

)
CH

(
µt
(
xt|at−1

)
, µt
(
xt|at

)
, qt
(
at|at−1

))
,

(E.9)

where CH is given in (E.1), the sequences of marginal distributions
{
µt
(
at−1

)}
, predictive distri-

butions
{
µt
(
xt|at−1

)}
, posteriors

{
µt
(
xt|at

)}
, and default rules

{
qt
(
at|at−1

)}
are consistent with

the joint distribution µT
(
xT , aT

)
, and the predictive distributions and posteriors satisfy

µt
(
xt|at−1

)
=
∑
at

q
(
at|at−1

)
µt
(
xt|at

)
=
∑
xt−1

π (xt|xt−1, at−1)µt−1

(
xt−1|at−1

)
, t ≥ 1.

For the Shannon entropy case in Definition 1, we allow the DM to learn the whole history

of states xt at each time t. In Proposition 3 we have shown that the history of states does not

matter so that we can focus on the Shannon information cost of the form I
(
xt; at|at−1

)
. Here

we directly impose the assumption in (E.9) for the UPS information cost. This is analogous to

the transfer entropy defined in TSS (2018). The transfer entropy is widely applied in information

theory, physics, climatology, and neuroscience and is useful to limit the amount of information that

can be learned. We will show later that the assumption in (E.9) is critical for the optimal choice

rule to take the simple form pt
(
at|xt, at−1

)
, which facilitates computations.

Problem 6 (posterior-based dynamic RI problem with UPS cost)

max E

[
T∑
t=1

βt−1u (xt, at) + βT−1uT+1 (xT+1)

]
− λ

T∑
t=1

βt−1I
(
xt; at|at−1

)
, (E.10)

where I
(
xt; at|at−1

)
is given in (E.9), the expectation is taken with respect to the joint distribu-

tion induced by the transition kernel π,
{
µt
(
xt|at

)}
, and

{
qt
(
at|at−1

)}
. The choice variables are

sequences of
{
µt
(
xt|at

)}
and

{
qt
(
at|at−1

)}
.
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We can solve this problem using the posterior-based dynamic programming

Vt
(
µt
(
·|at−1

))
= max

µt(·|·,at−1),qt(·|at−1)

∑
xt,at

qt
(
at|at−1

)
µt
(
xt|at

)
u (xt, at)

−λCH
(
µt
(
xt|at−1

)
, µt
(
xt|at

)
, qt
(
at|at−1

))
+β
∑
at

qt
(
at|at−1

)
Vt+1

(
µt+1

(
·|at
))
,

subject to (38) and (39). Starting with a finite-horizon T, we can solve this problem by backward

induction. We use a similar method discussed earlier to derive an optimal solution. We omit the

detailed derivations here.

After obtaining a solution for
{
µt
(
xt|at

)}
and

{
qt
(
at|at−1

)}
, we use the Bayes rule to derive

the choice rule pt
(
at|xt, at−1

)
as in (40). This choice rule does not depend on the history xt−1.

E. 4 Signal-Based Formulation

Following SSM (2017), we consider the signal-based formulation. Suppose that there is a signal

space S satisfying |A| ≤ |S| <∞. At time t, the DM can choose any signal about the state xt with

realizations st in S. A strategy is a pair (f, σ) composed of

1. an information strategy f consisting of a system of signal distributions ft
(
st|xt, st−1

)
, for all

st ∈ St, xt ∈ Xt, and t ≥ 1;

2. an action strategy σ consisting of a system of mappings σt : St → A, which give an action

at = σt
(
st
)
, for t ≥ 1.

Given an action strategy σ, we denote by σt
(
st
)

the history of actions up to time t given the

realized signals st. The state transition kernel π and the strategy (f, σ) induce a sequence of joint

distributions for xt+1 and st recursively

µt+1

(
xt+1, st

)
= π

(
xt+1|xt, σt

(
st
))
ft
(
st|xt, st−1

)
µt
(
xt, st−1

)
,

where µ1

(
x1, s0

)
= µ1 (x1) is given. Using this sequence of distributions, we can compute the

predictive distributions µt
(
xt|st−1

)
and the posteriors µt

(
xt|st

)
and hence we can define the dis-

counted UPS information cost
∑T

t=1 β
t−1I

(
xt; st|st−1

)
, similar to (E.9).

Problem 7 (signal-based dynamic RI problem with UPS costs)

max
f,σ

E

[
T∑
t=1

βt−1u
(
xt, σt

(
st
))

+ βTuT+1 (xT+1)

]
− λ

T∑
t=1

βt−1I
(
xt; st|st−1

)
where the expectation is taken with respect to the joint distribution over sequences xT+1 and sT

induced by the transition kernel π and the strategy (f, σ) .
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We say that a strategy (f, σ) generates a choice rule p if

pt
(
at|xt, at−1

)
= Pr

(
σt
(
st
)

= at|xt, σt−1
(
st−1

)
= at−1

)
for all at, x

t, and at−1. Conversely, a choice rule p of the form pt
(
at|xt, at−1

)
can induce a strategy

(f, σ) as described by SSM (2017).

