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1 The Model

Consider an in�nite-horizon economy consisting of households and �rms. There is no aggregate

uncertainty, but �rms face idiosyncratic productivity shocks. Time is discrete and denoted by

t = 0; 1; 2; ::::

1.1 Households

There is a continuum of identical households of unit mass. Each household is risk neutral and

derives utility from a consumption stream fCtg according to the utility function,
P1
t=0 �

tCt;

where � = 1= (1 + r) is the subjective discount factor. Households supply labor inelastically.

The labor supply is normalized to one. Households trade �rm stocks and risk-free bonds. The

net supply of bonds is zero and the net supply of any stock is one. Because there is no aggregate

uncertainty, r is equal to the risk-free rate (or interest rate) and also equal to the rate of the

return of each stock.

1.2 Firms

There is a continuum of �rms of unit mass. Firms are indexed by j 2 [0; 1] : Each �rm j

combines labor N j
t and capital K

j
t to produce output according to the following Cobb-Douglas

production function:

Y jt = (A
j
tK

j
t )
�(N j

t )
1��; � 2 (0; 1) ;

where Ajt represents idiosyncratic productivity shocks. These shocks follow a Markov process

with the state space fA1; A2g and with the transition probabilities given by:

Pr(Ajt+1 = A1jA
j
t = A1) = 1� ��; (1)

Pr(Ajt+1 = A2jA
j
t = A2) = 1� �; (2)

where �; � > 0. Assume that Ajt is independent across �rms and thus idiosyncratic risks wash

out in the aggregate. Let Aj0 be drawn from the stationary distribution (1= (1 + �) ; �= (1 + �)):

Assume that A1 > A2 and � < 1� ��; meaning that the chance of being productive is higher

if the �rm is relatively more productive in the previous period.
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After solving the static labor choice problem, we obtain the operating pro�ts:

AjtRtK
j
t = max

Nj
t

(AjtK
j
t )
�(N j

t )
1�� � wtN j

t ; (3)

where wt is the wage rate and

Rt = �

�
wt
1� �

���1
�

: (4)

After observing Ajt ; �rm j may make investment Ijt so that the law of motion for capital is

given by:

Kj
t+1 = (1� �)K

j
t + I

j
t ; (5)

where � > 0 is the depreciation rate of capital. Assume that investment is subject to the

following constraint:

��Kj
t � I

j
t � A

j
tRtK

j
t + L

j
t ; (6)

where � 2 (0; 1� �) and Ljt > 0. The �rst inequality captures the assumption that investment

is partially irreversible. The second inequality says that �rms can �nance investment by internal

funds and external borrowing. Assume that external equity is so costly that no �rms will raise

new equity to �nance investment. For simplicity, we consider intratemporal loans as in Charles

T. Carlstrom and Timothy Fuerst (1997), Urban J. Jermann and Vincenzo Quadrini (2010),

and Miao and Wang (2011a). These loans are taken at the beginning of the period and repaid

at the end of the period. They do not have interests.1

To capture �nancial frictions, we introduce credit constraints as in Miao and Wang (2011).

In doing so, let Vt(K
j
t ; A

j
t ) denote the date-t cum-dividends stock market value of �rm j with

assets Kj
t and the realized productivity shock A

j
t : Then we write the credit constraint as:

Ljt � �EtVt+1(�K
j
t ; A

j
t+1); (7)

where Et is the conditional expectation operator with respect to the shock A
j
t+1: The motivation

of this constraint is similar to that in Nobuhiro Kiyotaki and John Moore (1997): Firm j pledges

a fraction � 2 (0; 1] of its assets (capital stock) Kj
t at the beginning of period t as the collateral.

