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1 Introduction

This paper provides a novel theory of rational stock price bubbles in the presence of endogenous

credit constraints. Our theory is motivated by two observations. First, fluctuations in observable

fundamentals cannot adequately explain stock market booms and busts (Shiller (2005)). Second,

stock market booms are often accompanied by credit market booms. For example, overoptimism

in the 1990s towards an “East Asian miracle” generated booms in the housing and stock markets

in many East Asian countries followed by lending booms and a large expansion of domestic credit

(Collyns and Senhadji (2002)). Jordà, Schularick, and Taylor (2014) document empirical evidence

on the relation between credit booms and asset price booms in 17 developed countries since 1870.

They find that leveraged bubbles are more harmful to the macroeconomy than other types of

bubbles, e.g., unleveraged “irrational exuberance” bubbles.

To formalize our theory, we construct a tractable continuous-time general equilibrium model of

a production economy with a stock market in which infinitely lived households trade firm stocks

in the absence of aggregate uncertainty. In the baseline model households are risk neutral and so

the rate of return on any stock is equal to the constant subjective discount rate.1 A continuum of

firms meet uninsured idiosyncratic stochastic investment opportunities as in Kiyotaki and Moore

(1997, 2005, 2008). Investment transforms consumption into capital goods, which can be sold in

a market for capital. Assume that there is a liquidity mismatch (Jermann and Quadrini (2012))

in the sense that investment must be paid for before capital sales can be realized.2 Thus, after

exhausting internal funds, investing firms must seek external financing. As a starting point, we

assume that investing firms only use intratemporal debt borrowed from firms without investment

opportunities to finance investment. Investing firms take on debt at the beginning of the period

and repay this debt at the end of the period using the proceeds from the sale of newly produced

capital. They do not have other sources of financing i.e., they do not own and trade financial

assets including the shares of other firms in the stock market, issue new equity, sell capital, or save

to accumulate wealth. Some of these assumptions reflect the fact that equity financing is more

costly than debt financing due to direct administration and underwriting costs, agency problems,

or information asymmetries not explicitly modeled in our paper. Another interpretation following

Kiyotaki and Moore (2005, 2008) is that investment opportunities disappear so quickly that firms

do not have enough time to raise equity or sell a large amount of capital.

The key assumption of our model is that firms face endogenous credit constraints, which we

model in a similar way to Bulow and Rogoff (1989), Kehoe and Levine (1993), Kiyotaki and

Moore (1997), Alvarez and Jermann (2000), Albuquerque and Hopenhayn (2004), and Jermann

1In Appendix D we show that our key insights also apply to risk-averse households.
2We define liquidity as the amount of money that is quickly available for investment. Sometimes we also refer

to liquidity as the degree to which an asset can be quickly turned into cash. See Kiyotaki and Moore (2005, 2008),
Farhi and Tirole (2012), and Vayanos and Wang (2012) for related studies of liquidity.
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and Quadrini (2012). The key idea is that borrowers are not fully committed to repaying debt and

repayment is not perfectly enforced. We consider the following lending contract to ensure borrowers

never default on their debt in equilibrium. A firm pledges its ownership rights including its physical

assets (capital) as collateral. If the firm does not repay its debt, then the lender threatens to seize

the firm’s collateralized assets and take over the firm. Thus the collateral value to the lender

is equal to the market value of the firm with the collateralized assets. The lender and the firm

renegotiate the debt such that the debt repayment is limited by this collateral value. For incentive

compatibility, the firm chooses not to default. The resulting credit constraint is endogenously

derived from the incentive constraint in an optimal contracting problem.

Unlike Kiyotaki and Moore (1997) who assume that the collateral value is equal to the liquida-

tion value of the collateralized assets, we derive the collateral value from the incentive constraint as

the going-concern value of the reorganized firm. Since the going-concern value is priced in the stock

market, it may contain a bubble component. If both the lender and the investing firm optimistically

believe that the collateral value is high possibly because it contains a bubble, the firm will borrow

more and the lender will not mind lending more because the lender can capture the bubble in the

event of default. Thus the firm can finance more investment and make higher profits, making its

assets indeed more valuable. This positive feedback loop mechanism makes the beliefs of both the

lender and the borrower self-fulfilling and allows a stock price bubble to emerge in equilibrium. We

refer to this type of equilibrium as the bubbly equilibrium.

Our credit constraint is equivalent to that endogenously derived from the incentive constraint

in Gertler and Kiyotaki (2010) and Gertler and Karadi (2011). Suppose that there is no collateral

for borrowing.3 A firm can default on debt by diverting funds. The defaulting firm is shut down

and the lender may get nothing in the event of default. The incentive constraint in an optimal

contract ensures that the value to the firm of not defaulting is not lower than the outside value of

the diverted funds. A stock price bubble can relax the incentive constraint and hence the credit

constraint by raising the value to the firm of not defaulting. The firm can then borrow more to

finance more investment, supporting a higher firm value. The aforementioned positive feedback

loop mechanism still works with a slight modification to support the stock price bubble.

There is a second type of equilibrium in which no one believes in bubbles and hence bubbles do

not exist. We call this type the bubbleless equilibrium. We provide explicit conditions to determine

which type of equilibrium can exist. We prove that the economy has two steady states: a bubbly

one and a bubbleless one. Both steady states are inefficient due to credit constraints and both are

local saddle points. The equilibrium around the bubbly steady state is unique and bubbles persist

in the long run along a stable manifold, whereas the equilibrium around the bubbleless steady

state has indeterminacy of degree one and bubbles eventually burst along a stable manifold. Thus

3In Appendix C we show that the self-enforcing contract in which a defaulting firm is punished by being excluded
from the credit market can also generate a stock price bubble. In this case the lender gets nothing upon default.
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multiple equilibria in our model are not generated by indeterminacy with a unique steady state as

in the literature surveyed by Benhabib and Farmer (1999) and Farmer (1999).

Following Blanchard and Watson (1982) and Weil (1987), we construct a third type of equi-

librium with stochastic bubbles in which all agents believe that stock price bubbles will burst at

each date with a positive probability. When bubbles burst, they cannot reappear. We show that

when all agents believe that the probability of bubble bursting is small enough, an equilibrium with

stochastic bubbles exists. Once bubbles burst, a recession occurs in that there is a credit crunch

and consumption and output fall eventually. In addition, as soon as bubbles burst, investment falls

discontinuously and the stock market crashes. All of this happens in the absence of any exogenous

shock to economic fundamentals.

After presenting and analyzing our baseline model in Sections 3 through 5, we discuss our

model assumptions and study the robustness of our results by analyzing various extensions in

Section 6. We find that a stock price bubble can emerge as long as firms use debt financing subject

to sufficiently tight credit constraints endogenously derived from optimal contracts with limited

commitment, when other sources of finance are limited. First, we show that the usual Kiyotaki and

Moore (1997) collateral constraint can generate a pure bubble in intrinsically useless assets (e.g.,

money), but cannot generate a stock price bubble. By contrast, a pure bubble and a stock price

bubble can coexist under our endogenous credit constraints. Second, we allow firms to issue new

equity to households or use a fraction of capital sales to finance investment. We show that our

insights do not change as long as equity issues or capital sales are sufficiently limited. If they are

unlimited, then firms would be able to overcome borrowing constraints and achieve the efficient

equilibrium and no bubble could exist.

Finally, we introduce other types of assets such as intertemporal riskfree bonds and assets with

exogenous rents (e.g., land). Suppose that firms can trade one of these two types of assets to

finance investment. We show that the asset with exogenous rents that grow as fast as the economy

can coexist with a stock price bubble, as long as the asset is less liquid than the stock. Otherwise,

this asset will dominate the stock price bubble. When intertemporal bonds are available for trade,

firms want to save in bonds precautionarily because they anticipate that they will meet uninsured

investment opportunity shocks in the future. These bonds and bubbles are perfect substitutes.

The equilibrium interest rate is lower than the subjective discount rate so that households prefer

to sell bonds. The spread between the stock return and the interest rate reflects the liquidity

premium. We introduce market frictions such as short-sale constraints on the additional assets

(Kocherlakota (1992)).4 We also assume that no firm trades the equity shares of other firms

to finance investment. Without these frictions, unlimited arbitrage would cause the economy to

achieve the efficient equilibrium and no bubble could exist.

4Short-sale constraints are widely adopted in the finance literature (e.g., Scheinkman and Xiong (2003)) and can
be justified by institutional features such as direct transaction costs and default risk associated with short selling or
SEC rules.
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2 Basic Intuition and Related literature

To understand the basic intuition behind our model and our contributions to the literature, we

begin with the standard asset pricing equation for equity under risk neutrality in a discrete-time

deterministic environment

Vt = Dt + e−rVt+1, (1)

where Vt denotes the cum-dividend stock price, Dt denotes dividends, and r denotes the subjective

discount rate. We can write the solution as

Vt = V ∗t +Bt, V
∗
t =

∞∑
s=0

e−rsDt+s,

where V ∗t represents the fundamental component and Bt ≥ 0 represents the bubble component,

Bt = e−rBt+1. (2)

In an infinite-horizon model with infinitely lived agents, the transversality condition

lim
T→∞

e−rTVt+T = 0

is necessary in equilibrium and rules out bubbles because it implies

0 = lim
T→∞

e−rTBt+T = Bt.

The transversality condition can be violated in the overlapping generations (OLG) framework with

finitely lived agents. This framework is often used to study bubbles (Samuelson (1958), Diamond

(1965), and Tirole (1985)). Giglio, Maggiori, and Stroebel (2016) find no evidence of bubbles that

violate the transversality condition in the UK and Singapore housing markets. Abel et al (1989)

find no evidence of dynamic inefficiency, which is the condition for the existence of a bubble in

Tirole (1985).

Another issue with the standard asset pricing equations (1) and (2) is related to the steady

state. If a stock price bubble can exist in the steady state (i.e., B > 0), then (1) and (2) imply

that r = 0 and D = 0, where a variable without a time subscript denotes its steady-state value.

There are two implications. First, a necessary condition for a bubble to exist is that the growth

rate of the bubble must be lower than the growth rate of the economy, i.e., r ≤ 0 (Tirole (1985) and

Santos and Woodford (1997)). Otherwise, the bubble would be growing so fast that no one could

afford to buy into the bubble. Second, in order for a stock price bubble to exist in the steady state,

the detrended dividend (relative to economic growth) must be equal to zero in that state (Tirole

(1985)). On the other hand, if the steady-state detrended dividend is positive, then a stock price

bubble cannot exist. Moreover, no bubble can coexist with any infinitely-lived assets with positive

(detrended) rents in the steady state. This issue is related to the rate of return dominance puzzle

in monetary economics.
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The main contribution of our paper is to provide a new theory of stock price bubbles that can

overcome the issues discussed above. According to our theory, the asset pricing equation for the

stock price bubble is given by

Bt = e−rBt+1[1 + LIQt+1], (3)

instead of (2), where LIQt+1 represents the liquidity premium. The key is that a stock price bubble

is attached to productive assets (capital) with endogenous payoffs. Our insight is that the stock

price bubble has real effects and affects dividends. Although asset pricing equation (1) for equity

still holds so that the rate of stock return is equal to the subjective discount rate, the growth rate

of the stock price bubble is lower than this rate due to the liquidity premium or “collateral yield.”

The collateral yield comes from the fact that the stock price bubble helps relax credit constraints

and allows firms to make profitable investment, thereby generating more dividends. Consequently,

the transversality condition cannot rule out the stock price bubble, which can emerge and sustain

in dynamically efficient economies with positive dividends.

Our formulation of the positive feedback loop mechanism that generates a stock price bubble

is novel. This mechanism works through credit constraints endogenously derived from incentive

constraints in optimal contracts with limited commitment. The critical feature of such contracts is

that equity value enters incentive constraints. A stock price bubble raises debt capacity by relaxing

incentive constraints and hence raises investment and firm value to support the bubble. We show

that a stock price bubble can emerge for several forms of contracts whenever incentive constraints

have this feature, e.g., the contract in Gertler and Kiyotaki (2010) and Gertler and Karadi (2011)

and the self-enforcing contract (Kehoe and Levine (1993)). By contrast, we show that the usual

credit constraints used in the literature (e.g., the Kiyotaki-Moore collateral constraint) can generate

a pure bubble, but not a stock price bubble.

Unlike pure bubbles, stock price bubbles are attached to productive firms with positive dividends

and are not separately tradable from firm stocks. Stock price bubbles can emerge in different firms

or in different sectors, and their emergence or collapse may be unrelated to the emergence or collapse

of pure bubbles. Fiat money is a pure bubble supplied by the government. It serves as a store of

value and a medium of exchange and has a different nature from stock price bubbles. Thus one

must go beyond standard theories of pure bubbles or money to understand stock price bubbles.

We show that firm value consists of a fundamental component and a bubble component. Unlike

the extant literature, we explicitly characterize the liquidity premium provided by the bubble

component and link the fundamental component to the Q theory of investment (Tobin (1969) and

Hayashi (1982)). As in Hayashi (1982), firms are infinitely lived and make investment decisions

that maximize their stock market values. The presence of a stock price bubble causes average Q

to differ from marginal Q. Thus using average Q to measure marginal Q in empirical studies could

be misleading. Our framework of infinite-horizon production economies with bubbles can be easily

extended to incorporate many standard ingredients for both theoretical and quantitative analyses
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of asset prices, business cycles, and economic growth (Miao and Wang (2012, 2014, 2015), Miao,

Wang, Xu (2015), Miao, Wang, and Zhou (2015), and Miao, Wang and Xu (2016)). In particular,

Miao, Wang and Xu (2015) apply Bayesian estimation methods to study stock market bubbles and

business cycles using our framework.

Some studies (e.g., Scheinkman and Weiss (1986), Kocherlakota (1992, 2008), Santos and Wood-

ford (1997), and Hellwig and Lorenzoni (2009)) have found that infinite-horizon models of endow-

ment economies with borrowing constraints can generate rational bubbles. Unlike this literature,

our paper analyzes a production economy with stock price bubbles attached to productive firms.5

Rather than studying stock price bubbles, the extant literature on production economies typ-

ically studies pure bubbles like money that can provide liquidity by raising the borrower’s net

worth (Woodford (1990), Kiyotaki and Moore (2005, 2008), Caballero and Krishnamurthy (2006),

Kocherlakota (2009), Farhi and Tirole (2012), Martin and Ventura (2012), Wang and Wen (2012),

and Hirano and Yanagawa (2013)). These studies contain the idea that pure bubbles can relax

credit constraints and raise investment. Their credit constraints are different from ours and they

do not incorporate an explicit stock market where firms can be valued as in equation (1). Kiyotaki

and Moore (2005, 2008) derive an equation similar to (3) for money and emphasize the importance

of the liquidity premium for the circulation of money. Martin and Ventura (2012) replicate their

baseline OLG model with pure bubbles using stock and credit markets and reinterpret their pure

bubble as firm value, which has no fundamental component. In a related to OLG model, Martin and

Ventura (2011) assume that an entrepreneur can start a new firm in each period and use its future

market value, which may contain bubble and fundamental components, as collateral to borrow.

Unlike in the infinite-horizon models, credit constraints are inessential for the emergence of

bubbles in the OLG models because bubbles as pyramid schemes can exist without credit constraints

(Tirole (1985)). Their key role is to allow bubbles to have a crowding-in effect and emerge in

dynamically efficient OLG economies, instead of providing a positive feedback loop mechanism to

support a bubble as in our paper (Farhi and Tirole (2012) and Martin and Ventura (2011, 2012)).

None of these three papers studies asset pricing equations like (1) and (3) for stocks and bubbles or

the related rate of return dominance discussed earlier. Most OLG models of bubbles are confined

to agents that live for two or three periods and thus are not suitable for a quantitative analysis

because the time period in these models cannot be tied to the data frequency. If each generation

of agents is equally altruistic toward the next generation with intergenerational transfers, then the

entire dynasty behaves as a single infinitely lived agent (Barro (1974)). Thus studying models

with infinitely lived agents is important and will deepen our understanding of asset bubbles by

complementing OLG models.

Finally, our idea that stock price bubbles can provide liquidity is related to the literature on the

5See Scheinkman and Xiong (2003) for a model of bubbles based on heterogeneous beliefs and Adam, Marcet,
and Nicolini (2015) for an asset-pricing model where agents have subjective beliefs about the pricing function. See
Brunnermeier (2009) and Miao (2014) for surveys of various theories of bubbles.
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search theory of money (Kiyotaki and Wright (1989), Lagos and Wright (2005), and Gu, Mattesini,

and Wright (2016)).6 This literature emphasizes the role of money and other assets in overcoming

trading frictions in economies with decentralized trade. Money commands a liquidity premium and

satisfies an equation similar to (3). This literature does not study stock price bubbles attached to

firms with endogenous dividends and capital.

3 Baseline Model

We consider an infinite-horizon production economy, consisting of a continuum of identical house-

holds of a unit measure and a continuum of ex ante identical, but ex post heterogeneous firms of

a unit measure. Firms are subject to independent idiosyncratic shocks and there is no aggregate

uncertainty. Time is continuous and denoted by t ≥ 0. For a better understanding of intuition, we

sometimes consider a discrete-time approximation with time denoted by t = 0, ∆, 2∆, ..... We will

focus our analysis on the continuous-time limit as ∆→ 0.

Assumption 1 There are three asset markets. Households are shareholders of all firms and trade

firm shares in a stock market without trading frictions. Firms buy and sell capital in a market for

capital goods and they do not own or trade the shares of other firms in the stock market. There is

also an intratemporal debt market in which firms borrow and lend among themselves.

The key ingredients of our baseline model are:

• Endogenous credit constraints derived from optimal contracts with limited commitment. The

critical feature of this type of contracts is that firm value enters incentive constraints. Under

a specific contract form, a firm can borrow against its market value and the lender can seize

the stock price bubble in the event of default.

• A liquidity mismatch in the sense that capital sales are realized after investment spending.

• The inability of firms to raise funds to finance investment by issuing new equity, selling capital,

or saving to accumulate wealth.

3.1 Households

The representative household is risk neutral and derives utility from a consumption stream {Ct}
according to the utility function

∑∞
s=0 e

−rs∆Cs∆∆. Households supply labor inelastically and

aggregate labor supply is normalized to one. They trade firm stocks without any trading frictions.

The net supply of each firm’s stocks is normalized to one. Since households are identical, they do

not trade among themselves and each household holds one unit of shares in equilibrium.