We have the following recommendation lemma or the revelation principle similar to Lemma 1

of SSM (2017) or Lemma 2 of Ravid (2019).

Lemma 6 Suppose that the function

G(µt(·|at)) ≡ βH
(
µt+1(·|at)

)
−H(µt(·|at))

is convex in µt(·|at) for any chosen at and t ≥ 1, where µt+1(xt+1|at) =
∑

xt
π (xt+1|xt, at)µt(xt|at).

Then any strategy (f, σ) solving the dynamic RI Problem 7 generates sequences of posteriors{
µt
(
xt|at

)}
and default rules

{
qt
(
at|at−1

)}
solving Problem 6. Conversely any sequences of poste-

riors
{
µt
(
xt|at

)}
and default rules

{
qt
(
at|at−1

)}
solving Problem 6 induce a strategy (f, σ) solving

Problem 7.

Proof: We focus on the finite-horizon case with T < ∞. The result for the infinite-horizon case

can be obtained by taking limits as T →∞.
First, using the constructed p from a strategy (f, σ) , we can define a sequence of joint distri-

butions µt
(
xt, at−1

)
as in (1). The distribution induced by the strategy (f, σ) and the sequence

of distributions µt
(
xt, at−1

)
give the same stream of expected utility. Next we show that the

discounted information cost associated with p,
∑T

t=1 β
t−1I(xt; at|at−1), is not larger than that as-

sociated with (f, σ) . These information costs can be computed using the posteriors and predictive

distributions (priors) induced by the corresponding joint distributions.

By the definition of the discounted UPS cost in (E.9), we compute

I
(
xt; at|at−1

)
=

∑
at−1

µt
(
at−1

)
CH

(
µt
(
xt|at−1

)
, µt
(
xt|at

)
, qt
(
at|at−1

))
=

∑
at−1

µt
(
at−1

)
H
(
µt
(
·|at−1

))
−
∑
at−1

µt
(
at−1

)∑
at

qt
(
at|at−1

)
H
(
µt
(
·|at
))

=
∑
at−1

µt
(
at−1

)
H
(
µt
(
·|at−1

))
−
∑
at

µt
(
at
)
H
(
µt
(
·|at
))
.

Since both µt+1(at) and µt(a
t) are marginal distributions of at, they are the same. Rearranging
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the terms in the discounted UPS cost yields

T∑
t=1

βt−1I(xt; at|at−1)

= H(µ1) +
T−1∑
t=1

∑
at

βt−1µt(a
t)
[
βH

(
µt+1(·|at)

)
−H(µt(·|at))

]
−βT−1

∑
aT

µT (aT )H(µT (·|aT ))

= H(µ1) +
T−1∑
t=1

∑
at

βt−1µt(a
t)G(µt(·|at))− βT−1

∑
aT

µT (aT )H(µT (·|aT )). (E.11)

We can derive a similar decomposition for
∑T

t=1 β
t−1I(xt; st|st−1).

Now we prove that ∑
at

µt(a
t)G(µt(·|at)) ≤

∑
st

µt(s
t)G(µt(·|st)).

Since at = σt
(
st
)
, we have

µt(xt|at) =
∑
st

µt(xt|st)Pr(st|at), xt ∈ X.

Since G is convex, it follows from Jensen’s inequality that

G(µt(·|at)) ≤
∑
st

Pr(st|at)G(µt(·|st)).

Multiplying both sides by µt(a
t) and summing over at, we obtain∑

at

µt(a
t)G(µt(·|at)) ≤

∑
st

∑
at

Pr(st|at)µt(at)G(µt(·|st)) =
∑
st

µt(s
t)G(µt(·|st)).

Since the generalized entropy H is concave, we can similarly prove that∑
aT

µT (aT )H(µT (·|aT )) ≥
∑
sT

µT (sT )H(µT (·|sT )).

Applying the preceding two inequalities to the second and the third terms on the right-hand

side of (E.11), we obtain

T∑
t=1

βt−1I(xt; at|at−1) ≤
T∑
t=1

βt−1I(xt; st|st−1).

We have shown that the discounted expected payoff from any strategy (f, σ) is not larger than

the value of the objective function in Problem 6 given the sequences of posteriors and default rules

consistent with the joint distribution µT
(
xT+1, aT

)
, that is induced by the choice rule generated
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by (f, σ). Conversely, using the Bayes rule in (40) to construct the choice rule p, we follow the

same argument as in SSM (2017) to construct a strategy (f, σ) . Notice that the choice rule takes

the form pt
(
at|xt, at−1

)
so that the signal distribution ft depends only on

(
xt, s

t−1
)
, but not on

xt−1. The discounted expected payoff from this strategy is identical to the value of the objective

function in Problem 6 given the sequences of posteriors and default rules. These two relationships

together imply the result. �

The convexity assumption on G is essentially the same as Condition 1 discussed before, which

is critical to ensure the concavity of the net utility function so that the posterior-based approach

can work.