The parameter � may represent the degree of pledgeability or the extent of �nancial market

1Miao and Wang (2011a) study intertemporal bonds with interest payments and allow �rms to save. This
extension does not change our key insights.
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imperfections. It is the key parameter for our analysis below. At the end of period t, the stock

market value of the collateral is equal to �EtVt+1(�K
j
t ; A

j
t+1): The lender never allows the loan

repayment Ljt to exceed this value. If this condition is violated, then �rm j may take loans Ljt

and walk away, leaving the collateralized assets �Kj
t behind. In this case, the lender runs the

�rm with the collateralized assets �Kj
t at the beginning of period t+1 and obtains the smaller

�rm value �EtVt+1(�K
j
t ; A

j
t+1) at the end of period t. Unlike Kiyotaki and Moore (1997), we

have implicitly assumed that �rm assets are not speci�c to a particular owner. Any owner can

operate the assets using the same technology. Thus, the lender does not have to liquidate the

collateralized assets in the event of default.

Following Miao and Wang (2011a), we may interpret the collateral constraint in (7) as

an incentive constraint in an optimal contract between �rm j and the lender with limited

commitment:2 Given a history of information at date t and after observing the idiosyncratic

shock Ajt ; the contract speci�es investments I
j
t and loans L

j
t at the beginning of period t; and

repayments Ljt at the end of period t: Firm j may default on debt at the end of period t.

If it happens, then the �rm and the lender renegotiate the loan repayment. In addition, the

lender reorganizes the �rm. Because of default costs, the lender can only seize a fraction � of

capital Kj
t : The lender can run the �rm with these assets at the beginning of period t+1 after

observing the productivity shock Ajt+1: The date-t stock market value of the �rm is given by

�EtVt+1(�K
j
t ; A

j
t+1). This value is the threat value (or the collateral value) to the lender at

the end of period t. Following Jermann and Quadrini (2010), we assume that the �rm has all

the bargaining power in the renegotiation and the lender gets only the threat value. The key

di¤erence between our modeling and that of Jermann and Quadrini (2010) is that the threat

value to the lender is the going concern value in our model, while Jermann and Quadrini (2010)

assume that the lender liquidates the �rm�s assets and obtains the liquidation value in the even

of default.

Enforcement requires that, the continuation value to the �rm of not defaulting is not smaller

2See Rui Albuquerque and Hugo A. Hopenhayn (2004) and Fernando Alvarez and Jermann (2000) for related
contracting problems.
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than the continuation value of defaulting, that is,

�EtVt+1(K
j
t+1; A

j
t+1)� L

j
t �

�EtVt+1(K
j
t+1; A

j
t+1)� �EtVt+1(�K

j
t ; A

j
t+1);

where Et is the conditional expectation operator with respect to A
j
t+1. This incentive constraint

is equivalent to the collateral constraint in (7). This constraint ensures that there is no default

in an optimal contract.

Firm value Vt(K
j
t ; A

j
t ) satis�es the following Bellman equation:

Vt(K
j
t ; A

j
t ) = max

Ijt

AjtRtK
j
t � I

j
t (8)

+�EtVt+1(K
j
t+1; A

j
t+1);

subject to (5), (6) and (7).

1.3 Competitive Equilibrium

Let Nt =
R 1
0 N

j
t dj; and Yt =

R 1
0 Y

j
t dj denote the aggregate labor demand, and aggregate

output. LetKit =
R
Ajt=Ai

Kj
t dj and Iit =

R
Ajt=Ai

Ijt dj denote the aggregate capital stock and the

aggregate investment for �rms with productivity Ai, i = 1; 2: Then a competitive equilibrium is

de�ned as sequences of fYtg ; fCtg ; fKitg, fIitg ; fNtg ; fwtg ; fRtg ; fVt(Kj
t ; A

j
t )g; fI

j
t g; fK

j
t g;

fN j
t g and fL

j
tg such that households and �rms optimize and markets clear in that Nt = 1;

Ct + I1t + I2t = Yt; (9)

K1t+1 = [(1� �)K1t + I1t] (1� ��) (10)

+ [(1� �)K2t + I2t] �;

K2t+1 = [(1� �)K2t + I2t] (1� �) (11)

+ [(1� �)K1t + I1t]��:

Before we study equilibria below, we �rst observe that problem (3) implies:

(1� �)
�
AjtK

j
t

�� �
N j
t

���
= wt;
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Rt = �
�
AjtK

j
t

���1 �
N j
t

���
:

Using these two equations and Nt = 1, we deduce the following equilibrium equations:

Yt = (A1K1t +A2K2t)
�N1��

t = (A1K1t +A2K2t)
� ; (12)

and

Rt = � (A1K1t +A2K2t)
��1 : (13)

2 Bubbleless Equilibrium

In a bubbleless equilibrium, we conjecture that �rm value takes the following form:

Vt (K;Ai) = vitK; i = 1; 2; (14)

where vit is to be determined. De�ne

Q1t = � [v1t+1(1� ��) + v2t+1��)] ; (15)

Q2t = � [v1t+1�+ v2t+1(1� �)] : (16)

Let the optimal investment rate for a �rm with productivity Al be ilt = Ilt=Klt; l = 1; 2:

Then we substitute (14), (15) and (16) into (8) to derive:

v1tK
j
t = A1RtK

j
t + (Q1t � 1)i1tK

j
t + (1� �)Q1tK

j
t ;

v2tK
j
t = A2RtK

j
t + (Q2t � 1)i2tK

j
t + (1� �)Q2tK

j
t :

Matching coe¢ cients yields:

v1t = A1Rt + (Q1t � 1)i1t + (1� �)Q1t;

v2t = A2Rt + (Q2t � 1)i2t + (1� �)Q2t:

Plugging these two equations into (15) and (18) yields:

Q1t = �(1� ��)[A1Rt+1 + (1� �)Q1t+1 + (Q1t+1 � 1) i1t] (17)

+���[A2Rt+1 + (1� �)Q2t+1 + (Q2t+1 � 1) i2t];
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Q2t = ��[A1Rt+1 + (1� �)Q1t+1 + (Q1t+1 � 1) i1t] (18)

+�(1� �)[A2Rt+1 + (1� �)Q2t+1 + (Q2t+1 � 1) i2t]:

We next show how to solve for i1t and i2t below.

2.1 The First Best

We start with the �rst best equilibrium in which the credit constraint never binds. In this

case, Q1t = 1 and Q2t < 1: Because Q1t = 1; the optimal investment level for any �rm with

productivity A1 is indeterminate. Only aggregate investment I1t for these �rms is determined

in equilibrium. We shall focus on the symmetric case in which i1t = I1t=K1t for any high

productivity �rm. Because Q2t < 1; i2t = ��. Equation (17) becomes

1 = �(1� ��)[A1Rt+1 + (1� �)] (19)

+���[A2Rt+1 + (1� �)Q2t+1 � � (Q2t+1 � 1)];

The �rst best equilibrium is characterized by four equations (10), (11), (18), and (19) for four

variables Q2t; I1t = i1tK1t; K1t; and K2t; where Rt is given by (13). The usual transversality

condition must also be satis�ed. Once these variables are determined, we can then solve for

consumption Ct and output Yt using (9) and (12).

2.2 Ine¢ cient Bubbleless Equilibrium

In an ine¢ cient bubbleless equilibrium, Q1t > 1 and Q2t � 1 in the neighborhood of a steady

state. In this case, any �rm with productivity A1 chooses the maximal investment level and

the credit constraint binds. Its optimal investment satis�es:

Ijt = A1RtK
j
t + �Q1tK

j
t : (20)

Aggregate investment for these �rms is given by:

I1t = A1RtK1t + �Q1tK1t = i1tK1t:

If Q2t < 1; then the investment rate of any �rm with productivity A2 reaches the lower bound

��: If Q2t = 1; then its investment rate is indeterminate. Only the aggregate investment level
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I2t of these �rms is determined in equilibrium. We shall focus on the symmetric case in which

i2t = I2t=K2t for any low productivity �rm. The bubbleless equilibrium is characterized by four

equations, (10), (11), (17) and (18) for four variables Q1t; I2t;K1t and K2t if Q2t = 1; and for

Q1t; Q2t;K1t and K2t if Q2t < 1: Moreover, the usual transversality condition must be satis�ed.