6Our paper is also related to the literature on commodity money. Unlike stock price bubbles, commodity money
can serve as a consumption good that directly enters a household’s utility function (e.g., Sargent (2016)).
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The representative household faces the budget constraint during period [t, t+ ∆]

Ct∆ +

∫ (
V j
t −D

j
t∆
)
ψjt+∆dj =

∫
V j
t ψ

j
t dj + wtNt∆, (4)

where V j
t denotes firm j’s expected cum-dividend equity value, ψjt denotes holdings of firm j’s

shares, Dj
t denotes firm j’s expected dividends determined by its optimization problem, wt denotes

the wage rate, and Nt denotes labor supply.7 Since there is no aggregate uncertainty, linear utility

gives the first-order condition

V j
t = Dj

t∆ + e−r∆V j
t+∆, (5)

for each firm j. This equation says that the rate of return (or the discount rate) on each stock must

be equal to r. Linear utility implies the transversality condition (see, e.g., Ekeland and Scheinkman

(1986) and Acemoglu (2009)),

lim
T→∞

e−rTV j
Tψ

j
T = lim

T→∞
e−rTV j

T = 0, (6)

where we have used the market-clearing condition ψjT = 1 for all T and all j.

3.2 Firms

Each firm j ∈ [0, 1] is endowed with initial capital Kj
0 > 0 and combines labor N j

t ≥ 0 and

capital Kj
t ≥ 0 to produce output at time t according to the Cobb-Douglas production function

Y j
t = (Kj

t )
α(N j

t )1−α, α ∈ (0, 1) . Capital depreciates at rate δ. After solving the static labor choice

problem, we obtain the operating profits

RtK
j
t = max

Nj
t

(Kj
t )
α(N j

t )1−α − wtN j
t , (7)

where wt is the wage rate and Rt is given by

Rt = α

(
wt

1− α

)α−1
α

. (8)

We will show later that Rt is equal to the marginal product of capital in equilibrium.

Figure 1 illustrates firm j’s sequential decision problem during period [t, t+ ∆]. The firm hires

labor, produces output, and receives profits RtK
j
t∆ at time t. It then meets an opportunity to invest

in capital with Poisson probability π∆, as in Kiyotaki and Moore (1997, 2005, 2008). Investment

transforms consumption into capital goods one for one, which can be sold in the market for capital.

With probability 1− π∆, no investment opportunity arrives. This assumption captures firm-level

investment lumpiness and generates ex post firm heterogeneity. Assume that the arrival of an

investment opportunity is independent over time and across firms so that a law of large numbers

can be applied for aggregation. This means that only a fraction π∆ of firms have investment

opportunities during period [t, t+ ∆].

7Households’ optimization problem must also satisfy a no-Ponzi-game condition limT→∞ e
−rT ∫

V jTψ
j
T dj ≥ 0

(Acemoglu (2009)). We use żt to denote dzt/dt for any variable zt in continuous time.
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Figure 1: Timeline for firm j’s decision process.

Assumption 2 There is no insurance market against having an investment opportunity.

When no investment opportunity arrives, firm j buys (sells) additional capitalKj
t+∆−(1− δ∆)Kj

t >

(<)0 in the capital goods market at the price Qt and pays dividends Dj
0t∆ ≥ 0 at the end of pe-

riod [t, t+ ∆] . When an investment opportunity arrives, firm j invests Ijt at time t, and then sells

its newly produced capital Ijt and buys (sells) additional capital Kj
1t+∆ − (1− δ∆)Kj

t > (<)0 at

the price Qt in the capital goods market at the end of period [t, t+ ∆] . Thus capital sales QtI
j
t

and transactions Qt

[
Kj

1t+∆ − (1− δ∆)Kj
t

]
are realized after investment spending Ijt . This creates

a liquidity mismatch so that firm j must access external funds in addition to its internal funds

RtK
j
t∆ to finance investment. There is no capital adjustment cost. It is the illiquidity of capital

and the associated liquidity mismatch that prevent the use of capital sales to finance investment.

Assumption 2 ensures that resources cannot be transferred when they are needed.

Assumption 3 The only source of external financing for any firm j is intratemporal loans Ljt .

Firms cannot issue new equity, cannot use capital sales for financing due to liquidity mismatch,

and do not possess any other financial assets.

The credit market for the intratemporal debt is operated among firms. Investing firms borrow

funds from non-investing firms. The interest rate on the intratemporal debt is zero and its price

is one. After capital sales QtI
j
t are realized at the end of period [t, t+ ∆], investing firm j repays
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intratemporal loans Ljt . It then buys or sells additional capital Kj
1t+∆− (1− δ∆)Kj

t before paying

out dividends Dj
1t ≥ 0.8 We will show that QtI

j
t > Ijt = RtK

j
t∆ + Ljt (i.e., Qt > 1) in equilibrium

so that firm j can fully repay loans after selling newly produced capital Ijt .

Let the ex ante market value of firm j prior to the realization of an investment opportunity shock

be Vt(K
j
t ), where we suppress aggregate state variables in the argument. Assume that management

acts in the best interest of shareholders (i.e., households) to maximize the market value of the firm

(or equity value). It follows from (5) that Vt(K
j
t ) satisfies the following Bellman equation:

Vt

(
Kj
t

)
= max

Kj
t+∆,K

j
1t+∆,I

j
t ,L

j
t

(1− π∆)
[
Dj

0t∆ + e−r∆Vt+∆

(
Kj
t+∆

)]
(9)

+π∆
[
Dj

1t + e−r∆Vt+∆

(
Kj

1t+∆

)]
subject to

Dj
0t∆ +QtK

j
t+∆ = RtK

j
t∆ +Qt (1− δ∆)Kj

t , (10)

Dj
1t +QtK

j
1t+∆ + Ljt + Ijt = RtK

j
t∆ + Ljt +Qt (1− δ∆)Kj

t +QtI
j
t , (11)

Ijt ≤ RtK
j
t∆ + Ljt , (12)

and a credit constraint described below. Equations (10) and (11) are the flow-of-funds constraints.

Equation (12) is the financing constraint, which means that investment spending Ijt is limited by

internal funds RtK
j
t∆ and debt Ljt .

The most important assumption of our model is as follows:

Assumption 4 Loans are subject to a credit constraint endogenously derived from an incentive

constraint in an optimal contract with limited commitment.

The contract specifies investment Ijt and loans Ljt at time t and repayment Ljt at the end of

period [t, t+ ∆], when an investment opportunity arrives with Poisson probability π∆. Firm j may

default on its debt at the end of period [t, t + ∆]. If it defaults, then the firm and the lender will

renegotiate the loan repayment in a Nash bargaining problem. The loan repayment is determined

by the threat value to the lender. Specifically, the lender threatens to seize a fraction ξ ∈ (0, 1)

of depreciated capital (1− δ∆)Kj
t and take over the firm. The remaining fraction represents

default costs, which include direct costs of legal expenses and indirect costs resulting from conflicts

of interest between the lender and the borrower (Hennessy and Whited (2007)). Alternatively, we

may interpret ξ as an efficiency parameter in the sense that the lender may not be able to efficiently

use the firm’s assets (1− δ∆)Kj
t . The lender can run the firm with assets ξ (1− δ∆)Kj

t from time

t+ ∆ onwards and obtain firm value e−r∆Vt+∆(ξ (1− δ∆)Kj
t ) at the end of period [t, t+ ∆]. This

value is the threat value to the lender.

8There is no difference between a flow dividend Dj
0t∆ and a lump-sum dividend Dj

1t in discrete time with ∆ = 1.
But it is important for the convergence to the continuous-time limit as ∆→ 0 due to the nature of Poisson shocks.
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Following Jermann and Quadrini (2012), we assume that the firm has all the bargaining power

in the renegotiation through Nash bargaining so that the renegotiated repayment is equal to the

threat value. After repaying the debt, the firm continues operating its business as usual. The key

difference between our model and that of Jermann and Quadrini (2012) is that the threat value to

the lender is the going-concern value in our model, while they assume that the lender liquidates

the firm’s assets and obtains the liquidation value in the event of default.9

Enforcement requires that, after an investment opportunity arrives at time t, the continuation

value to the firm of not defaulting be no lower than the continuation value of defaulting, that is,

−Ljt + e−r∆Vt+∆(Kj
1t+∆) ≥ −e−r∆Vt+∆(ξ (1− δ∆)Kj

t ) + e−r∆Vt+∆(Kj
1t+∆),

where we have canceled out some common terms on the two sides of the inequality (see Figure

1). This constraint ensures that there is no default in an optimal contract. Simplifying yields the

credit constraint

Ljt ≤ e−r∆Vt+∆(ξ (1− δ∆)Kj
t ). (13)

The continuous-time limit of the previous dynamic programming problem as ∆→ 0 becomes

rVt

(
Kj
t

)
= max

K̇j
t ,K1t,I

j
t ,L

j
t

Dj
0t + V̇t

(
Kj
t

)
+ π (Qt − 1) Ijt (14)

+π
[
QtK

j
t −QtK

j
1t + Vt

(
Kj

1t

)
− Vt

(
Kj
t

)]
subject to

Dj
0t = RtK

j
t −Qt

(
K̇j
t + δKj

t

)
, (15)

Ijt ≤ L
j
t , (16)

Ljt ≤ Vt(ξK
j
t ). (17)

Since internal funds RtK
j
t∆ come as flows, the limit vanishes as ∆ → 0 so that (12) converges to

(16). Thus internal cash flows do not help finance lumpy investment. The continuous-time limit of

(11) becomes Dj
1t = QtI

j
t − I

j
t + QtK

j
t − QtK

j
1t. Total expected dividends are Dj

t = Dj
0t + πDj

1t.

Capital may jump from Kj
t to Kj

1t at the time of investment. In Section 4 we will show that this

jump does not affect the solution given Assumption 3 and constant-returns-to-scale technology.

3.3 Competitive Equilibrium

Let Kt =
∫ 1

0 K
j
t dj, It =

∫ 1
0 I

j
t dj, and Yt =

∫ 1
0 Y

j
t dj denote the aggregate capital stock, aggregate

investment of firms with investment opportunities, and aggregate output, respectively. Then a

9U.S. bankruptcy law has recognized the need to preserve the going-concern value when reorganizing businesses
in order to maximize recoveries by creditors and shareholders (see 11 U.S.C. 1101 et seq.). Bankruptcy laws seek to
preserve the going-concern value whenever possible by promoting the reorganization, as opposed to the liquidation,
of businesses. Bris, Welch and Zhu (2006) find empirical evidence that Chapter 11 reorganizations are less costly and
more widely observed than Chapter 7 liquidations.
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competitive equilibrium is defined as the paths of {Yt} , {Ct} , {Kt}, {It} , {Nt} , {wt} , {Rt} ,
{Vt(Kj

t )}, {I
j
t }, {K

j
t }, {N

j
t } such that households and firms optimize and markets clear, i.e., ψjt = 1,

Nt =
∫ 1

0 N
j
t dj = 1, Ct + πIt = Yt, and K̇t = −δKt + πIt. The last equation is the continuous-time

limit of the following market-clearing condition for capital goods as ∆→ 0 :

Kt+∆ ≡ (1− π∆)

∫
Kj
t+∆dj + π∆

∫
Kj

1t+∆dj =

∫
(1− δ∆)Kj

t dj + π∆

∫
Ijt dj,

where the right-hand (left-hand) side of the last equality gives the aggregate supply (demand) of

capital.

4 Equilibrium System

We first solve an individual firm’s dynamic programming problem (14) subject to (15), (16), and

(17) when the wage rate wt or Rt in (8) is taken as given. This problem does not give a contraction

mapping and hence may admit multiple solutions. We conjecture and verify that the ex ante firm

value takes the following form:

Vt(K
j
t ) = QtK

j
t +Bt, (18)

where Bt is a variable to be determined. Since firm value Vt(K
j
t ) is always nonnegative, we must

have Bt ≥ 0. Note that Bt = 0 is a possible solution in general equilibrium. In this case we interpret

QtK
j
t as the fundamental value of the firm. The fundamental value is proportional to the firm’s

physical assets Kj
t , and has the same form as in Hayashi (1982). There may be another solution in

which Bt > 0 due to optimistic beliefs. In this case, we interpret Bt as a bubble component since

the firm is still valued at Bt even when there is no fundamental, i.e., Kj
t = 0. In Section 6.1 we will

show that when an intrinsically useless asset is traded in the market, its price and Bt follow the

same asset pricing equation (i.e., they are perfect substitutes), further justifying our interpretation

of Bt as a bubble component.10

The following result characterizes firm j’s optimization problem and its proof along with proofs

of other results in the baseline model are given in Appendix A.

Proposition 1 Suppose that Qt > 1. Then the optimal investment level when an investment

opportunity arrives is given by

Ijt = ξQtK
j
t +Bt, (19)

where

Ḃt = rBt −Btπ(Qt − 1), (20)

10According to the standard definition for exchange economies, a bubble is equal to the difference between the
market value of an asset and the present value of the asset’s exogenously given dividends. It is subtle to apply this
definition to our model since dividends are endogenously generated through investment and production. Bubbles can
help firms make more investment and hence generate additional dividends. One criticism of the standard test for
bubbles is that it is hard to separate bubbles from fundamentals in the data (see Gurkaynak (2008) and Gaĺı and
Gambetti (2013)). If one prefers not to use the term “bubbles,” one can call Bt a sunspot, self-fulfilling or speculative
component without affecting our results.
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Q̇t = (r + δ)Qt −Rt − πξQt(Qt − 1), (21)

and Rt is given by (8). Moreover, K̇j
t and Kj

1t are indeterminate and the following transversality

conditions hold:

lim
T→∞

e−rTQTK
j
T = 0, lim

T→∞
e−rTBT = 0. (22)

To better understand the intuition behind this proposition, we consider the discrete-time prob-

lem (9) and conjecture Vt(K
j
t ) = atK

j
t + bt, where bt ≥ 0 is a bubble component. Substituting this

conjecture and equations (10) and (11) into (9), we can rewrite the firm’s dynamic programming

problem as

atK
j
t + bt = max

Kj
t+∆,K

j
1t+∆,I

j
t ,L

j
t

RtK
j
t∆ +Qt (1− δ∆)Kj

t + e−r∆bt+∆ (23)

+ (1− π∆)
[
−QtKj

t+∆ + e−r∆at+∆K
j
t+∆

]
+π∆

[
(Qt − 1) Ijt −QtK

j
1t+∆ + e−r∆at+∆K

j
1t+∆

]
subject to

Ijt ≤ RtK
j
t∆ + Ljt ≤ RtK

j
t∆ + e−r∆

(
at+∆ (1− δ∆) ξKj

t + bt+∆

)
, (24)

where the last inequality follows from (13).

Constant-returns-to-scale technology implies that the objective function in (23) is linear in

Kj
t+∆ and Kj

1t+∆. Optimization gives Qt = e−r∆at+∆ so that the capital price Qt is equal to the

marginal value of capital or Tobin’s marginal Q. Thus firm j is indifferent between buying and

selling capital, as it cannot use capital sales to finance investment anyway due to Assumption 3.

It is possible that some firms grow slower and others grow faster. The firm size is bounded by the

aggregate capital stock. The indeterminacy of firm dynamics at the micro-level will not affect the

aggregate equilibrium dynamics as shown in Proposition 2 below, which is our focus.

When an investment opportunity arrives at the beginning of period [t, t+ ∆], one unit of in-

vestment transforms one unit of consumption good into one unit of new capital, which is sold at

the price Qt at the end of period [t, t+ ∆]. If Qt > 1, the firm will make as much investment as

possible so that the financing constraint (12) and the credit constraint (13) bind. If Qt = 1, the

investment level is indeterminate. If Qt < 1, the firm will make as little investment as possible.

This investment choice is similar to Tobin’s Q theory (Tobin (1969) and Hayashi (1982)). In what

follows, we impose assumptions to ensure Qt > 1 in the neighborhood of the steady state so that

optimal investment is given by

Ijt = RtK
j
t∆ +Qt (1− δ∆) ξKj

t + e−r∆bt+∆. (25)

An optimistic belief about the stock market value of the firm due to a bubble component bt

costs the representative household bt additional units of consumption good to buy one unit of
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the stock. The bubble generates a discounted resale value e−r∆bt+∆. The bubble also relaxes the

credit constraint (13) and raises investment by e−r∆bt+∆ as (25) shows. This investment generates

additional dividends (Qt − 1) with probability π∆ as (23) shows. Thus the total discounted benefit

of the bubble is [π∆ (Qt − 1) + 1] e−r∆bt+∆. Equating the benefit with the cost yields

bt = [π∆ (Qt − 1) + 1] e−r∆bt+∆. (26)

This is the positive feedback loop mechanism supporting bubbles in our model.

We define Bt = e−r∆bt+∆ and take the continuous-time limit as ∆→ 0 to derive (18), (19), and

(20). We call π (Qt − 1) the liquidity premium of the bubble, which reflects the additional dividends

generated by the stock price bubble. By substituting (25) back into (23), matching coefficients of

Kj
t , and then taking the continuous-time limit as ∆→ 0, we obtain (21). This equation shows that

the return on capital is given by

Rt − δQt + Q̇t
Qt

= r − ξπ (Qt − 1) .

Since a fraction ξ of capital can be used as collateral to borrow, one unit of capital can finance ξQt

units of investment by (19), thereby generating ξπQt (Qt − 1) units of additional dividends. The

term ξπ (Qt − 1) represents the liquidity premium of capital.

Through the firm’s decision problem (23), we can understand the difference between our mech-

anism and that of Martin and Ventura (2011, 2012).11 In their OLG models a young productive

entrepreneur can create a new firm at each date and use its future value as collateral to borrow from

unproductive entrepreneurs (savers). The new bubble attached to this firm can relax credit con-

straints and raise investment. This crowding-in effect is similar to that described in (24). However

the new bubble is not supported by the positive feedback loop mechanism as in (26) because produc-

tive entrepreneurs do not solve a dynamic programming problem like (23). Moreover old bubbles

created by the previous generations crowd out investment and can also emerge in equilibrium. All

new and old bubbles in their models are supported by pyramid schemes like bt = e−r∆bt+∆ so that

the growth rate of bubbles equals the stock return (discount rate). Thus bubbles can be ruled out

by transversality conditions. Bubbles serve as a store of value and can be sold from old agents to

young agents as in Tirole (1985). By contrast, in our model a stock price bubble can emerge only

when it can relax credit constraints and provide a liquidity premium.