F Markovian versus History-Dependent Solutions

In this appendix we present two numerical examples to illustrate Markovian solutions and history-

dependent solutions. For both examples, we use both the fully history-dependent forward-backward

Arimoto-Blahut algorithm and the Markovian version described in Appendix D to compute nu-

merical solutions. For the first example, let T = 3, uT+1 = 0, X = A = {1, 2, 3} , and the

transition kernel satisfy π (xt+1|xt, at) = 1 − γ if xt+1 = xt; π (xt+1|xt, at) = γ/2 if xt+1 6= xt,

for all at. Let µ1 (1) = 0.2, µ1 (2) = µ1 (3) = 0.4, β = λ = 1, γ = 0.2, u (x, a) = x − 1 if

x = a; u (x, a) = 0, otherwise. Figure 7 presents the solution for this dynamic RI problem. His-

tory may matter only in period 3. We find that q3 (a3 = 2|a2 = 2, a1 = 2) = q3 (2|2, 3) = 0.8723,

q3 (3|2, 2) = q3 (3|2, 3) = 0.1277, and q3 (3|3, 2) = q3 (3|3, 3) = 1. The corresponding predictive dis-

tributions satisfy µ3 (x3|a2 = 2, a1 = 2) = µ3 (x3|2, 3) and µ3 (x3|3, 2) = µ3 (x3|3, 3) for all x3 ∈ X.
Thus the solution is Markovian. Using our algorithm in Appendix D gives an almost identical

solution. Notice that this solution is not interior, a case not covered by SSM (2017).

[Insert Figures 7 and 8 Here]

For the second example, let T = 3, uT+1 = 0, X = A = {1, 2} , and the transition kernel satisfy

πt (xt+1|xt, at) = 1− γt if xt+1 = xt; πt (xt+1|xt, at) = γt if xt+1 6= xt, for all at. Let λ = 10, β = 1,

µ1 (1) = 0.7, γ1 = 0.15, γ2 = 0.9, u (x, a) = 5x if x = a; u (x, a) = 0, otherwise. Figures 8 presents

the solution for this dynamic RI problem. We find that the default rules are history dependent

as q3 (1|2, 1) 6= q3 (1|2, 2) and q3 (2|2, 1) 6= q3 (2|2, 2) .The predictive distributions are also history

dependent as µ3 (x3|2, 2) 6= µ3 (x3|2, 1) for x3 ∈ X. Using our algorithm in Appendix D gives a

suboptimal Markovian solution, which is different from the optimal history-dependent solution.

We find that the welfare loss is very small. In particular, the optimal payoff in period 1 is 14.4372,

and the payoff implied by the Markovian solution is 14.4362.
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Figure 1: The net utility function and concavification.
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Figure 2: Panel A plots the continuation value as a function of µ2(x2 = 1|a1 = 1). Panel B shows
the contour plot of the objective function in period 1 as a function of p1(1|1) and p1(1|2). Panel
C shows the contour plot of Φ(p1, q1;x1 = 1) as a function p1(1|1) and p1(1|2). For the last two
functions, we replace q1(a1) by

∑
x1
p1(a1|x1)µ(x1).
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Figure 3: Choice probabilities and default rule for T = 10. Parameter values are µ1(0) =
0.5, π(xt+1|xt, at) = γ = 0.03 if xt+1 6= xt, β = 0.8, and λ = 1.
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Figure 4: Choice probabilities and default rule for T = ∞. Parameter values are µ1(0) =
0.5, π(xt+1|xt, at) = α = 0.9 if xt+1 = at, β = 0.8, and λ = 1.
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Figure 5: Choice probabilities and default rule for the model with T =∞ and the state transition
kernel being independent of actions.
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Figure 6: Choice probabilities and default rule for the model with T = 3 and the state transition
kernel depending on actions. The top 3 panels are for the case of α = 0.6, and the bottom three
panels are for the case of α = 0.2.
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𝑞* 1|2 = 0

𝑞* 2|2 = 0.8411
predictive	dist.

𝜇8 1 2,2 = 0.2632	
𝜇8 2|2,2 = 0.6163	
𝜇8 3 2, 2 = 0.1204	

𝑞8 1|2,2 = 0

𝑞8 2|2,2 = 0.8723

𝑞8 3|2,2 = 0.1277

𝑞* 3|2 = 0.1589	
predictive	dist.

𝜇8 1 3, 2 = 0.2714	
𝜇8 2|3,2 = 0.2050	
𝜇8 3 3, 2 = 0.5236

𝑞8 3|3,2 = 1

𝑞" 3 = 0.5783

𝑞* 1|3 = 0

𝑞* 2|3 = 0.0632
predictive	dist.

𝜇8 1 2, 3 = 0.2629	
𝜇8 2|2, 3 = 0.6166	
𝜇8 3 2, 3 = 0.1204

𝑞8 1|2,3 = 0

𝑞8 2|2,3 = 0.8724

𝑞8 3|2,3 = 0.1276

𝑞* 3|3 = 0.9368
predictive	dist.

𝜇8 1 3, 3 = 0.2711	
𝜇8 2|3, 3 = 0.2051	
𝜇8 3 3, 3 = 0.5238

𝑞8 3|3,3 = 1

Figure 7: Markovian solution.
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Figure 8: History-dependent solution.
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