3 Bubbly Equilibrium

In a bubbly equilibrium, we conjecture that �rm value takes the following form:

Vt (K;Ai) = vitK + bit; (21)

where vit and bit are to be determined. Due to limited liability, stock prices cannot be negative.

Thus, we require bit > 0 and interpret it as a bubble. De�ne Q1t and Q2t as in (15) and (16)

and de�ne

B1t = � [b1t+1(1� ��) + b2t+1��)] ; (22)

B2t = � [b2t+1(1� �) + b1t+1�)] : (23)

We will construct a bubbly equilibrium in which Q1t > 1, and Q2t < 1 around a steady

state. Substituting the conjecture (21) into the Bellman equation (8), we �nd that optimal

investment satis�es:

Ijt =

(
A1RtK

j
t + �Q1tK

j
t +B1t Ajt = A1

��Kj
t Ajt = A2

: (24)

Thus, i2t = I2t=K2t = �� and

I1t = i1tK1t = A1RtK1t + �Q1tK1t +B1t= (1 + �) : (25)

Manipulating the Bellman equation (8) and matching coe¢ cients, we obtain equations (17),

(18), and

B1t = �[B1t+1Q1t+1(1� ��) + ��B2t+1]; (26)

B2t = �[B2t+1(1� �) + �B1t+1Q1t+1]: (27)

The bubbly equilibrium is characterized by six equations (10), (11), (17), (18), (26), and

(27) for six variables, Q1t; Q2t; K1t; K2t; B1t; and B2t: In addition, the usual transversality

condition must be satis�ed.

7



4 Steady States

To analyze the existence of equilibrium discussed in the previous section, we shall focus on the

steady state. To facilitate analysis, we shall set A1 = 1 and A2 = 0: We use a variable without

a subscript t to denote its steady state value. The crucial parameter for our analysis is �; the

degree of pledgeability or the fraction of assets recovered by the lender in the event of default.

We shall show below that there are three cuto¤ values �1; �2; and �3 such that four cases can

happen:

1. If � > �1; then the economy achieves the �rst best equilibrium in which Q1 = 1 and

Q2 < 1:

2. If �2 < � < �1; then there is a unique bubbleless equilibrium in which Q1 > 1 and Q2 < 1:

3. If �3 < � < �2; then there is a bubbly equilibrium in which Q1 > 1 and Q2 < 1: There is

also a bubbleless equilibrium in which Q1 > 1 and Q2 < 1:

4. If � < �3; then there is a bubbleless equilibrium in which Q1 > 1 and Q2 = 1: There is

also a bubbly equilibrium in which Q1 > 1 and Q2 < 1: Note that TFP rises in a bubbly

equilibrium only in this case.

4.1 First Best

Let Q1 = 1 and Q2 < 1: Then i2 = ��: Using (19) and (18), we obtain

1 = �(1� ��) [R+ (1� �)] + ���[�(1�Q2) + (1� �)Q2];

and

Q2 = ��[R+ (1� �)] + �(1� �)[�(1�Q2) + (1� �)Q2]:

Solving yields:

Q2 =
�=� + �(1� �� ��)

(1� ��)=� � (1� �� ��)(1� � � �) ;

R =
1� ���[�+ (1� � � �)Q2]

�(1� ��) � 1 + �: (28)

It is easy to show that Q2 < 1.
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Using (10) and (11), we obtain

K1 = (1� � + i1)K1 (1� ��) + �(1� � � �)K2;

K2 = (1� � � �)K2(1� �) + ��(1� � + i1)K1:

Solving these two equations yields

K1
K2

=
�+ � + �� �(1 + �)(� + �)

��
; (29)

i1 =
1

1� ��

�
1� ��2(1� � � �)

�+ � + �� �(1 + �)(� + �)

�
� 1 + �: (30)

For the credit constraint to not bind, we need

R+ � > i1:

This inequality gives the cuto¤ value �1:

�1 = i1 �R; (31)

where R and i1 are given by equations (28) and (30), respectively. When � > �1; the economy

achieves the �rst best steady state. Finally, equation (13) implies that

R = � (K1)
��1 : (32)

Using this equation and equation (28) delivers K1. Using (29) gives K2:

In the analysis below, we assume � < �1: Under this assumption, the credit constraint binds

whenever a more productive �rm chooses to invest. Thus, Q1t > 1 around the steady state.