We can reinterpret our credit constraint (17) as in Gertler and Kiyotaki (2010) and Gertler and

Karadi (2011). In particular, in the discrete-time approximation, (13) is equivalent to

QtI
j
t − L

j
t −Qt(K

j
1t+∆ − (1− δ∆)Kj

t ) + e−r∆Vt+∆(Kj
1t+∆) ≥ QtIjt + (1− ξ) (1− δ∆)QtK

j
t ,

where e−r∆Vt+∆(Kj
1t+∆) = QtK

j
1t+∆ +Bt. The left-hand side of the inequality above is the contin-

uation value of the firm if it chooses to repay the debt Ljt . The right-hand side is the value if the

11There are many other differences in model setups and predictions, not discussed here.
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firm chooses to default by stealing the selling value of new capital QtI
j
t and a fraction 1− ξ of the

selling value of depreciated capital. The defaulting firm is shut down and the lender gets nothing.

The stock price bubble Bt can still relax the incentive constraint by raising the value to the firm

of not defaulting. It plays the role of maintaining reputations of the firm to repay its debt.

Although our model features a constant-returns-to-scale technology, marginal Q is not equal to

average Q in the presence of bubbles, because (18) implies that average Q is equal to

Vt(K
j
t )

Kj
t

= Qt +
Bt

Kj
t

for Bt > 0.

Thus the existence of stock price bubbles invalidates Hayashi’s (1982) result. In the empirical in-

vestment literature, researchers typically use average Q to measure marginal Q under the constant-

returns-to-scale assumption because marginal Q is not observable. Our analysis shows that this

method may be misleading.

Now we aggregate individual firms’ decision rules and impose market-clearing conditions. We

then characterize a competitive equilibrium by a system of nonlinear differential equations.

Proposition 2 Suppose that Qt > 1. Then the equilibrium variables (Bt, Qt,Kt) satisfy the system

of differential equations, (20), (21), and

K̇t = −δKt + π(ξQtKt +Bt), K0 given, (27)

where Rt = αKα−1
t . The usual transversality conditions hold.

Equation (27) gives the law of motion for the aggregate capital stock derived from the market-

clearing condition for capital. We use the market-clearing condition for labor and (8) to derive

Rt = αKα−1
t . The system of differential equations (20), (21), and (27) provides a tractable way to

analyze equilibrium.

If we just focus on the firm’s optimization problem in partial equilibrium taking Qt and wt

as given, then Vt(K
j
t ) = QtK

j
t + Bt with Bt > 0 gives the maximal firm value. However, since

Vt(K
j
t ) is the stock price, it is prone to speculation in general equilibrium. We will show later that

both Bt = 0 and Bt > 0 can be supported in general equilibrium under certain conditions. That

is, our model has multiple equilibria. This reflects the usual notion of a competitive equilibrium:

Given a price system, individuals optimize. If this price system also clears all markets, then it is an

equilibrium system. There could be multiple equilibria with different price systems and different

price systems would generate different optimization problems with different sets of constraints.

After obtaining the solution for (Bt, Qt,Kt) , we can derive the equilibrium wage rate wt =

(1− α)Kα
t , aggregate output Yt = Kα

t , aggregate investment πIt = π (ξQtKt +Bt) , and aggregate

consumption Ct = Yt − πIt.
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5 Analysis of Multiple Equilibria

We study three types of equilibria.12 The first type is bubbleless in which Bt = 0 for all t. The

second type is bubbly in which Bt > 0 for all t. For the third type the economy switches from

a bubbly equilibrium to a bubbleless equilibrium. All three types of equilibria can exist due to

self-fulfilling beliefs.

5.1 Bubbleless Equilibrium

In a bubbleless equilibrium Bt = 0 for all t. Equation (20) becomes an identity. We only need to

focus on (Qt,Kt) as determined by the differential equations (21) and (27) in which Bt = 0 for all

t. We first analyze the steady state, in which all aggregate variables are constant over time so that

Q̇t = K̇t = 0. We use a variable without a time subscript to denote its steady-state value and use

a variable with an asterisk to denote its value in the bubbleless equilibrium.

Proposition 3 (i) If

ξ ≥ δ

π
, (28)

then there exists a unique bubbleless steady-state equilibrium with Q∗ = QE ≡ 1 and K∗ = KE ,

where KE is the efficient capital stock satisfying α(KE)α−1 = r + δ.

(ii) If

0 < ξ <
δ

π
, (29)

then there exists a unique bubbleless steady-state equilibrium with

Q∗ =
δ

πξ
> 1, (30)

α (K∗)α−1 =
rδ

πξ
+ δ. (31)

In addition, K∗ < KE .

Assumption (28) says that if firms pledge sufficient assets as collateral, then the credit constraint

will not bind in equilibrium. The competitive equilibrium allocation is the same as the efficient

allocation. The latter is achieved by solving a social planner’s problem in which the social planner

maximizes the representative household’s utility subject to the resource constraint only. Note that

we assume that the social planner also faces stochastic investment opportunities, similar to firms

in a competitive equilibrium. Unlike firms in a competitive equilibrium, the social planner is not

subject to credit constraints.

Assumption (29) says that if firms cannot pledge sufficient assets as collateral, then the credit

constraint will be sufficiently tight so that firms are credit constrained in the neighborhood of the

12We focus on the case where either all firms have bubbles of the same size in their stock prices or no firms have
bubbles. It is possible to have another type of equilibrium in which different firms have bubbles of different sizes in
their stock prices. See Appendix D.
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steady-state equilibrium in which Q∗ > 1. We can then apply Proposition 2 in this neighborhood.

Proposition 3 also shows that the steady-state capital stock for the bubbleless equilibrium is less

than the efficient steady-state capital stock. This reflects the fact that not enough resources are

transferred from savers to investors due to financial frictions.

We can verify that R∗K∗ > πI∗ = δK∗ so that firms without investment opportunities have

enough funds to lend to firms with investment opportunities in the bubbleless steady state and

hence in the neighborhood of the bubbleless steady state. More intuitively, during period [t, t+ ∆] ,

investing firms need a total of Itπ∆ in funds to finance investment. Firms without investment

opportunities possess a total of (1− π∆)RtKt∆ in cash. In a neighborhood of the bubbleless

steady state, (1− π∆)RtKt∆ > Itπ∆ for a sufficiently small ∆.

For (29) to hold, the arrival rate π of investment opportunities must be sufficiently small,

holding everything else constant. The intuition is that if π is too high, then too many firms will

have investment opportunities, which would make the accumulated aggregate capital stock so large

as to lower the capital price Q to the efficient level as shown in part (i) of Proposition 3. Condition

(29) requires that technological constraints at the firm level be sufficiently tight.

To study the local dynamics around the bubbleless steady state (Q∗,K∗) , we linearize the

system of differential equations (21) and (27) around (Q∗,K∗) for Bt = 0 for all t. We can easily

show that the linearized system has a positive eigenvalue and a negative eigenvalue so that (Q∗,K∗)

is a saddle point. Thus, in the neighborhood of (Q∗,K∗) , for any given initial value K0, there is a

unique initial value Q0 such that (Qt,Kt) converges to the bubbleless steady state (Q∗,K∗) along

a unique saddle path as t→∞.

5.2 Bubbly Equilibrium

In this section we study the bubbly equilibrium in which Bt > 0 for all t. We will analyze the

dynamic system for (Bt, Qt,Kt) given in (20), (21), and (27). We first rewrite (20) as

Ḃt
Bt

= r − π(Qt − 1) for Bt > 0. (32)

This equation shows that the return on the stock price bubble Ḃt/Bt is equal to the discount rate

minus the liquidity premium. As discussed in Section 4, stock price bubbles in our model can

influence dividends due to the positive feedback loop effect through our credit constraint (17) or

(24). The liquidity premium π(Qt − 1) makes the growth rate of bubbles lower than the discount

rate r. Thus transversality conditions cannot rule out bubbles in our model. We can also show

that the bubbleless equilibrium is dynamically efficient in our model. Specifically, the golden rule

capital stock is given by KGR = (δ/α)
1

α−1 . One can verify that K∗ < KGR. Thus the condition

that the economy must be dynamically inefficient in Tirole (1985) cannot ensure the existence of

bubbles in our model. Next we will give our new conditions.
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5.2.1 Steady State

We first study the existence of a bubbly steady state in which B > 0. We use a variable with a

subscript b to denote its bubbly steady state value.

Proposition 4 There exists a bubbly steady state satisfying

B

Kb
=
δ

π
− ξ( r

π
+ 1) > 0, (33)

Qb =
r

π
+ 1 > 1, (34)

Rb = α (Kb)
α−1 = [(1− ξ)r + δ](

r

π
+ 1), (35)

if and only if the following condition holds:

0 < ξ <
δ

r + π
. (36)

In addition, (i) Qb < Q∗, (ii) KGR > KE > Kb > K∗, (iii) CE > Cb > C∗, and (iv) the bubble-asset

ratio B/Kb decreases with ξ.

Condition (36) reveals that bubbles emerge when ξ is sufficiently small, ceteris paribus. The

intuition is as follows. When the degree of pledgeability is sufficiently low, the credit constraint

is too tight. A bubble can help relax this constraint and allows firms to borrow more and invest

more. If the credit constraint is not tight enough, firms would be able to borrow sufficient funds

to finance investment. In this case a bubble serves no function.

Note that condition (36) implies condition (29). Thus, if condition (36) holds, then there exist

two steady state equilibria: one bubbleless and the other bubbly. The bubbleless steady state has

been analyzed in Proposition 3. Propositions 3 and 4 reveal that the steady-state capital price is

lower in the bubbly equilibrium than in the bubbleless equilibrium, i.e., Qb < Q∗. The intuition is

as follows. Bubbles help relax credit constraints and induce firms to make more investment than in

the case without bubbles. The increased capital stock in the bubbly equilibrium lowers the marginal

product of capital. Since the capital price partly reflects the present value of the marginal product

of capital by (21), it is lower in the bubbly steady state than in the bubbleless steady state.

We can verify that RbKb > πIb = δKb in the bubbly steady state. By a similar analysis to that

in Section 5.1, we deduce that firms without investment opportunities have enough funds to lend

to investing firms to finance investment in a neighborhood of the bubbly steady state.

As mentioned in Section 2, an important implication of our model is that stocks with positive

dividends and stock price bubbles can coexist in the steady state. To see this point, we can show

that aggregate dividends in the bubbly steady state are given by∫
Dj

0dj + π

∫
Dj

1dj = RbKb − πIb = (Rb − δ)Kb > 0.
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This is consistent with the dynamic efficiency criterion in Abel et al (1989).

Do stock price bubbles crowd out capital in the steady state? In Tirole’s (1985) OLG model,

households may use part of their savings to buy bubble assets instead of accumulating capital. Thus

bubbles crowd out capital in the steady state. In our model, bubbles are attached to productive

assets. If the capital price were the same in the bubbly and bubbleless steady states, then bubbles

would induce firms to invest more and hence to accumulate more capital stock. On the other hand,

there is a general equilibrium price feedback effect as discussed earlier. The lower capital price in

the bubbly steady state discourages firms from investing. The net effect is that bubbles lead to

higher capital accumulation, contrary to Tirole’s (1985) result.

The stock price bubble improves resource allocation even if it does not bring the economy

to the first-best allocation. As Proposition 4 shows, the bubbly steady-state capital stock Kb is

higher than the bubbleless steady-state level K∗, but lower than the first-best steady-state level

KE , which in turn is lower than the golden rule level KGR. Moreover the bubble helps improve

welfare in terms of consumption, i.e., CE > Cb > C∗. By contrast, bubbles overcome dynamic

inefficiency by crowding out capital in Tirole’s (1985) OLG model. Introducing credit constraints

and recurrent bubbles to Tirole’s (1985) model, Martin and Venture (2012) show that new bubbles

raise investment and this effect can dominate the crowding-out effect of old bubbles.

How does the parameter ξ affect the size of bubbles? Proposition 4 shows that a smaller ξ leads

to a larger bubble relative to capital in the steady state. This is intuitive. If firms can only pledge

a smaller amount of capital, they will face a tighter credit constraint so that a larger bubble will

emerge to relax this constraint.

5.2.2 Dynamics

Now we study the stability of the bubbleless and bubbly steady states and their local dynamics.

We linearize the equilibrium system (20), (21), and (27) around the two steady states. We then

compute the eigenvalues of the linearized system and compare the number of stable eigenvalues

with the number of predetermined variables (Coddington and Levinson (1955)). The equilibrium

system has only one predetermined variable Kt and two nonpredetermined variables, Bt and Qt.

Proposition 5 Suppose that condition (36) holds. Then there exists a unique local equilibrium

around the bubbly steady state (B,Qb,Kb) and the local equilibrium around the bubbleless steady

state (0, Q∗,K∗) has indeterminacy of degree one.

We prove that there is a unique stable eigenvalue for the linearized system around the bubbly

steady state. Thus there is a neighborhood N ⊂ R3
+ of the bubbly steady state (B,Qb,Kb) and

a continuously differentiable function φ : N → R2 such that given any K0 there exists a unique

solution (B0, Q0) to the equation φ (B0, Q0,K0) = 0 with (B0, Q0,K0) ∈ N , and (Bt, Qt,Kt)

converges to (B,Qb,Kb) starting at (B0, Q0,K0) as t approaches infinity. The set of points (B,Q,K)
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satisfying the equation φ (B,Q,K) = 0 is a one-dimensional stable manifold of the system. If the

initial value (B0, Q0,K0) is on the stable manifold, then the solution to the nonlinear system (20),

(21), and (27) is also on the stable manifold and converges to (B,Qb,Kb) as t approaches infinity.

Although the bubbleless steady state (0, Q∗,K∗) is also a local saddle point, the local dynamics

around this steady state are different. In Appendix A we prove that the stable manifold for the

bubbleless steady state is two dimensional because there are two stable eigenvalues for the linearized

system around the bubbleless steady state. Thus the local equilibrium has indeterminacy of degree

one. Formally, there is a neighborhood N ∗ ⊂ R3
+ of (0, Q∗,K∗) and a continuously differentiable

function φ∗ : N ∗ → R such that given K0 for any B0 > 0 there exists a unique solution Q0 to

the equation φ∗ (B0, Q0,K0) = 0 with (B0, Q0,K0) ∈ N ∗, and (Bt, Qt,Kt) converges to (0, Q∗,K∗)

starting at (B0, Q0,K0) as t approaches infinity. Intuitively, along the two-dimensional stable

manifold, the bubbly equilibrium is asymptotically bubbleless in that bubbles will burst eventually.

There exist multiple bubbly equilibrium paths converging to the bubbleless steady state and the

initial value B0 > 0 is indeterminate. This feature suggests that self-fulfilling beliefs can generate

economic fluctuations without any shocks to economic fundamentals.
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Figure 2: Transition paths for capital and the stock price bubble. The parameter values are
r = 0.02, α = 0.4, δ = 0.025, π = 0.01, and ξ = 0.2.

Figure 2 illustrates the transition paths of capital and the stock price bubble around the bubbly

steady state, given two initial values of capital. For larger initial capital (corresponding to solid

lines), the capital price is lower so that investment is less profitable and the liquidity premium is

lower. Thus the initial size of the bubble is smaller. The bubble then gradually expands to the

bubbly steady state and the capital stock gradually decreases to the bubbly steady state. The

opposite is true for the case with lower initial capital.
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5.3 Equilibrium with Stochastic Bubbles

So far we have focused on deterministic bubbles. Following Blanchard and Watson (1982) and Weil

(1987), we now introduce stochastic bubbles to the baseline model in Section 3 with intratemporal

loans. Suppose that a stock price bubble exists initially, i.e., B0 > 0. At the beginning of period

[t, t+ ∆] before production, the bubble bursts with Poisson probability θ∆ (see Figure 1). Once it

bursts, it will never have value again and the economy is at the bubbleless equilibrium studied in

Section 5.1.13 This event is independent of the Poisson investment opportunity shock.

We use a variable with an asterisk (except for aggregate capital Kt) to denote its value in

the bubbleless equilibrium. In particular, V ∗t (Kj
t ) = Q∗tK

j
t denotes firm j’s value function, where

Q∗t = G (Kt) for some function G. Let Vt

(
Kj
t

)
denote the value function prior to the two Poisson

shocks. Then firm j’s dynamic programming problem in continuous time becomes

rVt

(
Kj
t

)
= max

Ijt ,K̇
j
t ,L

j
t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ V̇t

(
Kj
t

)
+ π (Qt − 1) Ijt

+π
[
QtK

j
t −QtK

j
1t + Vt

(
Kj

1t

)
− Vt

(
Kj
t

)]
+ θ

[
V ∗t

(
Kj
t

)
− Vt

(
Kj
t

)]
subject to (16) and (17). The last expression on the second line reflects the fact that once the

bubble bursts, firm value changes from Vt(K
j
t ) to V ∗t (Kj

t ). In Appendix A we show that Vt

(
Kj
t

)
=

QtK
j
t +Bt.

Proposition 6 Suppose Qt > 1. Before the bubble bursts, the equilibrium with stochastic bubbles

(Bt, Qt,Kt) satisfies the following system of differential equations:

Ḃt = (r + θ)Bt − π(Qt − 1)Bt, (37)

Q̇t = (r + δ + θ)Qt − θQ∗t −Rt − π(Qt − 1)ξQt, (38)

and (27), where Rt = αKα−1
t and Q∗t = G (Kt) is the capital price after the bubble bursts.

Equation (37) is an asset pricing equation for the bubble and reflects the possibility of its

collapse. In general, it is difficult to characterize the full set of equilibria with stochastic bubbles.

In order to transparently illustrate the adverse impact of the collapse of a bubble on the economy,

we consider a simple type of equilibrium. Following Weil (1987) and Kocherlakota (2009), we study

a stationary equilibrium with stochastic bubbles that has the following properties: The capital

stock, the stock price bubble, and the capital price are constant at Ks, Bs, and Qs before the

bubble collapses. Immediately after the bubble collapses, the capital stock gradually moves to the

bubbleless steady-state value K∗, the bubble drops to zero and stays there forever, and the capital

price jumps to Q∗t before gradually moving to the bubbleless steady-state value Q∗ given in (30).

13If a bubble reemerges in the future, it would have value today by its asset pricing equation. See Martin and
Ventura (2012), Wang and Wen (2012), Gali (2014), and Miao, Wang, and Xu (2015) for models of recurrent bubbles.
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Proposition 7 Let condition (36) hold. If

0 < θ < θ∗ ≡ δ

ξ
− π − r,

then there exists a stationary equilibrium (Bs, Qs,Ks) with stochastic bubbles such that Ks > K∗.

In addition, if θ is sufficiently small, then consumption falls eventually after the bubble bursts.

As in Weil (1987), a stationary equilibrium with stochastic bubbles exists if the probability

that the bubble will burst is sufficiently small. In Weil’s (1987) OLG model, the capital stock

and output eventually rise after the bubble collapses. In contrast to his result, in our model

consumption, capital and output all fall eventually and the economy enters a recession after the

bubble bursts. The intuition is that the collapse of the bubble tightens the credit constraint and

impairs investment efficiency.
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Figure 3: Dynamics of the stationary equilibrium with stochastic bubbles. The bubble bursts at
t = 20. The parameter values are r = 0.02, α = 0.4, δ = 0.025, θ = 0.05, π = 0.01, and ξ = 0.2.

Proposition 7 compares the economies before and after the bubble collapses only in the steady

state. We now solve for the transition path numerically and present the results in Figure 3. In

this numerical example we assume that the bubble collapses at time t = 20. Immediately after the

bubble collapses, investment falls discontinuously and then gradually decreases to its bubbleless

steady-state level. But output and capital decrease continuously to their bubbleless steady-state

levels since capital is predetermined and labor is exogenous. Consumption rises initially because of

the fall in investment,14 but it quickly falls and then decreases to its bubbleless steady-state level.

14One way to generate the fall in consumption and output on impact is to introduce endogenous capacity utilization.
Following the collapse of bubbles, the capacity utilization rate falls because the price of installed capital rises. Then
both output and consumption would fall on impact.
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Importantly, stock prices drop discontinuously and the stock market crashes immediately after the

bubble collapses.

The existing macroeconomic models typically study dynamics around a unique deterministic

steady state. These models introduce large shocks to economic fundamentals to generate a recession.

For example, motivated by the recent Great Recession, Gertler and Kiyotaki (2010) and Gertler

and Karadi (2011) introduce large capital quality shocks or net worth shocks. This literature is

typically silent on the stock market behavior. In contrast to this literature, our model features two

steady states. A change in beliefs or confidence can shift the economy from a “good” steady state

to a “bad” steady state. A recession and a stock market crash can occur without any shocks to the

fundamentals.

6 Discussions and Extensions

In this section we discuss our model assumptions and study the robustness of our results by analyz-

ing several extensions. Our main message is that a stock price bubble can emerge as long as firms

need debt financing because other sources of financing are insufficient to cover investment spending.

And our modeling of credit constraints is critical for the emergence of a stock price bubble.

6.1 Endogenous Credit Constraints

A key feature of our model is that credit constraints are endogenously derived from optimal con-

tracts with limited commitment. As a result equity value enters this type of constraints. To see the

critical role of this feature, we show that the widely adopted Kiyotaki-Moore collateral constraint

can generate a pure bubble like money, but cannot generate a stock price bubble.15 This feature

distinguishes our model from the literature on pure bubbles.

We write the Kiyotaki-Moore collateral constraint in discrete time as

Ljt ≤ ξQt (1− δ∆)Kj
t , (39)

where ξQt (1− δ∆)Kj
t is the liquidation value of the collateralized assets. We may reinterpret

this constraint as an incentive constraint as in (13), where e−r∆Vt+∆(ξ (1− δ∆)Kj
t ) is replaced by

ξQt (1− δ∆)Kj
t . The continuous-time limit of (39) as ∆→ 0 is

Ljt ≤ ξQtK
j
t . (40)

Now we replace our credit constraint (13) with the Kiyotaki-Moore collateral constraint (39) in

the baseline model of Section 3. Consider firm j’s dynamic programming problem (9) or (23). It

15In Chapter 14 of his textbook, Tirole’s (2006) shows that there may exist multiple equilibria in a simplified variant
of the Kiyotaki and Moore (1997) model. In contrast to ours, these equilibria are characterized by a one-dimensional
nonlinear dynamical system. Some equilibria may exhibit cycles. We would like to thank Jean Tirole for a helpful
discussion on this point.
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follows from (12) and (39) that optimal investment satisfies Ijt = RtK
j
t∆ + ξQt (1− δ∆)Kj

t when

Qt > 1. Substituting this investment rule back into (23), we deduce that bubbles grow at the rate

r, i.e., bt = e−r∆bt+∆. In this case bubbles do not help finance investment and hence there is no

liquidity premium. The transversality condition implies that limT→∞ e
−r∆T bte

r∆T = bt = 0 and

thus no stock price bubble can emerge.

Next we show that a pure bubble can emerge by introducing an intrinsically useless asset (e.g.,

money) with a unit supply for firms and households to trade in the baseline model of Section 3

under the Kiyotaki-Moore collateral constraint (39) or (40).

Assumption 5 Neither firms nor households can short the intrinsically useless asset (e.g., money).

If firms or households could hold unlimited short positions, a pure bubble could not emerge due

to unlimited arbitrage (Kocherlakota (1992)). Let Vt(K
j
t ,M

j
t ) denote the ex ante market value of

firm j when its capital stock and asset holdings at time t are Kj
t and M j

t ≥ 0, respectively. Let Pt

denote the market price of the intrinsically useless asset. Then firm j chooses Kj
t+∆, K

j
1t+∆, M

j
t+∆,

M j
1t+∆, I

j
t , and Ljt to maximize its market value by solving the following Bellman equation:

Vt

(
Kj
t ,M

j
t

)
= max (1− π∆)

[
Dj

0t∆ + e−r∆Vt+∆

(
Kj
t+∆,M

j
t+∆

)]
+π∆

[
Dj

1t + e−r∆Vt+∆

(
Kj

1t+∆,M
j
1t+∆

)]
subject to (39),

Dj
0t∆ +QtK

j
t+∆ = RtK

j
t∆ +Qt (1− δ∆)Kj

t + Pt

(
M j
t −M

j
t+∆

)
, (41)

Dj
1t +QtK

j
1t+∆ + Ljt + Ijt = RtK

j
t∆ + Ljt + Pt

(
M j
t −M

j
1t+∆

)
+QtI

j
t +Qt (1− δ∆)Kj

t , (42)

Ijt ≤ RtK
j
t∆ + Ljt + Pt

(
M j
t −M

j
1t+∆

)
, (43)

where M j
t+∆ (M j

1t+∆) are the asset holdings chosen at time t when no investment arrives (an invest-

ment opportunity arrives). Equations (41) and (42) are the flow-of-funds constraints. Inequality

(43) says that firm j can sell the intrinsically useless asset to finance investment.

In Appendix B.1 we derive the continuous-time limit and show that firm value is given by

Vt

(
Kj
t ,M

j
t

)
= QtK

j
t + PtM

j
t . (44)

The following proposition characterizes the equilibrium system.

Proposition 8 Suppose that there is an intrinsically useless asset available for households and

firms to trade in the baseline model under Assumption 5 and the credit constraint in (40). If

Qt > 1, then the continuous-time equilibrium system for (Kt, Qt, Pt) is given by (21),

K̇t = −δKt + π(QtξKt + Pt), (45)

Ṗt = rPt − π(Qt − 1)Pt, (46)
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where Rt = αKα−1
t , and the usual transversality conditions hold. In equilibrium households do not

hold the intrinsically useless asset and investing firms sell this asset to non-investing firms. The

steady states are characterized by Propositions 3 and 4 where B is replaced by P.

A pure bubble is generated through the net worth channel: an investing firm sells the intrin-

sically useless asset to non-investing firms to raise its net worth so that the financing constraint

(43), instead of the collateral constraint (39) or (40), is relaxed. The intrinsically useless asset

provides a liquidity premium π(Qt − 1) and raises investment and dividends to support a bubble.

Non-investing firms are willing to buy the asset for precautionary reasons because they anticipate

that they will be credit constrained when a future investment opportunity arrives. This mechanism

also works for general exogenous or endogenous credit constraints, e.g., the constraint that no firms

can borrow (ξ = 0) and the constraint that firms can borrow against a fraction of future investment

payoffs (Kiyotaki and Moore (2005, 2008) and Hirano and Yanagawa (2013)). Kiyotaki and Moore

(2005, 2008) argue that the existence of a liquidity premium is critical for the circulation of fiat

money.

Comparing Propositions 2 and 8, we find that the stock price bubble and the pure bubble satisfy

the same equilibrium asset pricing equation. However, a pure bubble cannot be interpreted as a

stock price bubble, because they are attached to different types of assets. A stock price bubble

cannot be attached to a separately traded asset different from firm stocks. If a firm does not hold the

intrinsically useless asset at some time t, i.e., M j
t = 0, then its value is equal to Vt(K

j
t , 0) = QtK

j
t ,

implying that this firm does not contain a stock price bubble, even though there is a pure bubble

in the economy.

By contrast, if we adopt a credit constraint similar to (17) based on optimal contracts with

limited commitment in continuous time

Ljt ≤ Vt
(
ξKj

t , 0
)
, (47)

we show in Appendix B.1 that firm value is equal to

Vt

(
Kj
t ,M

j
t

)
= QtK

j
t +Bt + PtM

j
t . (48)

Thus firm value consists of a fundamental component QtK
j
t , a bubble component Bt, and an asset

value component PtM
j
t . Constraint (47) says that firm j does not use its intrinsically useless asset

M j
t as collateral, because it has already sold to finance investment when an investment opportunity

arrives so that the lender cannot seize M j
t on default.

Proposition 9 Suppose that there is an intrinsically useless asset for trading in the baseline model

under Assumption 5 and the credit constraint in (47). If Qt > 1, then the continuous-time equilib-

rium system for (Kt, Qt, Bt, Pt) is given by (20), (21), (46), and

K̇t = −δKt + π(QtξKt + Pt +Bt),
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where Rt = αKα−1
t , and the usual transversality conditions hold. An equilibrium can only determine

the total size of bubbles Pt+Bt, but not Pt and Bt independently. The steady states are characterized

by Propositions 3 and 4 where B is replaced by P +B.

Since the pure bubble Pt and the stock price bubble Bt can help raise investment to the same

extent, they are perfect substitutes. However, the mechanisms generating these two types of bubbles

are different. A pure bubble is generated when investing and non-investing firms trade for the

purpose of financing investment. The stock price bubble is not sold to finance investment as there

is no trade in stocks in equilibrium. It is in firm value, which is used as collateral to borrow.

Unlike the pure bubble, the stock price bubble directly raises firm value and hence relaxes the

credit constraint (47) and the debt limit. This feature provides a positive feedback loop to support

the stock price bubble. This intuition suggests that other types of credit constraints endogenously

derived from incentive constraints in optimal contracts may generate a stock price bubble as long

as firm value enters incentive constraints.

6.2 Liquidity Mismatch

In the baseline model we have assumed that capital sales are realized after investment spending,

causing a liquidity mismatch (Assumption 3). The interpretation is that selling capital may take

time so that the proceeds from sales may not be available at the time of investment (Kiyotaki

and Moore (2005, 2008)). We now relax this assumption by allowing at most a fraction λ of the

proceeds from the sales of existing capital to be used to finance investment. Then the financing

constraint (12) becomes

Ijt ≤ RtK
j
t∆ + Ljt +Qt

[
(1− δ∆)Kj

t −K
j
1t+∆

]
, (49)

where Kj
1t+∆ satisfies

Kj
1t+∆ ≥ (1− λ) (1− δ∆)Kj

t . (50)

In Appendix B.2 we derive the continuous-time equilibrium system and show that the bubbly

and bubbleless steady states coexist if and only if

0 < ξ + λ <
δ

r + π
.

This implies that as long as λ is sufficiently small, firms cannot overcome credit constraints and a

stock price bubble can emerge. Thus our main insights do not change as long as not enough capital

can be sold to finance investment due to the illiquidity of capital. Our baseline model corresponds

to the extreme case with λ = 0.

6.3 Equity Issues

In the baseline model we have assumed that firms cannot issue new equity by selling new shares

to finance investment (Assumption 3). This assumption is typically adopted in the literature on
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models with financial frictions (e.g., Carlstrom and Fuerst (1997) and Bernanke, Gertler, and

Gilchrist (1999)). If firms could issue unlimited amount of new equity, then they would not be

financially constrained and a stock price bubble could not emerge. What is critical for our results

is that equity issues are limited so that debt financing is needed.

Based on the Flow of Funds Accounts of the Federal Reserve Board, Figure 1 in Jermann and

Quadrini (2012) shows that equity payouts in the US nonfinancial business sector are almost always

positive between 1952 Q1 and 2010 Q2.16 This figure suggests that nonfinancial firms on average pay

out dividends or repurchase shares instead of issuing new equity during that period. Using the same

source of data for the sample period from 1945 to 2002, Table 2 of Frank and Goyal (2008) shows

that net debt issues finance a large part of financing deficit (defined as investment and dividends

minus internal funds). Equity issues are negative and debt issues exceed the financing deficit during

the last two decades. At the firm level, Hennessy and Whited (2007) find that the average ratio of

equity issuance to total assets is 8.9% for US nonfinancial and unregulated firms during the period

from 1988 to 2001 using the Compustat database. One explanation for the preceding evidence of

limited equity issues is that issuing equity incurs direct administrative and underwriting costs and

may also risk the loss of control. In terms of theory, Myers (1984) and Myers and Majluf (1984)

argue that firms prefer internal to external financing and debt to equity if external financing is used

because of adverse selection. Issuing new equity may signal bad news to outside shareholders when

there is information asymmetry between managers and outside shareholders.

We can relax our extreme assumption by allowing firms to issue new equity.

Assumption 6 No firm holds the shares of other firms so that new equity is issued to households

as shareholders subject to external equity financing costs.

We first show that under this assumption the normalization of the stock supply to one is

innocuous. We use a discrete-time setup to illustrate this point as in Miller and Modigliani (1961).

Let nt, dt, and vt denote the number of existing outstanding shares, dividends per share, and the

cum-dividend stock price per share, respectively. Then the stock price per share satisfies the asset

pricing equation

vt = dt + e−r∆vt+∆. (51)

Let Vt = ntvt denote the total market value of the enterprise and Dt = ntdt denote total dividends.

Suppose that the firm sells the number mt of new shares at the closing price vt+∆ at date t. Then

we have nt+∆ = nt +mt. Multiplying both sides of equation (51) by nt gives

Vt = Dt + e−r∆ntvt+∆ = Dt + e−r∆ [nt+∆vt+∆ − (nt+∆ − nt) vt+∆]

= Dt − e−r∆mtvt+∆ + e−r∆nt+∆vt+∆ = (Dt − St) + e−r∆Vt+∆,

16Equity payout is defined as dividends and share repurchases minus equity issues of nonfinancial corporate busi-
nesses, minus the net proprietor’s investment in noncorporate businesses.
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where St = e−r∆mtvt+∆ is the value of new equity. The macroeconomics and finance literature

often interprets Dt−St as “dividends” and negative dividends represent new equity (e.g., Hennessy

and Whited (2007) and Jermann and Quadrini (2012)). By normalizing the total stock supply of

the enterprise to one, we can interpret the stock price as the stock market value of the enterprise.

The asset pricing equations remains the same as before. Thus we do not need to explicitly model

the change in the number of shares.

Now suppose that firm j can issue new equity to households (shareholders) in the discrete-time

setup of Section 3. Its objective is to maximize the equity value of existing shareholders. We can

describe firm j’s decision problem by dynamic programming:

Vt

(
Kj
t

)
= max

Kj
t+∆,K

j
1t+∆,I

j
t ,L

j
t ,S

j
0t,S

j
1t

(1− π∆)
[(
Dj

0t − S
j
0t

)
∆ + e−r∆Vt+∆

(
Kj
t+∆

)]
+π∆

[
Dj

1t − S
j
1t + e−r∆Vt+∆

(
Kj

1t+∆

)]
subject to (13),

Dj
0t∆ +QtK

j
t+∆ = RtK

j
t∆ +Qt (1− δ∆)Kj

t + Sj0t∆−
ϕ

2

(Sj0t)
2

Kj
t

∆,

Dj
1t +QtK

j
1t+∆ + Ljt + Ijt = RtK

j
t∆ + Ljt + Sj1t −

ϕ

2

(Sj1t)
2

Kj
t

+Qt (1− δ∆)Kj
t +QtI

j
t ,

Ijt ≤ RtK
j
t∆ + Ljt + Sj1t,

where Sj1t (Sj0t) represents new equity issues when an (no) investment opportunity arrives, and

ϕ(Sj0t)
2/(2Kj

t ) and ϕ(Sj1t)
2/(2Kj

t ) represent external equity financing costs.17 The parameter ϕ > 0

represents the size of the equity financing cost. The preceding two equations are the flow-of-funds

constraints. The inequality is the financing constraint, which says that investment is financed by

internal funds RtK
j
t∆, debt Ljt , and new equity Sj1t.

In Appendix B.3 we study the continuous-time limit and show that the firm will not issue new

equity, i.e., Sj0t = 0, when no investment opportunity arrives due to the equity financing cost. When

an investment opportunity arrives and Qt > 1, the firm issues equity

Sj1t =
1

ϕ
(Qt − 1)Kj

t .

The following proposition characterizes the conditions for the existence of a bubbly steady state.

17Using a structural model based on the Compustat database, Hennessy and Whited (2007) estimate a quadratic
function of the external equity financing cost.
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Proposition 10 Given Assumption 6 in the baseline model, there exists a unique bubbly steady

state satisfying

Qb = 1 +
r

π
> 1,

B

Kb
=

δ

π
− ξ( r

π
+ 1)− r

ϕπ
> 0,

Rb = α (Kb)
α−1 = [(1− ξ)r + δ](

r

π
+ 1)− 1

2

r2

ϕπ
> 0,

if and only if 0 < ξ(r + π) + r/ϕ < δ.

If the equity financing cost is too large, i.e., ϕ → ∞, firms will not issue any equity and the

proposition reduces to Proposition 4. If the equity financing cost (i.e., ϕ) is too small, then the

conditions in the proposition are violated. In this case firms can issue sufficient new equity to

overcome the credit constraints so that a stock price bubble could not exist. In the extreme case

without equity financing cost (i.e., ϕ = 0), firms can issue sufficient new equity to finance investment

at the efficient level so that the economy attains the efficient equilibrium (Miller and Modigliani

(1961)). Thus our key insights will not change as long as new equity issues are sufficiently limited

due to external equity financing costs.