4.2 Bubbleless Steady State

There are two cases. First, Q1 > 1 and Q2 < 1: In this case,

I1t = RtK1t + �Q1tK1t; I2t = ��K2t:

Thus,

i1t = Rt + �Q1t; i2t = ��:
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It follows from equations (10) and (11) that

K1 = [(1� �)K1 + (RK1 + �Q1K1)] (1� ��)

+(1� � � �)K2�; (33)

K2 = (1� � � �)K2(1� �)

+�� [(1� �)K1 + (RK1 + �Q1K1)] : (34)

Using these two equations, we obtain K1=K2 given in (29). By equations (17) and (18),

Q1 = �(1� ��) [Q1R+ (1� �)Q1 + (Q1 � 1)�Q1] (35)

+���[�(1�Q2) + (1� �)Q2]

Q2 = ��[Q1R+ (1� �)Q1 + (Q1 � 1)�Q1] (36)

+�(1� �)[(1� �)Q2 + �(1�Q2)]

By (33),

1 = (1� � +R+ �Q1) (1� ��) + (1� � � �)
K2
K1
� (37)

The above three equations can be used to solve for three variables Q1; Q2 and R as functions

of �: In particular, we can use equations (35) and (36) to derive

Q2
��

� Q1
�(1� ��) =

�
1� �
�

� ��

1� ��

�
[�(1�Q2) + (1� �)Q2]: (38)

For Q1 > 1; we need � < �1; where �1 is the cuto¤ value such that Q1 = 1: It is given by

(31). For Q2 < 1; we need � > �3; where �3 is the cuto¤ value such that Q2 = 1:We shall solve

this cuto¤ value explicitly below.

Turn to the second case in which Q1 > 1 and Q2 = 1: Setting Q2 = 1 in (38) yields:

Q1 =
1� ��
�

+
� (�+ ��� 1) (1� �)

�
: (39)

Setting Q2 = 1 in (35), we can solve for R :

R =
Q1 � ���(1� �)
�(1� ��)Q1

� (1� �)� (Q1 � 1)�: (40)
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We then use (32) to determine K1:

We now solve for K2 and i2 using equations (10) and (11). Substituting i1 = RK1+ �Q1K1

into the steady-state version of these two equations yields:

K1 = [(1� �)K1 +RK1 + �Q1K1] (1� ��)

+(1� � + i2)K2�; (41)

K2 = (1� � + i2)K2(1� �)

+�� [(1� �)K1 +RK1 + �Q1K1] : (42)

Eliminating i2 yields:

K1
�
� K2
1� � =

(1� ��� �) (1� � +R+ �Q1)
� (1� �) K1: (43)

Using (39) and (40), we can compute

1� � +R+ �Q1 =
1

�(1� ��) �
��(1� �)
(1� ��)Q1

+ �:

Plugging this equation into (43) yields:

K2 =

�
(1� �)� (1� ��� �)

�
1

�(1� ��) �
��(1� �)
(1� ��)Q1

+ �

��
K1
�
: (44)

We then use (41) to solve for i2 :

i2 =
1� (1� � +R+ �Q1) (1� ��)

K2
K1
�

� 1 + �: (45)

To be consistent with equilibrium, we require i2 � ��. Note that K2=K1 decreases in � and

R+ �Q1 increases in �. But we can show that i2 decreases in �. De�ne the cuto¤ value �3 such

that i2 = ��: We then deduce that if � < �3; i2 � �:

To solve for �3; we set i2 = �� in (45) to derive:

(1� �� �)K2
K1
� = 1� (1� � +R+ �3Q1) (1� ��) : (46)