6.4 Additional Asset with Exogenous Rents

In Section 2 we have discussed the issue of the rate of return dominance. We have shown that our

model can generate a stock price bubble in firms with positive dividends. One may wonder whether

a stock price bubble can still exist if there is another asset with exogenous rents that grow as fast

as the economy. Tirole (1985) shows that this is possible in an OLG model by assuming that rents

are not capitalized before their creation. In this subsection we show that this is also possible in our

infinite-horizon model if the asset with exogenous rents is less liquid than the stock price bubble

for financing investment. To this end, we introduce an asset with exogenous rents Xt = xegt > 0

paid at each time t to the baseline model of Section 3. The supply of the asset is normalized to

one. To prevent unlimited arbitrage, we make the following assumption.

Assumption 7 Neither households nor firms can short the asset with exogenous rents (e.g., land).

We also introduce economic growth by setting the production function as Y j
t = (Kj

t )
α(AtN

j
t )1−α,

where At = egt (g ≥ 0) represents technical progress. A simple way to model the illiquidity of the

asset is to impose a resaleability constraint in continuous time (Kiyotaki and Moore (2008)):

M j
1t ≥ (1− ζ)M j

t , (52)

where M j
t ≥ 0 denotes firm j’s existing asset holdings and M j

1t ≥ 0 denotes firm j’s new asset

holdings when an investment opportunity arrives. The interpretation is that firm j can sell at most
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a fraction ζ ∈ (0, 1) of the asset to finance its investment. In this case the asset is less liquid than

the bubble. For simplicity suppose that firm j does not use the asset with rents as collateral and

we adopt the credit constraint in (47). We still use Vt(K
j
t ,M

j
t ) to denote firm j’s value function.

In Appendix B.4 we show that Vt(K
j
t ,M

j
t ) takes the form in (48). For Qt > 1, the resaleability

constraint (52) binds when an investment opportunity arrives, because firm j will sell the asset

to non-investing firms as much as possible to finance investment. The aggregate capital stock Kt,

asset price Pt, and stock price bubble Bt will all grow at the rate g. But the capital price Qt will

not grow. Moreover, Bt, Qt, and Pt satisfy the asset pricing equations (20), (21), and

Ṗt = rPt −Xt − π(Qt − 1)ζPt. (53)

Thus the return on the asset with rents is higher than the return on the bubble and

Ṗt +Xt

Pt
= r − π(Qt − 1)ζ > r − π(Qt − 1) =

Ḃt
Bt

for Bt > 0.

If the asset is fully liquid, i.e., ζ = 1, then the two returns are the same and equal to zero in the

bubbly steady state without growth (g = 0) . This is impossible if rents Xt are positive, generating

the rate of return dominance puzzle discussed in Section 2.

We solve this puzzle by assuming that the asset with rents is less liquid than the stock price

bubble, i.e., ζ ∈ (0, 1). In this case the return on the asset with rents is higher than the return

on the bubble because the asset with rents commands a lower liquidity premium than the bubble.

Non-investing firms buy the asset with rents for a precautionary motive because they anticipate

being credit constrained when an investment opportunity arrives in the future. Since the return on

the asset is lower than the discount rate r, households want to sell the asset until their short-sale

constraints bind. In equilibrium households do not hold any of the asset.

We also consider the more general case with growth g > 0. In the bubbly steady state, Qt

and the detrended variables kt = Kt/At, pt = Pt/At, and bt = Bt/At are constant over time.

The following proposition gives the conditions such that the stock price bubble and the asset with

growing rents Xt can coexist in the steady state.

Proposition 11 Suppose that there is an asset with growing rents Xt available for households and

firms to trade in the baseline model under Assumption 7. There exists a unique bubbly steady state

(Qb, kb, b, p) satisfying

b =
δ + g

π
kb −Qbξkb − ζp > 0,

p =
x

(r − g)(1− ζ)
> 0, Qb =

r − g
π

+ 1 > 1.

αkα−1
b = [r + δ − (r − g)ξ]

(
r − g
π

+ 1

)
> 0,
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if and only if

r > g ≥ 0, 0 < ξ <
δ + g

r + π − g
, (54)

0 < x < (r − g)
1− ζ
ζ

[
δ + g

π
−
(
r − g
π

+ 1

)
ξ

]
kb. (55)

The interpretation of condition (54) is similar to that of (36). The intuition behind condition

(55) is that the asset with detrended rents x must be sufficiently illiquid (i.e., ζ must be sufficiently

small), or the detrended dividend x must be sufficiently small. Otherwise, this asset will dominate

the stock price bubble and rule out the latter in the steady state.

6.5 Intertemporal Borrowing and Savings

In this subsection we replace intratemporal debt with riskfree intertemporal bonds in the baseline

model of Section 3.18 With intertemporal bonds, firms can raise new debt to payoff old debt.

Firms with investment opportunities can use these bonds to finance investment subject to credit

constraints. Anticipating being credit constrained in the future, firms without investment oppor-

tunities will save in the bonds precautionarily. The bonds are in zero net supply. Households can

also trade them, but are subject to short-sale constraints.

Assumption 8 Households cannot short intertemporal bonds and firms cannot long each other’s

stocks (equity shares).

One may interpret the bonds here as corporate bonds issued by firms and households cannot

borrow by issuing corporate bonds. We will show that households will never hold any intertemporal

bonds in equilibrium, because the interest rate rft is lower than the discount rate r. A similar result

is derived in Kiyotaki and Moore (2005, 2008).

Let Lht ≥ 0 denote the representative household’s bond holdings. Let Ljt > (<)0 denote firm

j’s debt level (saving). The market-clearing condition for the bonds is
∫
Ljtdj = Lht . Let Vt(K

j
t , L

j
t )

denote the ex ante market value of firm j when its capital stock and debt level at time t are Kj
t

and Ljt , respectively, prior to the realization of the Poisson shock. We suppress the aggregate state

variables in the argument. Assume that firm j maximizes its market value and hence it solves the

following dynamic programming problem in discrete time:

Vt

(
Kj
t , L

j
t

)
= max

Ijt ,K
j
t+∆,K

j
1t+∆,L

j
t+∆,L

j
1t+∆

(1− π∆)
[
Dj

0t∆ + e−r∆Vt+∆

(
Kj
t+∆, L

j
t+∆

)]
+π∆

[
Dj

1t + e−r∆Vt+∆

(
Kj

1t+∆, L
j
1t+∆

)]
18In Appendix F we study a model in which there is no market for capital goods. Firms make investment and

accumulate capital on their own. They can use new capital or future capital as collateral to borrow. We show that
our key insights do not change. See Miao, Wang, and Xu (2015) for a related discrete-time model.
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subject to

Dj
0t∆ +QtK

j
t+∆ = RtK

j
t∆ + e−rft∆Ljt+∆ − L

j
t +Qt (1− δ∆)Kj

t , (56)

Dj
1t +QtK

j
1t+∆ + Ijt = RtK

j
t∆ + e−rft∆Lj1t+∆ − L

j
t +QtI

j
t +Qt (1− δ∆)Kj

t , (57)

Ijt ≤ RtK
j
t∆ + e−rft∆Lj1t+∆ − L

j
t , (58)

Vt+∆(Kj
1t+∆, L

j
1t+∆) ≥ Vt+∆

(
Kj

1t+∆, 0
)
− Vt+∆(ξ (1− δ∆)Kj

t , 0), (59)

where Lj1t+∆ (Ljt+∆) represents the new debt level or saving when an investment opportunity

arrives (no investment opportunity arrives). The price of the debt at time t that pays off one

unit of consumption good at time t + ∆ is e−rft∆. Equations (56) and (57) are the flow-of-funds

constraints. Inequality (58) gives the financing constraint, which says that investment is financed

by internal funds and new debt.

Debt is subject to the credit constraint (59), which is interpreted in a similar way to (13). When

an investment opportunity arrives at time t, firm j borrows e−rft∆Lj1t+∆ > 0 from other firms

without investment opportunities. If it does not default on debt Lj1t+∆ at time t + ∆, it obtains

continuation value Vt+∆

(
Kj

1t+∆, L
j
1t+∆

)
. If it defaults, debt is renegotiated and the repayment

Lj1t+∆ is relieved. The new repayment is determined by Nash bargaining. Assume that firm j has

a full bargaining power. Then the new repayment is given by the threat value to the lender, which

is equal to the market value of the firm Vt+∆(ξ (1− δ∆)Kj
t , 0) when the lender takes over the firm

and keeps it running by recovering a fraction ξ of depreciated capital (1− δ∆)Kj
t . The expression

on the right-hand side of (59) is the value to the firm if it chooses to default on the previous debt

and repay Vt+∆(ξ (1− δ∆)Kj
t , 0). We then have the incentive constraint in (59).

In Appendix B.5 we derive equilibria in the continuous-time limit. We show that the value

function takes the form

Vt

(
Kj
t , L

j
t

)
= QtK

j
t − L

j
t +Bt, (60)

and the continuous-time limit of the credit constraint (59) becomes

Lj1t ≤ QtξK
j
t +Bt, (61)

where Bt ≥ 0 is the bubble component of equity value.

Proposition 12 For the model in this subsection with intertemporal bonds under Assumption 8,

if Qt > 1, then the continuous-time equilibrium system for (Kt, Qt, Bt, rft) is given by (20), (21),

(27), and

rft = r − π (Qt − 1) < r, (62)

where Rt = αKα−1
t , and the usual transversality conditions hold.
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The credit constraint (61) and the continuous-time limit of the financing constraint (58) together

imply that

Ijt ≤ L
j
1t − L

j
t ≤ ξQtK

j
t +Bt − Ljt .

When Qt > 1, it is profitable for firm j to invest and both constraints bind. We then have

Ijt = ξQtK
j
t +Bt − Ljt .

With intertemporal bonds, firm j can use both its savings when Ljt < 0 and new debt ξQtK
j
t +Bt

to finance investment.

Equation (62) shows that the equilibrium interest rate rft is equal to the subjective discount

rate r minus a liquidity premium π (Qt − 1). The liquidity premium exists because bonds can

provide liquidity to investing firms by raising their net worth. Since the stock price bubble and the

bonds can be used to finance investment to the same extent, they command the same amount of

liquidity premium.

Firms without investment opportunities are willing to save and lend even though rft < r because

they anticipate that they will be credit constrained when an investment opportunity arrives in the

future. Their demand for bonds pushes up the bond price and lowers the interest rate, which reflects

a precautionary saving motive as in the incomplete markets models (e.g., Aiyagari (1994)). Unlike

in Aiyagari (1994), however, firms in our model are subject to uninsured idiosyncratic investment

opportunity shocks and credit constraints.19 To better understand the intuition, we consider the

discrete-time approximation (see Appendix B.5). Buying one unit of bonds at time t costs e−rft∆

dollars. At time t+∆, the bond pays off one dollar. When firm j meets an investment opportunity

with probability π∆, it uses the bond payoff to finance one dollar of investment, which generates

(Qt+∆− 1) dollars of dividends. Thus the total discounted marginal benefit from the bond is given

by e−r∆[1 + π∆(Qt+∆ − 1)]. Equating this marginal benefit with the marginal cost e−rft∆ and

taking the continuous-time limit as ∆→ 0 give (62).

Since r > rft, households want to borrow by selling bonds until their short-sale constraints bind,

i.e., Lht = 0. We then have the bond market-clearing condition
∫
Ljtdj = 0. Without a short-sale

constraint, households would keep shorting bonds (or effectively borrowing) until rft = r. In this

case firms would be able to accumulate enough savings in bonds so that their credit constraints

would no longer bind. The liquidity premium would be zero so that Qt = 1 and the economy would

reach the efficient equilibrium and no bubble could exist.

More generally, as long as households are subject to sufficiently tight borrowing limits (or

short-sale constraints) in the sense that they cannot issue sufficiently many bonds, the efficient

19Carlstrom and Fuerst (1997) and Bernanke, Gertler, and Gilchrist (1999) adopt the costly state verification model
of debt contracts between entrepreneurs and lenders, in which entrepreneurs can default on debt. In this case debt is
risky and internal funds earn higher returns than external funds due to agency costs. To prevent entrepreneurs from
saving to overcome borrowing constraints, one can assume either that entrepreneurs discount the future more heavily
than households or that entrepreneurs die randomly. By contrast, debt is riskfree in our model and the interest rate
is lower than the discount rate due to firms’ precautionary saving motives.
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equilibrium cannot be attained and there is a scarcity of financial assets for savers (firms).20 The

existence of a stock price bubble is effectively a way of increasing the supply of financial assets that

can be held by firms. The government can also play a role in supplying financial assets to firms by

issuing government bonds, thereby improving efficiency.

Proposition 13 For the model in this subsection with intertemporal bonds, if condition (36) holds,

then the bubbly and bubbleless steady states with Q > 1 coexist. Moreover, the interest rates in the

bubbleless and bubbly steady states are given by r∗f = r + π − δ/ξ < 0 and rf = 0, respectively.

Under condition (36), Qt > 1 in a neighborhood of either the bubbleless or the bubbly steady

state so that Proposition 12 applies. This condition is equivalent to the standard condition (Tirole

(1985) and Santos and Woodford (1997)) requiring that the interest rate on bonds in the bubbleless

steady state be lower than the rate of economic growth (r∗f < 0). Unlike in Tirole (1985), the

economy is dynamically efficient in our model. Proposition 13 shows that the interest rate on

bonds must be equal to zero in the bubbly steady state (rf = 0), because the steady-state return

on the stock price bubble Ḃt/Bt is equal to zero. To generate a positive steady-state interest rate,

we can introduce economic growth as in Section 6.4.

6.6 Cross-Holdings of Shares

We have assumed that no firm can hold the shares of other firms and trade these shares to finance

investment. This assumption is justified by the US aggregate and firm-level data. From Table F103

of the Flow of Funds Accounts, we find that between 2005 and 2015 the average ratio of the net

acquisition of mutual fund shares (line 30) to the net acquisition of financial assets (line 16) in the

US nonfinancial corporate business sector is 1.74%. In terms of levels, Frank and Goyal (2008) find

that in the 1990s corporate equity was held heavily by households (39% of the aggregate equity

outstanding), pension and mutual funds (20%), insurance firms (28%), the rest of the world (10%),

and banks and the government (3%). Thus cross-holdings of other firms’ shares by nonfinancial

corporations account for a negligible fraction in the aggregate data. And trading of other firms’

shares is not a major source of external financing for nonfinancial corporations.

We also investigate the firm-level data from 2000 to 2016 using the Compustat database. The

item ISEQ (investment securities – equity) reports the holdings of other firms’ equity. We find

that this item is missing for most nonfinancial and non-utility firms in our sample. Moreover, for

those firms with ISEQ entries, the average ratio of ISEQ to total assets in each year ranges from

0 to 1.5%, and the sample mean is 0.6% from 2000 to 2016. By contrast, a large literature has

found that firms hold a sizable amount of cash (e.g., Bates, Kahle and Stulz (2009)). We find

that the average ratio of cash holdings (item CH in Compustat) to total assets in each year during

2000-2016 ranges from 14.3% to 20.1%, and the sample mean is 17.5%. This evidence shows that

20See Appendix E for the analysis of a general short-sale constraint (or borrowing constraint).
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US nonfinancial firms hold a large amount of cash with a low return and very little of other firms’

equity with a high return.

Some nonfinancial firms may have cross-holdings for reasons such as mergers and acquisitions,

corporate governance, diversification, and strategic alliance. However, they typically do not trade

other firms’ shares for regular investment financing. One reason is that such trading incurs large

administration, filing, and monitoring costs, and may signal takeover interest to other firms. Such

trading is risky and may lead to fire sales, loss of control over upstream suppliers, or competition.

If we relax Assumption 8 by allowing firms to trade each other’s shares to finance investment in

the model of Section 6.5 with intertemporal bonds,21 then each firm can earn a return r higher than

the interest rate rft by holding other firms’ shares. If there is no market friction, firms may end

up holding too many shares of other firms and eventually overcome credit constraints. Unlimited

arbitrage would cause the economy to attain the efficient equilibrium with Qt = 1 and r = rft in

which no bubble could exist. Assumption 8 supports the equilibrium with r > rft. This assumption

prevents unlimited arbitrage and is justified by the empirical evidence discussed above (also see

footnote 4).

The critical feature of Assumption 8 is not the restriction that no firm can long equity shares

of other firms, but is the restriction that this source of finance is limited. In Appendix G we show

that, even if each firm can hold a market portfolio of firm stocks and earn the return r in the model

of Section 6.5, a stock price bubble can still emerge and Proposition 13 still holds as long as firms

do not use the market portfolio to finance investment due to the reasons discussed above. In this

case the stock price bubble and the bonds can coexist with the market portfolio because the bubble

and bonds provide a liquidity service, while the market portfolio does not. In equilibrium the sum

of the interest rate rft and the liquidity premium π (Qt − 1) is equal to r.

7 Conclusion

We have developed a theory of stock price bubbles in the presence of endogenous credit constraints in

production economies with infinitely lived agents. Bubbles emerge through a positive feedback loop

mechanism in which credit constraints derived from optimal contracts with limited commitment

play an essential role. Our analysis differs from most studies in the literature that analyze bubbles

in intrinsically useless assets or in assets with exogenous payoffs in an endowment economy or

an OLG framework. Our model can incorporate this type of bubbles and thus provides a unified

framework to study asset bubbles. Our theory can be integrated into the dynamic stochastic general

equilibrium framework and has important implications for empirical studies. First, using average

Q to measure marginal Q may be misleading even for constant-returns-to-scale technology because

21Cross-holdings of shares lead to the well-known problem of inflating market values (e.g., Fedenia, Hodder, and
Triantis (1994)). Elliott, Golub, and Jackson (2014) show that the interdependence through cross-holdings of financial
firms can generate financial contagions and cascades of failures in a static model.
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they are not identical in the presence of stock price bubbles. Second, using the present value of

dividends to measure the fundamental value of a stock may also be misleading because dividends

and bubbles cannot be separated. Third, tests based on transversality conditions can rule out

rational bubbles in OLG models, but not in our model.

In future research it would be interesting to study how bubbles can explain asset pricing puzzles,

how bubbles contribute to business cycles in a quantitative dynamic stochastic general equilibrium

model (Miao, Wang and Xu (2015)), how bubbles affect long-run growth (Caballero, Farhi and

Hammour (2006), Martin and Venture (2012), Hirano and Yanagawa (2013), and Miao and Wang

(2014)), and what the implications of asset price bubbles are for monetary policy (Gaĺı (2014)).
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For Online Publication Appendices

A Proofs of Results in the Baseline Model

Proof of Proposition 1: We first derive the solution in the discrete-time setup and then take

the continuous-time limit. Conjecture that the value function is given by Vt

(
Kj
t

)
= atK

j
t +

bt. Substituting this conjecture and the flow-of-funds constraints (10) and (11) into the Bellman

equation (9) yields

atK
j
t + bt = max

Kj
t+∆,K

j
1t+∆,I

j
t ,L

j
t

RtK
j
t∆ +Qt (1− δ∆)Kj

t + e−r∆bt+∆ (A.1)

+ (1− π∆)
[
−QtKj

t+∆ + e−r∆at+∆K
j
t+∆

]
+π∆

[
(Qt − 1) Ijt −QtK

j
1t+∆ + e−r∆at+∆K

j
1t+∆

]
subject to

Ijt ≤ RtK
j
t∆ + Ljt ≤ RtK

j
t∆ + e−r∆

(
at+∆ (1− δ∆) ξKj

t + bt+∆

)
.

The first-order condition for Kj
t+∆ yields

Qt = e−r∆at+∆, (A.2)

and hence Kj
t+∆ and Kj

1t+∆ are indeterminate. This implies that firm j is indifferent between

buying and selling its existing capital. Under the assumption Qt > 1, the financing constraint and

the credit constraint bind so that optimal investment is given by

Ijt = RtK
j
t∆ +Qt (1− δ∆) ξKj

t +Bt, (A.3)

where we define

Bt ≡ e−r∆bt+∆. (A.4)

Substituting the investment rule back into the preceding Bellman equation and matching coeffi-

cients, we can derive

bt = [π∆ (Qt − 1) + 1] e−r∆bt+∆,

at = Rt∆ +Qt (1− δ∆) + π∆ (Qt − 1) [ξQt (1− δ∆) +Rt∆] .

Using (A.2) and (A.4), we obtain

Bt = e−r∆Bt+∆[1 + π∆(Qt+∆ − 1)], (A.5)

Qt = e−r∆ [Rt+∆∆ + (1− δ∆)Qt+∆ + π∆ (Qt+∆ − 1) (ξQt+∆ (1− δ∆) +Rt+∆∆)] . (A.6)

Taking the continuous-time limit as ∆→ 0 yields (20), (21), and (19).
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We can also derive the continuous-time limit of the Bellman equation (9). Note that we can

replace e−r∆ with 1/ (1 + r∆) up to first-order approximation. Multiplying the two sides of (9) by

1 + r∆ gives

(1 + r∆)Vt

(
Kj
t

)
= max (1− π∆)

[
(1 + r∆)Dj

0t∆ + Vt+∆

(
Kj
t+∆

)]
+π∆

[
(1 + r∆)Dj

1t + Vt+∆

(
Kj

1t+∆

)]
= max (1− π∆) (1 + r∆)Dj

0t∆ + Vt+∆

(
Kj
t+∆

)
+ π∆ (1 + r∆)Dj

1t

+π∆
[
Vt+∆

(
Kj

1t+∆

)
− Vt+∆

(
Kj
t+∆

)]
.

Eliminating terms of orders higher than ∆ gives

(1 + r∆)Vt

(
Kj
t

)
= maxDj

0t∆ + Vt+∆

(
Kj
t+∆

)
+ π∆Dj

1t

+π∆
[
Vt+∆

(
Kj

1t+∆

)
− Vt+∆

(
Kj
t+∆

)]
.

Manipulating yields

rVt

(
Kj
t

)
= max Dj

0t +
Vt+∆

(
Kj
t+∆

)
− Vt

(
Kj
t

)
∆

+ πDj
1t + π

[
Vt+∆

(
Kj

1t+∆

)
− Vt+∆

(
Kj
t+∆

)]
.

Now we take limits as ∆ → 0 to obtain the continuous-time Bellman equation in (14), where we

notice that

Dj
1t = QtI

j
t − I

j
t +QtK

j
t −QtK

j
1t

in continuous time. Moreover, (10), (12), and (13) converge to (15), (16), and (17), respectively, as

∆→ 0.

We can prove proposition 1 in continuous time directly. Given the conjecture (18), we can

rewrite the dynamic programming (14) as

rQtK
j
t + rBt = max

Ijt ,K̇
j
t ,K

j
1t,L

j
t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ Q̇tK

j
t +QtK̇

j
t + Ḃt (A.7)

+π (Qt − 1) Ijt + π
[
QtK

j
t −QtK

j
1t +QtK

j
1t +Bt −

(
QtK

j
t +Bt

)]
subject to

Ijt ≤ L
j
t ≤ ξQtK

j
t +Bt. (A.8)

Given the assumption Qt > 1, (16) and (A.8) bind. We then obtain (19). Substituting this equation

back into (A.7) and matching coefficients, we obtain (20) and (21). By the transversality condition

(6) and the form of the value function,

lim
T→∞

e−rT
(
QTK

j
T +BT

)
= 0.

We thus obtain (22). Q.E.D.
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Proof of Proposition 2: Using the optimal investment rule in (19), we derive the aggregate

capital accumulation equation (27). The first-order condition for the static labor choice problem

(7) gives wt = (1− α) (Kj
t /N

j
t )α. We then obtain (8) and Kj

t = N j
t (wt/ (1− α))1/α . Thus the

capital-labor ratio is identical for all firms. Aggregating yields Kt = Nt (wt/ (1− α))1/α so that

Kj
t /N

j
t = Kt/Nt for all j ∈ [0, 1] . Substituting out wt in (8) yields Rt = αKα−1

t N1−α
t = αKα−1

t

since Nt = 1 in equilibrium. Aggregate output satisfies

Yt =

∫
(Kj

t )
α(N j

t )1−αdj =

∫
(Kj

t /N
j
t )αN j

t dj = (Kj
t /N

j
t )α

∫
N j
t dj = Kα

t N
1−α
t .

This completes the proof. Q.E.D.

Proof of Proposition 3: (i) The social planner solves the following problem:

max
It

∫ ∞
0

e−rt (Kα
t − πIt) dt,

subject to

K̇t = −δKt + πIt, K0 given,

where Kt is the aggregate capital stock and It is the investment level for a firm with an investment

opportunity. From this problem, we can derive the efficient capital stock KE , which satisfies

α (KE)α−1 = r + δ. The efficient output, investment and consumption levels are given by YE =

(KE)α , IE = δ/πKE , and CE = (KE)α − δKE , respectively.

Suppose that assumption (28) holds. We conjecture that Q∗ = Qt = 1 in the steady state. In

this case, firm value is given by V (Kj
t ) = Kj

t . The optimal investment rule for each firm satisfies

Rt = r + δ = αK∗α−1
t . Thus K∗t = KE for t > 0. Given this constant capital stock for all firms, we

must have δK∗t = πI∗t for t > 0. Let each firm’s optimal investment level satisfy Ijt = δKj
t /π. Then,

when assumption (28) holds, the investment and credit constraints, Ijt = δKj
t /π ≤ ξK

j
t = V (ξKj

t ),

are satisfied. We conclude that, under assumption (28), the solutions Qt = 1, K∗t = KE , and

I∗t /K
∗
t = δ/π give the bubbleless equilibrium, which also achieves the efficient allocation.

(ii) Suppose that (29) holds. Conjecture that Qt > 1 in some neighborhood of the bubbleless

steady state in which Bt = 0 for all t. We can then apply Proposition 2 and derive the steady-state

equations for (21) and (27) as

Q̇ = 0 = (r + δ)Q−R− πξQ(Q− 1), (A.9)

K̇ = 0 = −δK + π(ξQK), (A.10)

where R = αKα−1. From these equations, we obtain the steady-state solutions Q∗ and K∗ in

(30) and (31), respectively. Assumption (29) implies that Q∗ > 1. By continuity, Qt > 1 in some

neighborhood of (Q∗,K∗) . This verifies our conjecture. Q.E.D.
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Proof of Proposition 4: In the bubbly steady state, (20) and (27) imply that

0 = rB −Bπ(Q− 1), and (A.11)

0 = −δK + [ξQK +B]π, (A.12)

where R = αKα−1. Solving equations (A.9), (A.11), and (A.12) yields equations (33), (34), and

(35). By (33), B > 0 if and only if (36) holds. From (30) and (34), we deduce that Qb < Q∗.

Using condition (36), it is straightforward to check that KGR > KE > Kb > K∗. By the resource

constraint, steady-state consumption satisfies C = Y −πI = Kα−δK. Substituting the expressions

for KE ,Kb, and K∗ in Propositions 3 and 4, we can show that CE > Cb > C∗. From (33), it is also

straightforward to verify that the bubble-asset ratio B/Kb decreases with ξ. Q.E.D.

Proof of Proposition 5: First, we consider the log-linearized system around the bubbly steady

state (B,Qb,Kb) . We use X̂t to denote the percentage deviation from the steady state value for

any variable Xt, i.e., X̂t = lnXt − lnX. We can show that the log-linearized system is given by dB̂t/dt

dQ̂t/dt

dK̂t/dt

 = A

 B̂t
Q̂t
K̂t

 ,
where

A =

 0 −(r + π) 0
0 δ + r − ξ(2r + π) [(1− ξ)r + δ](1− α)

πB/Kb ξ(r + π) −πB/Kb

 . (A.13)

We denote this matrix by

A =

 0 a 0
0 b c
d e f

 ,
where we deduce from (A.13) that a < 0, c > 0, d > 0, e > 0, and f < 0. Since ξ < δ

r+π , we have

b = (1− ξ)r + δ − ξ(r + π) > 0. The characteristic equation for the matrix A is

F (x) ≡ x3 − (b+ f)x2 + (bf − ce)x− acd = 0. (A.14)

We observe that F (0) = −acd > 0 and F (−∞) = −∞. Thus, there exists a negative root to the

above equation, denoted by λ1 < 0. Let the other two roots be λ2 and λ3. We rewrite F (x) as

F (x) = (x− λ1)(x− λ2)(x− λ3)

= x3 − (λ1 + λ2 + λ3)x2 + (λ1λ2 + λ1λ3 + λ2λ3)x− λ1λ2λ3. (A.15)

Matching terms in equations (A.14) and (A.15) yields λ1λ2λ3 = acd < 0 and

λ1λ2 + λ1λ3 + λ2λ3 = bf − cd < 0. (A.16)
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We consider two cases. (i) If λ2 and λ3 are two real roots, then it follows from λ1 < 0 that

λ2 and λ3 must have the same sign. Suppose λ2 < 0 and λ3 < 0. We then have λ1λ2 > 0 and

λ1λ3 > 0. This implies that λ1λ2 + λ1λ3 + λ2λ3 > 0, which contradicts equation (A.16). Thus we

must have λ2 > 0 and λ3 > 0.

(ii) If either λ2 or λ3 is complex, then the other must also be complex. Let

λ2 = a1 + a2i and λ3 = a1 − a2i,

where a1 and a2 are some real numbers and i =
√
−1. We can show that

λ1λ2 + λ1λ3 + λ2λ3 = 2a1λ1 + a2
1 + a2

2.

Since λ1 < 0, the above equation and equation (A.16) imply that a1 > 0.

From the above analysis, we conclude that the matrix A has one negative eigenvalue and the

other two eigenvalues are either positive real numbers or complex numbers with a positive real

part. As a result, the bubbly steady state is a local saddle point and the stable manifold is one

dimensional.

Next, we consider the local dynamics around the bubbleless steady state (0, Q∗,K∗). We lin-

earize Bt around zero and log-linearize Qt and Kt and obtain the following linearized system: dBt/dt

dQ̂t/dt

dK̂t/dt

 =

 r − π(Q∗ − 1) 0 0
0 a b
π
K∗ c d

 Bt
Q̂t
K̂t

 ,
where

a =
R∗

Q∗
− ξπQ∗, b =

R∗

Q∗
(1− α) > 0,

c = πξQ∗ > 0, d = 0.

Using a similar method for the bubbly steady state, we analyze the three eigenvalues of the matrix

J . One eigenvalue, denoted by λ1, is equal to r − π(Q∗ − 1) < 0 and the other two, denoted by λ2

and λ3, satisfy

λ2λ3 = ad− bc = 0− bc < 0. (A.17)

It follows from (A.17) that λ2 and λ3 must be two real numbers with opposite signs. We conclude

that the bubbleless steady state is a local saddle point and the stable manifold is two dimensional.

Q.E.D.

Proof of Proposition 6: The discrete-time Bellman equation is given by

Vt

(
Kj
t

)
= max (1− θ∆) (1− π∆)

[
Dj

0t∆ + e−r∆Vt+∆

(
Kj
t+∆

)]
+ (1− θ∆)π∆

[
Dj

1t + e−r∆Vt+∆

(
Kj

1t+∆

)]
+ θ∆V ∗t

(
Kj
t

)
.
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As in the proof of Proposition 1, taking the continuous-time limit as ∆ → 0 and substituting the

flow-of-funds constraints yield the Bellman equation in Section 5.3. Substituting the conjectured

value function Vt(K
j
t ) = QtK

j
t +Bt into this equation yields

r
(
QtK

j
t +Bt

)
= max

Ijt , K̇
j
t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ Q̇tK

j
t +QtK̇

j
t + Ḃt

+π (Qt − 1) Ijt + θ
[
Q∗tK

j
t −

(
QtK

j
t +Bt

)]
subject to

Ijt ≤ ξQtK
j
t +Bt.

When Qt > 1, optimal investment is given by Ijt = ξQtK
j
t +Bt. Substituting this rule back into the

preceding Bellman equation and matching coefficients yield (37) and (38). Equation (27) follows

from aggregation and the market-clearing condition. Q.E.D.

Proof of Proposition 7: By (37), we can show that

Qs =
r + θ

π
+ 1. (A.18)

Since Qs > 1, we can apply Proposition 6 in some neighborhood of Qs. Equation (38) implies that

0 = (r + δ + θ)Qs − θG (K)−R− π(Qs − 1)ξQs, (A.19)

where R = αKα−1. The solution to this equation gives Ks. Once we have obtained Ks and Qs, we

use equation (27) to determine Bs.

The difficult part is to solve for Ks since G (K) is not an explicit function. To show the existence

of Ks, we define θ∗ as
r + θ∗

π
+ 1 =

δ

πξ
= Q∗.

That is, θ∗ is the bursting probability such that the capital price in the stationary equilibrium with

stochastic bubbles is the same as that in the bubbleless equilibrium.

Let Q (θ) be the expression on the right-hand side of equation (A.18). We then use this equation

to rewrite equation (A.19) as

αKα−1 − (r + δ + θ)Q(θ) + θG(K) + (r + θ)ξQ(θ) = 0.

Define the function F (K; θ) as the expression on the left-hand side of the equation above. Notice

that Q(θ∗) = Q∗ = G(K∗) by definition and Q(0) = Qb where Qb is given in (34). Condition (36)

ensures the existence of the bubbly steady-state value Qb and the bubbleless steady-state values

Q∗ and K∗.
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Define

Kmax = max
0≤θ≤θ∗

[
(r + δ + θ − (r + θ)ξ)Q(θ)− θQ∗

α

] 1
α−1

.

By (35), we can show that

Kb =

[
(r + δ − rξ)Q(0)

α

] 1
α−1

.

Thus we have Kmax ≥ Kb and hence Kmax > K∗. We want to prove that

F (K∗; θ) > 0, F (Kmax; θ) < 0,

for θ ∈ (0, θ∗) . If this is true, then it follows from the intermediate value theorem that there exists

a solution Ks to F (K; θ) = 0 such that Ks ∈ (K∗,Kmax) .

First, notice that

F (K∗; 0) = αK∗α−1 − r(1− ξ)Qb − δQb > αKα−1
b − r(1− ξ)Qb − δQb = 0,

and F (K∗; θ∗) = 0. We can verify that F (K; θ) is concave in θ for any fixed K. Thus, for all

0 < θ < θ∗,

F (K∗; θ) = F

(
K∗, (1− θ

θ∗
)0 +

θ

θ∗
θ∗
)

> (1− θ

θ∗
)F (K∗, 0) +

θ

θ∗
F (K∗, θ∗) > 0.

Next we can derive

F (Kmax; θ) = αKα−1
max − (r + δ + θ)Q(θ) + θG(Kmax) + (r + θ)ξQ(θ)

< αKα−1
max − (r + δ + θ)Q(θ) + θG(K∗) + (r + θ)ξQ(θ) < 0,

where the first inequality follows from the fact that the saddle path for the bubbleless equilibrium

is downward sloping by inspecting the phase diagram for (Kt, Qt) so that G (Kmax) < G (K∗) , and

the second inequality follows from the definition of Kmax and the fact that G (K∗) = Q∗.

Finally, note that Q (θ) < Q∗ for 0 < θ < θ∗. We use equation (A.12) and Ks > K∗ to deduce

that
Bs
Ks

=
δ

π
− ξQ (θ) >

δ

π
− ξQ∗ = 0.

This completes the proof of the existence of a stationary equilibrium with stochastic bubbles

(Bs, Qs,Ks) .

When θ = 0, the bubble never bursts and hence Ks = Kb. When θ is sufficiently small, Ks is

close to Kb by continuity. Since Kb is smaller than the golden rule capital stock KGR, Ks < KGR

when θ is sufficiently small. Since Kα − δK is increasing for all K < KGR, we deduce that

Kα
s − δKs > K∗α − δK∗. This implies that the consumption level before the bubble collapses is

higher than the consumption level in the steady state after the bubble collapses. Q.E.D.

47



B Proofs of Results in Section 6

B. 1 Endogenous Credit Constraints

Proof of Proposition 8: As in the proof of Proposition 1, we derive the continuous-time limit

of the dynamic programming problem as

rVt

(
Kj
t ,M

j
t

)
= max

Ṁj
t ,K̇

j
t ,M

j
1t,K

j
1t,I

j
t ,L

j
t

Dj
0t + V̇t

(
Kj
t ,M

j
t

)
(B.1)

+π
[
Dj

1t + Vt

(
Kj

1t,M
j
1t

)
− Vt

(
Kj
t ,M

j
t

)]
subject to (40),

Dj
0t = RtK

j
t − PtṀ

j
t −Qt

(
K̇j
t + δKj

t

)
, (B.2)

Dj
1t = Pt

(
M j
t −M

j
1t

)
+QtI

j
t − I

j
t +QtK

j
t −QtK

j
1t, (B.3)

Ijt ≤ Pt
(
M j
t −M

j
1t

)
+ Ljt . (B.4)

When an investment opportunity arrives with the Poisson rate π, firm j’s asset holdings jump to

M1t ≥ 0 and its value function changes from Vt

(
Kj
t ,M

j
t

)
to Vt

(
Kj

1t,M
j
1t

)
. This explains the

Bellman equation in (B.1). The interpretations of constraints are similar to those in Sections 3.