When i2 = ��; K1=K2 is given by (29). Using this equation and the expressions for Q1 and R

in (39) and (40), we deduce that �3 satis�es:

��2(1� �� �)
�+ � + �� �(1 + �)(� + �) = 1� (

Q1 � ���(1� �)
�(1� ��)Q1

+ �3) (1� ��) :
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4.3 Bubbly Steady State

We now solve for a bubbly equilibrium in which Q1 > 1 and Q2 < 1: In this case,

I1 = RK1 + �Q1K1 +B1= (1 + �) ; i2 = ��: (47)

In addition, Q1 and Q2 satisfy (35) and (36) and hence (38). Use (26) and (27) to derive

B1 = �[Q1B1(1� ��) + ��B2]; (48)

B2 = �[B2(1� �) + �B1Q1]: (49)

These two equations can be used to solve for:

Q1 =
��1

1� ��+ �� �
��1�1+�

> 1; (50)

B2 =
�

(1� ��)(1� �) + ��B1:

We can easily check that Q1 > 1: By assumption � < 1 � ��, we deduce that B2 < B1. We

now use (38) to solve for Q2 :

Q2 =
�Q1 + �� (1� �� ��)

(1� ��)� (1� � � �)� (1� �� ��) : (51)

Notice that both Q1 and Q2 are independent of �. We need to impose assumptions on para-

meters �; �; �; � such that Q2 < 1:

Use (35) to solve for R :

R =
Q1 � ���[�(1�Q2) + (1� �)Q2]

�(1� ��)Q1
� (1� �)� (Q1 � 1)�: (52)

Thus, R is decreasing in �. Using equations (10) and (11) to eliminate I1t, we obtain:

K1
K2

=
�+ � + �� �(1 + �)(� + �)

��
:

Plugging (47) into (10) yields:

K1 =

�
(1� �)K1 +

�
A1RK1 + �Q1K1 +

B1
�+ 1

��
(1� ��) + (1� � � �)K2�: (53)
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Manipulating yields:

1 =

�
1� � +R+ �Q1 +

B1=K1
�+ 1

�
(1� ��) + (1� � � �)�K2

K1
: (54)

Plugging (52) into the above equation yields:

B1=K1
�+ 1

=
1� (1� � � �)�K2

K1

1� �� � 1 + � �R� �Q1

=
1� (1� � � �)�K2

K1

1� �� � Q1 � ���[�(1�Q2) + (1� �)Q2]
�(1� ��)Q1

� �: (55)

Since K2=K1; Q1; and Q2 are independent of �; B1=K1 is a decreasing a¢ ne function of �: We

de�ne the cuto¤ value �2 such that B1=K1 = 0: Then if � < �2; then B1=K1 > 0 and we obtain

a bubbly equilibrium.

Note that we must have �2 < �1 because the credit constraint does not bind for � > �1:

Also note that when � = �2; B1 = B2 = 0 and the bubbly equilibrium reduces to a bubbleless

equilibrium with Q1 > 1 and Q2 < 1. Since we have shown that Q1 > 1 and Q2 = 1 in a

bubbleless equilibrium for any � < �3; we must have �3 < �2:

5 TFP

We can compute the steady state TFP as

TFP =

�
A1K1 +A2K2
K1 +K2

��
:

Thus, to show that TFP rises in a bubbly equilibrium, we only need to show that K1=K2 rises

too. Using equations (10) and (11), we can show that

K1
K2

=
1� ��� (1� � + I2=K2) (1� �� ��)

��
:

If Q2 = 1 in a bubbleless equilibrium, then it is possible that aggregate investment for the

less productive �rms does not reach the lower bound so that I2t > ��K2t: If Q2 < 1 and

I2t = ��K2t in a bubbly equilibrium, then the above equation reveals that K1=K2 is higher in

a bubbly equilibrium than in a bubbleless equilibrium given the assumption 1����� > 0; and

hence TFP rises in a bubbly equilibrium. This result can hold only in the last case described

at the beginning of Section 4.
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