In particular, equation (B.4) is the financing constraint. Firm j can sell assets (M j
t −M

j
1t) and

borrow Ljt to finance investment. According to the collateral constraint (40), firm j uses capital as

collateral only.

Substituting the conjectured value function in (44) and the flow-of-funds constraints (B.2) and

(B.3) into the dynamic programming problem (B.1) yields

r
(
QtK

j
t + PtM

j
t

)
= max

Ṁj
t ,K̇

j
t ,M

j
1t,K

j
1t,I

j
t ,L

j
t

RtKt − PtṀ j
t −Qt

(
K̇j
t + δKj

t

)
+QtK̇

j
t +Kj

t Q̇t + ṖtM
j
t + PtṀ

j
t

+π
[
Pt

(
M j
t −M

j
1t

)
+QtI

j
t − I

j
t +QtKt −QtK1t

]
+π
[
QtK1t + PtM

j
1t −

(
QtKt + PtM

j
t

)]
subject to (B.4) and

Ljt ≤ ξQtK
j
t .

Thus PtṀ
j
t and QtK̇

j
t cancel themselves out in the Bellman equation so that firm j is indifferent

between buying and selling any amount of the intrinsically useless asset and indifferent between

buying and selling any amount of capital, when no investment opportunity arrives. Moreover,

QtK
j
1t also cancels itself out and hence Kj

1t is indeterminate.
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When an investment opportunity arrives with Poisson rate π, under the assumption Qt > 1, it

is profitable to invest as much as possible. In this case firm j sells all its asset holdings to non-

investing firms, i.e., M j
1t = 0, and borrows as much as possible so that Ljt = ξQtK

j
t . The optimal

investment level is

Ijt = ξQtK
j
t + PtM

j
t .

Substituting this solution back into the preceding Bellman equation and matching coefficients, we

obtain equations (21) and (46).

It follows from (46) that rPt > Ṗt. Thus households will not hold the bubble asset and their

short-sale constraints bind. This means that the market-clearing condition for the asset is given by∫
M j
t dj = 1. By a law of large numbers, aggregate capital satisfies

K̇t = δKt + π

(
ξQtKt + Pt

∫
M j
t dj

)
.

We then obtain (45). Since the equilibrium system is the same as that in Proposition 2 once we

set Pt = Bt, we can use Proposition 4 to study the steady state with a bubble P > 0. Thus the

existence condition is (36). Note that ξ = 0 also permits the existence of a bubble. Q.E.D.

Proof of Proposition 9: The proof follows from that of Proposition 11 in Appendix B.4 by

setting Xt = 0, ζ = 1, and g = 0. We omit the details. Q.E.D.

B. 2 Liquidity Mismatch

We now relax the liquidity mismatch assumption and suppose that at most a fraction λ of the

proceeds from the sale of old capital is available to finance investment. Then the financing constraint

in continuous time becomes

Ijt ≤ L
j
t +Qt

(
Kj
t −K

j
1t

)
, (B.5)

and Kj
1t satisfies

Kj
1t ≥ (1− λ)Kj

t . (B.6)

Firm j’s decision problem is given by the Bellman equation (14) subject to (15), (17), (B.5),

and (B.6). We conjecture that the value function takes the form Vt

(
Kj
t

)
= QtK

j
t +Bt. Substitute

this conjecture into the Bellman equation. When an investment opportunity arrives, under the

assumption Qt > 1, firm j wants to invest as much as possible so that the financing constraint and

the credit constraint bind. Moreover, the firm chooses Kj
1t = (1− λ)Kj

t and optimal investment is

given by

Ijt = (ξ + λ)QtK
j
t +Bt.
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Substituting these decision rules into the Bellman equation and matching coefficients, we deduce

that Bt still satisfies equation (20), and Qt satisfies

Q̇t = (r + δ)Qt −Rt − π (ξ + λ)Qt(Qt − 1). (B.7)

Aggregate investment is given by

πIt = π [(ξ + λ)QtKt +Bt] ,

and aggregate capital satisfies

K̇t = −δKt + π [(ξ + λ)QtKt +Bt] . (B.8)

The equilibrium system for (Qt,Kt, Bt) is given by (B.7), (B.8) and (20). Thus the analysis in

Sections 3 and 4 still applies except that ξ is replaced by ξ+λ. In particular, by Proposition 4, the

bubbly and bubbleless steady states coexist if and only if

0 < ξ + λ <
δ

r + π
.

This implies that as long as λ is sufficiently small, a bubbly equilibrium exists.

B. 3 Equity Issues

Proof of Proposition 10: As in the proof of Proposition 1, we derive the continuous-time limit

of the dynamic programming problem as

rVt

(
Kj
t

)
= max

K̇j
t ,K

j
1t,I

j
t ,L

j
t ,S

j
0t,S

j
1t

(
Dj

0t − S
j
0t

)
+ V̇t

(
Kj
t

)
+ π

(
Dj

1t − S
j
1t

)
+π
[
Vt

(
Kj

1t

)
− Vt

(
Kj
t

)]
subject to (17),

Dj
0t = RtK

j
t −Qt

(
K̇j
t + δKj

t

)
+ Sj0t −

ϕ

2

(Sj0t)
2

Kj
t

, (B.9)

Dj
1t + Ijt + Ljt = QtI

j
t + Ljt +QtK

j
t −QtK

j
1t + Sj1t −

ϕ

2

(Sj1t)
2

Kj
t

, (B.10)

Ijt ≤ L
j
t + Sj1t. (B.11)

Substituting (B.10) into the Bellman equation yields

rVt

(
Kj
t

)
= max

K̇j
t ,K

j
1t,I

j
t ,L

j
t ,S

j
0t,S

j
1t

(
Dj

0t − S
j
0t

)
+ V̇t

(
Kj
t

)
+ π

[
(Qt − 1) Ijt −

ϕ

2

(Sj1t)
2

Kj
t

]
+π
[
QtK

j
t −QtK

j
1t + Vt

(
Kj

1t

)
− Vt

(
Kj
t

)]
.
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Conjecture that Vt is given by (18). Using (B.9), we can show that Sj0t = 0.

When an investment opportunity arrives, under the assumption Qt > 1, firm j invests as much

as possible so that the credit constraint (17) and the financing constraint (B.11) bind. Using the

first-order condition for Sj1t, we derive

Sj1t =
1

ϕ
(Qt − 1)Kj

t , Ijt = ξQtK
j
t +Bt +

1

ϕ
(Qt − 1)Kj

t .

Substituting the conjectured value function Vt

(
Kj
t

)
= QtK

j
t +Bt and the above decision rules into

the Bellman equation and matching coefficients, we obtain (20) and

Q̇t = (r + δ)Qt −Rt − π
[
ξQt +

1

2ϕ
(Qt − 1)

]
(Qt − 1). (B.12)

Aggregate capital satisfies

K̇t = −δKt + π(QtξKt +Bt +
1

ϕ
(Qt − 1)Kt). (B.13)

As in the proof of Proposition 1, we can show that Rt = αKα−1
t .

In the bubbly steady state, we use equation (20) to derive

Qb = 1 +
r

π
> 1.

Thus Qt > 1 in a neighborhood of the bubbly steady state. Using (B.13), we derive

B

Kb
=
δ

π
− ξQb −

1

ϕ
(Qb − 1).

Given the condition in the proposition we have B > 0. Finally, we use (B.12) to derive

Rb = α (Kb)
α−1 = (r + δ)Qb − π

[
ξQb +

1

2ϕ
(Qb − 1)

]
(Qb − 1)

= [(1− ξ)r + δ](
r

π
+ 1)− 1

2ϕ

r2

π
.

Given the condition in the proposition we can check that Rb > 0. From the proof above we can see

that the condition is also necessary. Q.E.D.

B. 4 Additional Asset with Exogenous Rents

Proof of Proposition 11: With technical progress, firm j’s static labor choice problem is

RtK
j
t = max

Nj
t

(Kj
t )
α(AtN

j
t )1−α − wtN j

t , (B.14)

where wt is the wage rate and Rt is given by

Rt = α

(
wt/At
1− α

)α−1
α

. (B.15)
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Firm j’s dynamic programming problem in continuous time is given by (B.1) subject to (B.3),

(B.4), (47), (52), and

Dj
0t = RtK

j
t +XtM

j
t − PtṀ

j
t −Qt

(
K̇j
t + δKj

t

)
.

Since one unit of the asset pays Xt rents, XtM
j
t enters the above flow-of-funds constraint.

Conjecture that the value function takes the following form:

Vt

(
Kj
t ,M

j
t

)
= QtK

j
t + PtM

j
t +Bt.

Substituting this conjectured function and the flow-of-funds constraints into the dynamic program-

ming problem (B.1) yields

r
(
QtK

j
t + PtM

j
t +Bt

)
= max

Ṁj
t ,K̇

j
t ,M

j
1t,K

j
1t,I

j
t ,L

j
t

RtKt +XtM
j
t − PtṀ

j
t −Qt

(
K̇j
t + δKj

t

)
+QtK̇

j
t +Kj

t Q̇t + ṖtM
j
t + PtṀ

j
t + Ḃt

+π
[
Pt

(
M j
t −M

j
1t

)
+QtI

j
t − I

j
t + Pt

(
M j

1t −M
j
t

)]
subject to (B.4), (52), and

Ljt ≤ ξQtK
j
t +Bt. (B.16)

Thus PtṀ
j
t and QtK̇

j
t cancel themselves out in the Bellman equation so that firm j is indifferent

between buying and selling any amount of the intrinsically useless asset and indifferent between

buying and selling any amount of capital, when no investment opportunity arrives. Moreover,

QtK
j
1t cancels itself out and hence Kj

1t is indeterminate.

When an investment opportunity arrives with Poisson rate π, under the assumption Qt > 1, the

firm will invest as much as possible. It follows from (B.4), (52), and (B.16) that M j
1t = (1− ζ)M j

t

and optimal investment is given by

Ijt = ξQtK
j
t + ζPtM

j
t +Bt.

Substituting this solution back into the preceding Bellman equation and matching coefficients, we

obtain equations

Ṗt = rPt −Xt − π(Qt − 1)ζPt, (B.17)

Ḃt = rBt − π(Qt − 1)Bt, (B.18)

Q̇t = (r + δ)Qt −Rt − π(Qt − 1)Qtξ. (B.19)

It follows from (B.17) that rPt > Ṗt + Xt. Thus households will not hold the asset and their

short-sale constraints bind. This means that the market-clearing condition for the asset is given by
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∫
M j
t dj = 1. By a law of large numbers, aggregate capital satisfies

K̇t = δKt + π

(
ξQtKt + Ptζ

∫
M j
t dj +Bt

)
.

We then obtain

K̇t = −δKt + π(QtξKt + ζPt +Bt).

As in the proof of Proposition 2, the labor-market clearing condition gives Rt = α (Kt/At)
α−1 and

Yt = Kα
t A

1−α
t .

Then aggregate capital Kt, the asset price Pt, and the stock price bubble Bt will all grow at

the rate g in the steady state. However, the capital price Qt and the rental rate Rt will not grow.

The detrended equilibrium system becomes

k̇t = −(δ + g)kt + π(Qtξkt + ζpt + bt),

ṗt = (r − g)pt − x− π(Qt − 1)ζpt,

ḃt = (r − g)bt − π(Qt − 1)bt,

Q̇t = (r + δ)Qt − αkα−1
t − π(Qt − 1)Qtξ,

where kt = Kt/At, pt = Pt/At, bt = Bt/At, and x = Xt/At. In the bubbly steady state these

variables and Qt are all constant over time. Suppressing the time subscript in the steady state

gives

0 = −(δ + g)k + π(Qξk + ζp+ b), (B.20)

0 = (r − g)p− x− π(Q− 1)ζp, (B.21)

0 = (r − g)b− π(Q− 1)b, (B.22)

0 = (r + δ)Q− αkα−1 − π(Q− 1)Qξ. (B.23)

In the bubbly steady state b > 0, we can use (B.22) to compute

Qb =
r − g
π

+ 1.

Assume that r > g so that Qb > 1 and hence Qt > 1 in the neighborhood of the bubbly steady

state. Using (B.21) and (B.23), we can compute

p =
x

(r − g)(1− ζ)
,

R = αkα−1 = [(r + δ)− (r − g)ξ]

(
r − g
π

+ 1

)
.

Thus the bubbly steady-state detrended capital stock is given by

kb =

{
1

α
[(r + δ)− (r − g)ξ]

(
r − g
π

+ 1

)} 1
α−1

.
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After solving for Qb, kb, and p, we use equation (B.20) to solve for b described in the proposition.

We need b > 0. We then have the second inequality in condition (55). For x > 0 in (55), we need

δ + g

π
−
(
r − g
π

+ 1

)
ξ > 0.

We then obtain the condition in (54). This condition also implies that (r + δ) − (r − g)ξ > 0 so

that kb > 0. The conditions in the propositions are also necessary. Q.E.D.

B. 5 Intertemporal Debt

Proof of Proposition 12: We first derive the discrete-time solution and then take the continuous-

time limit. Conjecture that the value function takes the form

Vt

(
Kj
t , L

j
t

)
= atK

j
t − aLt L

j
t + bt.

Substituting this conjecture and the flow-of-funds constraints (56) and (57) into the Bellman equa-

tion yields

atK
j
t − aLt L

j
t + bt = max

Ijt ,K
j
t+∆,K

j
1t+∆,L

j
t+∆,L

j
1t+∆

RtK
j
t∆− L

j
t +Qt (1− δ∆)Kj

t + e−r∆bt+∆

+ (1− π∆)
[
e−rft∆Ljt+∆ −QtK

j
t+∆ + e−r∆at+∆K

j
t+∆ − e

−r∆aLt+∆L
j
t+∆

]
+π∆

[
e−rft∆Lj1t+∆ −QtK

j
1t+∆ + e−r∆at+∆K

j
1t+∆ − e

−r∆aLt+∆L
j
1t+∆

]
+π∆ (Qt − 1) Ijt

subject to

Ijt ≤ RtK
j
t∆ + e−rft∆Lj1t+∆ − L

j
t , (B.24)

aLt+∆L
j
1t+∆ ≤ bt+∆ + at+∆ξ (1− δ∆)Kj

t , (B.25)

where (B.25) is the credit constraint derived from (59) using the conjectured value function.

By the linear property of the Bellman equation above, the first-order conditions for Ljt+∆ and

Kj
t+∆ yield

e−rft∆ = e−r∆aLt+∆, Qt = e−r∆at+∆. (B.26)

and hence Ljt+∆, Kj
t+∆, and Kj

1t+∆ are indeterminate. This implies that firm j is indifferent

between saving and borrowing when no investment opportunity arrives, and is also indifferent

between buying and selling capital. When Qt > 1, it is profitable for firm j to invest as much as

possible so that the financing constraint (B.24) and the credit constraint (B.25) bind. Thus optimal

investment is given by

Ijt = RtK
j
t∆ +Bt +Qtξ (1− δ∆)Kj

t − L
j
t ,
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where we have used (B.26) and defined

Bt ≡ e−r∆bt+∆. (B.27)

Substituting the investment rule back into the Bellman equation and matching coefficients, we

can derive

at = Rt∆ +Qt (1− δ∆) + π∆ (Qt − 1) (Rt∆ +Qtξ (1− δ∆)) ,

aLt = 1 + π∆ (Qt − 1) ,

bt = e−r∆bt+∆ + π∆ (Qt − 1)Bt.

Using (B.26) and (B.27) and the preceding three equations, we derive

Qt = e−r∆ [Rt+∆∆ +Qt+∆ (1− δ∆) + π∆ (Qt+∆ − 1) (Rt+∆∆ +Qt+∆ξ (1− δ∆))] , (B.28)

e−rft∆ = e−r∆ [1 + π∆ (Qt+∆ − 1)] , (B.29)

Bt = e−r∆ [1 + π∆ (Qt+∆ − 1)]Bt+∆. (B.30)

Taking the continuous-time limit as ∆→ 0 yields the equations in Proposition 12.

As in the proof of Proposition 1, we derive the continuous-time limit of the dynamic program-

ming problem as

rVt

(
Kj
t , L

j
t

)
= max

Dj0t,D
j
1t,I

j
t ,L

j
1t

Dj
0t + V̇t

(
Kj
t , L

j
t

)
(B.31)

+π
[
Dj

1t + Vt

(
Kj

1t, L
j
1t

)
− Vt

(
Kj
t , L

j
t

)]
subject to

L̇jt = rftL
j
t +Dj

0t −RtK
j
t +Qt

(
K̇j
t + δKj

t

)
, (B.32)

Dj
1t = QtI

j
t + Lj1t − L

j
t − I

j
t +QtK

j
t −QtK

j
1t, (B.33)

Ijt ≤ L
j
1t − L

j
t , (B.34)

Vt

(
Kj

1t, L
j
1t

)
≥ Vt

(
Kj

1t, 0
)
− Vt(ξKj

t , 0). (B.35)

Conjecture that the value function takes the form

Vt

(
Kj
t , L

j
t

)
= QtK

j
t − L

j
t +Bt. (B.36)

Substituting this conjecture into the Bellman equation yields

r
(
QtK

j
t − L

j
t +Bt

)
= max L̇jt − rftL

j
t +RtK

j
t −QtK̇

j
t −QtδK

j
t +QtK̇

j
t + Q̇tK

j
t − L̇

j
t + Ḃt

+π
[
(Qt − 1) Ijt + Lj1t − L

j
t +QtK

j
t −QtK

j
1t

]
+π
[
QtK

j
1t − L

j
1t +Bt −

(
QtK

j
t − L

j
t +Bt

)]
.
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Thus K̇j
t and L̇jt cancel themselves out so that firm j is indifferent between saving and borrowing

and between buying and selling capital, when no investment opportunity arrives. Moreover, QtK
j
1t

also cancels itself out so that firm j is indifferent between buying and selling capital when an

investment opportunity arrives. Simplifying yields

r
(
QtK

j
t − L

j
t +Bt

)
= max − rftLjt +RtK

j
t + Q̇tK

j
t −QtδK

j
t + Ḃt (B.37)

+π (Qt − 1) Ijt .

Given the conjectured value function, the credit constraint (B.35) becomes

Lj1t ≤ QtξK
j
t +Bt.

Using the financing constraint (B.34), we obtain

Ijt ≤ L
j
1t − L

j
t ≤ ξQtK

j
t +Bt − Ljt .

When an investment opportunity arrives, under the assumption Qt > 1, it is profitable for firm j

to invest as much as possible so that both the financing and credit constraints bind. We then have

Ijt = ξQtK
j
t +Bt − Ljt .

Substituting this investment rule back into the Bellman equation (B.37) and matching coefficients,

we derive the equations for Qt, Bt, and rft given in Proposition 12.

We now compute

It =

∫
Ijt dj = ξQtKt +Bt −

∫
Ljtdj.

Since rft < r, households short-sale constraints bind so that Lht = 0 and the bond market-clearing

condition becomes
∫
Ljtdj = 0. Thus

It = ξQtKt +Bt. (B.38)

Substituting (B.38) into the law of motion for aggregate capital yields the equation for Kt given in

Proposition 12. Finally, we can use the same procedure as in the proof of Proposition 2 to derive

Rt = αKα−1
t . Q.E.D.

Proof of Proposition 13: The proof follows from those of Propositions 3 and 4. Since rft =

Ḃt/Bt in the bubbly equilibrium, rf = 0 in the bubbly steady state as Ḃt = 0.

In the bubbleless steady state in which B = 0, we have Q∗ = δ/ (πξ) and

r∗f = r − π (Q∗ − 1) = r + π − δ/ξ < 0,

where the inequality follows from condition (36). Q.E.D.
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C Self-Enforcing Debt Contracts

Consider a type of credit constraint which is popular in the self-enforcing debt literature (see, e.g.,

Bulow and Rogoff (1989), Kehoe and Levine (1993), Alvarez and Jermann (2000), Albuquerque

and Hopenhayn (2004), Kocherlakota (2008), and Hellwig and Lorenzoni (2009)).22 There is no

collateral. Suppose that the only penalty on the firm for defaulting is that it will be excluded from

the financial market forever. Since internal funds RtK
j
t come as flows, the firm has no funds with

which to make a lumpy investment Ijt . Denote by V a
t (Kj

t ) the autarky value of firm j that cannot

access the financial market. V a
t (Kj

t ) satisfies the Bellman equation

rV a
t

(
Kj
t

)
= max

K̇j
t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ V̇ a

t

(
Kj
t

)
.

This is a standard dynamic programming problem and no bubble can exist in V a
t by the usual

transversality condition. Conjecture that V a
t (Ka

t ) = QatK
j
t . Substituting this conjecture into the

Bellman equation above yields

rQatK
j
t = max

K̇j
t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ Q̇atK

j
t +Qat K̇

j
t .

Optimizing with respect to K̇j
t , we deduce Qt = Qat . Matching the coefficients of Kj

t gives

Q̇t = (r + δ)Qt −Rt. (C.1)

We now turn to firm j’s decision problem before defaulting. Firm value Vt(K
j
t ) satisfies the

Bellman equation

rVt

(
Kj
t

)
= max

K̇j
t , I

j
t ,K

j
1t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ V̇t

(
Kj
t

)
+π
[
QtI

j
t − I

j
t +QtK

j
t −QtK

j
1t + Vt

(
Kj

1t

)
− Vt

(
Kj
t

)]
(C.2)

subject to the financing constraint Ijt ≤ L
j
t and the following credit constraint

−Ljt + Vt(K
j
1t) ≥ V

a
t (Kj

1t). (C.3)

This credit constraint is an incentive constraint which can be interpreted as follows. Write the

discrete-time approximation to (C.3) as

−Ljt + e−r∆Vt+∆(Kj
1t+∆) ≥ e−r∆V a

t+∆(Kj
1t+∆). (C.4)

When an investment opportunity arrives at time t, firm j takes on debt Ljt to finance investment

Ijt . At the end of period [t, t+ ∆] , the firm’s capital sales QtI
j
t are realized. If it repays the debt,

22Kocherlakota (2008) and Hellwig and Lorenzoni (2009) show that a bubble can exist with self-enforcing debt
constraints while leaving consumption allocation unchanged in a pure exchange economy.
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its continuation value is given by the expression on the left-hand side of (C.4). If it defaults on

the debt, it will be excluded from the financial market forever and its continuation value is given

by the expression on the right-hand side of (C.4). Inequality (C.4) ensures that the firm has no

incentive to default. The constraint (C.3) is the continuous time limit as ∆→ 0.

Conjecture that

Vt

(
Kj
t

)
= QtK

j
t +Bt. (C.5)

Then (C.3) becomes Ljt ≤ Bt. This constraint is similar to that in Martin and Ventura (2012).

Substituting (C.5) into (C.2) yields

rQtK
j
t + rBt = max

Ijt ,K̇
j
t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ π (Qt − 1) Ijt (C.6)

+Q̇tK
j
t +QtK̇

j
t + Ḃt

subject to

Ijt ≤ Bt. (C.7)

When Qt > 1, the optimal investment level is Ijt = Bt. Substituting this investment rule back into

the Bellman equation and matching coefficients, we obtain (C.1) and

rBt = Ḃt + π (Qt − 1)Bt. (C.8)

The law of motion for aggregate capital is

K̇t = −δKt + πBt, K0 given. (C.9)

The equilibrium system is given by three differential equations (C.1), (C.8), and (C.9) for (Qt, Bt,Kt)

together with the usual transversality condition.

This equilibrium system is the same as that for the baseline model in Section 2 when ξ = 0.

Thus the analysis in Sections 4 and 5 for ξ = 0 applies here. Both bubbleless and bubbly equilibria

exist and their steady states are unique.

D Risk-Averse Households

We replace risk-neutral households with risk-averse households in the baseline model. Suppose that

the representative household has the following utility function:∫ ∞
0

e−ρt
C1−γ
t

1− γ
dt,

where ρ is the subjective discount rate and γ is the risk aversion parameter. The household faces

the budget constraint (4) subject to the no-Ponzi-game condition. Then we derive the consumption

Euler equation
Ċt
Ct

=
1

γ
(rt − ρ) , (D.1)
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where rt is equal to the return on any stock j in the absence of aggregate uncertainty and is also

called the discount rate. Equation (5) holds where r is replaced by rt. Firm j solves the following

dynamic programming problem:

rtVt

(
Kj
t

)
= max

Djt , I
j
t

Dj
t + V̇t

(
Kj
t

)
+ π

[(
Ljt − I

j
t

)
+
(
QtI

j
t − L

j
t

)]
(D.2)

subject to (15), (16), and (17). For tractability, we assume that capital does not jump at the time

when an investment opportunity arrives. As we show earlier, this assumption is without loss of

generality due to the liquidity mismatch assumption.

The aggregate state variables of the economy are Bt, Qt, and Kt, where Bt represents the

aggregate size of the bubble. The discount rate rt is a function of the aggregate state variables.

Conjecture that

Vt

(
Kj
t

)
= QtK

j
t +Bj

t ,

where Bj
t is the bubble component in firm j’s stock price. Substituting this conjecture into the

preceding dynamic programming problem yields

rtQtK
j
t + rtB

j
t = max

Ijt ,K̇
j
t

RtK
j
t −Qt

(
K̇j
t + δKj

t

)
+ π (Qt − 1) Ijt (D.3)

+Q̇tK
j
t +QtK̇

j
t + Ḃj

t ,

subject to

Ijt ≤ ξQtK
j
t +Bj

t . (D.4)

When Qt > 1, the constraint (D.4) binds so that the optimal investment level is Ijt = ξQtK
j
t +Bj

t .

Substituting this rule back into the Bellman equation and matching the coefficients of Kj
t , we obtain

Q̇t = (rt + δ)Qt −Rt − πξQt(Qt − 1), (D.5)

Ḃj
t = rtB

j
t −B

j
t π(Qt − 1). (D.6)

The usual transversality conditions must hold.

Since Bt =
∫
Bj
t dj, it follows from (D.6) that the aggregate bubble satisfies

Ḃt = rtBt −Btπ(Qt − 1). (D.7)

The law of motion for aggregate capital still satisfies (27). The resource constraint is given by

Ct + π(ξQtKt +Bt) = Yt. (D.8)

The equilibrium system consists of five equations (27), (D.1), (D.5), (D.7), and (D.8) for five

aggregate variables (Ct, rt,Kt, Qt, Bt) . The transversality condition also holds

lim
T→∞

e−
∫ T
0 rsdsQTKT = 0, lim

T→∞
e−

∫ T
0 rsdsBT = 0. (D.9)
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Note that an equilibrium only determines the size Bt of the aggregate bubble, but an individual

firm’s bubble size Bj
t is indeterminate. Thus it is possible that some firms have no bubbles, while

others have bubbles of different sizes.

We use a variable without the time subscript to denote its steady state value. Then (D.1)

implies r = ρ and hence the steady-state system is the same as that in the baseline model of

Section 3. Our analysis of steady states in Sections 4 and 5 still applies to the case of risk-averse

households. We are unable to derive analytical results for local dynamics because the equilibrium

system contains five equations, but it is straightforward to derive numerical solutions.

E General Short-Sale Constraints

In Section 6.5 we have assumed that households cannot short intertemporal bonds, or effectively

they cannot borrow. We now relax this assumption and allow households to borrow a proportion

of their labor income.

Assumption 9 The representative household can borrow or short intertemporal bonds up to a

proportion χ of its wage income, i.e., Lht ≥ −χwt, χ ≥ 0. Firms cannot hold or trade each other’s

stocks.

We follow the same steps as before to derive the equilibrium system. From the firm’s decision

problem we show that the value function takes the form

Vt

(
Kj
t , L

j
t

)
= QtK

j
t − L

j
t +Bt. (E.1)

When Qt > 1, optimal investment is given by

Ijt = ξQtK
j
t +Bt − Ljt .

We can also show that the equations for Qt, Bt, and rft are given in Proposition 12. We need to

derive the law of motion for aggregate capital.

Since rft < r, households will borrow by short-selling bonds until their short-sale constraints

bind, i.e.,

Lht = −χwt = −χ(1− α)Kα
t .

The last equality follows from the wage equation in equilibrium. By the bond market-clearing

condition ∫
Ljtdj = Lht = −(1− α)χYt.

Aggregating the law of motion for an individual firm’s capital, we obtain

K̇t = −δKt + π

(
ξQtKt +Bt −

∫
Ljtdj

)
= −δKt + π (ξQtKt +Bt + (1− α)χKα

t ) . (E.2)
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We now derive the bubbly steady state. Using equations for Qt, Kt and rft in Proposition 12,

we can show that

Qb =
r + π

π
> 1, rf = 0, Rb =

r + π

π
[(1− ξ)r + δ].

Using (E.2), we can show that

B

Kb
=

δ

π
− ξQb − (1− α)χKα−1

b

=
δ

π
− ξQb − χ

(1− α)

α
Rb.

The bubbly equilibrium requires B > 0. Using the preceding equations, we then obtain the necessary

and sufficient conditions

0 ≤ χ < α

1− α
1

r(1− ξ) + δ

[
δ

r + π
− ξ
]
.

This result shows that a stock price bubble can exist as long as the short-sale constraint for house-

holds is sufficiently tight. The analysis of Section 6.5 corresponds to the case of χ = 0.

F Intertemporal Debt without a Market for Capital

In this appendix we show that the equilibrium system analyzed in Section 6.5 is equivalent to a

setup where there is no market for capital goods. We replace intratemporal debt in the baseline

model with intertemporal bonds with zero net supply. With intertemporal bonds, firms can raise

new debt to payoff old debt. Let rft denote the interest rate on the bonds. Suppose that firms

can invest and accumulate capital on their own. We allow the lender to seize both a fraction ξ of

the defaulting firm’s existing capital and a fraction η of its newly installed capital in the event of

default.23 The solution in Section 6.5 corresponds to the special case with η = 0.

Assumption 10 Households cannot short intertemporal bonds. Firms do not own or trade each

other’s shares and do not issue new equity to finance investment. The only sources of finance are

internal funds, savings, and intertemporal debt.

We will derive equilibria in which investing firms borrow from non-investing firms and house-

holds do not hold any bonds. Let Lht ≥ 0 denote the representative household’s bond holdings.

Let Ljt > (<)0 denote firm j’s debt level (saving). The market-clearing condition for the bonds is∫
Ljtdj = Lht . Let Vt(K

j
t , L

j
t ) denote the ex ante equity value of firm j when its capital stock and

debt level at time t are Kj
t and Ljt , respectively, prior to the realization of the Poisson shock. We

23If we introduce this assumption in Section 6.5, then the resulting equilibrium system is equivalent to that studied
in this appendix.
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suppress the aggregate state variables in the argument. Then Vt satisfies the following Bellman

equation in discrete time:

Vt

(
Kj
t , L

j
t

)
= max

Ijt ,L
j
t+∆,L

j
1t+∆

(1− π∆)
[
Dj

0t∆ + e−r∆Vt+∆

(
(1− δ∆)Kj

t , L
j
t+∆

)]
+π∆

[
Dj

1t + e−r∆Vt+∆

(
Kj
t+∆, L

j
1t+∆

)]
subject to

0 ≤ Dj
0t∆ = RtK

j
t∆ + e−rft∆Ljt+∆ − L

j
t , (F.1)

0 ≤ Dj
1t = RtK

j
t∆ + e−rft∆Lj1t+∆ − L

j
t − I

j
t , (F.2)

Kj
t+∆ = (1− δ∆)Kj

t + Ijt , (F.3)

Vt+∆(Kj
t+∆, L

j
1t+∆) ≥ Vt+∆

(
Kj
t+∆, 0

)
− Vt+∆(ξ (1− δ∆)Kj

t + ηIjt , 0). (F.4)

where Lj1t+∆ (Ljt+∆) represents the new debt level or saving when an investment opportunity

arrives (no investment opportunity arrives). The price of the debt at time t that pays off one

unit of consumption good at time t+ ∆ is e−rft∆. By assumption, firm j cannot issue new equity

to finance investment when an investment opportunity arrives so that Dj
1t ≥ 0. Since there is no

market for capital goods, the flow-of-funds constraints are different from those in the model of

Section 6.5. When firm j invests Ijt with Poisson probability π∆, its capital stock jumps to Kj
t+∆

as shown in (F.3).

Debt is subject to the credit constraint (F.4). Firm j borrows Lj1t+∆ at time t when an invest-

ment opportunity arrives. It may default on debt Lj1t+∆ at time t + ∆. If it does not default, it

obtains continuation value Vt+∆

(
Kj
t+∆, L

j
1t+∆

)
. If it defaults, debt is renegotiated and the repay-

ment Lj1t+∆ is relieved. The lender can seize a fraction ξ of depreciated capital (1− δ∆)Kj
t and a

fraction η of newly installed capital Ijt .
24 The lender keeps the firm running with these assets by

reorganizing the firm. Thus the threat value to the lender is Vt(ξ (1− δ∆)Kj
t + ηIjt , 0). Assume

that firm j has a full bargaining power so that the renegotiated repayment is given by the threat

value to the lender. The expression on the right-hand side of (F.4) is the value to the firm if it

chooses to default. We then have the incentive constraint given in (F.4).

Conjecture that

Vt

(
Kj
t , L

j
t

)
= atK

j
t − aLt L

j
t + bt.

Define Qt = e−r∆at+∆. Here Qt is Tobin’s marginal Q or the shadow price of capital, instead of

the market price of capital. Substituting this conjecture and equations (F.1), (F.2), and (F.3) into

24If ξ = η, the lender effectively seizes the firm’s future capital ξKj
t+∆.
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the Bellman equation yields

atK
j
t − aLt L

j
t + bt = max

Ijt ,K
j
t+∆,K

j
1t+∆,L

j
t+∆,L

j
1t+∆

RtK
j
t∆− L

j
t + e−r∆bt+∆

+ (1− π∆)
[
e−rft∆Ljt+∆ +Qt (1− δ∆)Kj

t − e−r∆aLt+∆L
j
t+∆

]
+π∆

[
e−rft∆Lj1t+∆ +Qt (1− δ∆)Kj

t − e−r∆aLt+∆L
j
1t+∆

]
+π∆ (Qt − 1) Ijt

subject to

Ijt ≤ RtK
j
t∆ + e−rft∆Lj1t+∆ − L

j
t , (F.5)

aLt+∆L
j
1t+∆ ≤ bt+∆ + at+∆ξ (1− δ∆)Kj

t + at+∆ηI
j
t , (F.6)

where (F.5) follows from Dj
1t ≥ 0 and says that investment is financed by internal funds, savings,

and debt only. Credit constraint (F.6) follows from (F.4).

By the linear property of the Bellman function, the first-order condition for Ljt+∆ yields

e−rft∆ = e−r∆aLt+∆, (F.7)

and hence Ljt+∆ is indeterminate. This implies that firm j is indifferent between saving and bor-

rowing when no investment opportunity arrives. Multiplying the two sides of inequality (F.6) by

e−r∆ and using (F.7), we obtain

e−rft∆Lj1t+∆ = e−r∆aLt+∆L
j
1t+∆ ≤ Bt +Qtξ (1− δ∆)Kj

t +QtηI
j
t , (F.8)

where we have used Qt = e−r∆at+∆ and the definition

Bt ≡ e−r∆bt+∆. (F.9)

When 1 < Qt < 1/η, the financing constraint (F.5) and the credit constraint (F.8) bind so that

optimal investment is given by

Ijt =
1

1− ηQt

[
RtK

j
t∆ +Bt +Qtξ (1− δ∆)Kj

t − L
j
t

]
,

where the multiplier 1/ (1− ηQt) reflects the leverage effect.

Substituting the investment rule back into the Bellman equation and matching coefficients, we

derive

at = Rt∆ +Qt (1− δ∆) + π∆ (Qt − 1)
Rt∆ +Qtξ (1− δ∆)

1− ηQt
,

aLt = 1 + π∆
Qt − 1

1− ηQt
,

bt = e−r∆bt+∆ + π∆
(Qt − 1)Bt

1− ηQt
.
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Using (F.7) and (F.9) and the preceding three equations, we can derive

Qt = e−r∆
[
Rt+∆∆ +Qt+∆ (1− δ∆) + π∆ (Qt+∆ − 1)

Rt+∆∆ +Qt+∆ξ (1− δ∆)

1− ηQt

]
,

e−rft∆ = e−r∆
[
1 + π∆

Qt+∆ − 1

1− ηQt

]
,

Bt = e−r∆
[
1 + π∆

Qt+∆ − 1

1− ηQt

]
Bt+∆.

Taking the continuous-time limit as ∆→ 0 yields

Q̇t = (r + δ)Qt −Rt −
π (Qt − 1)Qtξ

1− ηQt
, (F.10)

Ḃt = rBt −
π (Qt − 1)

1− ηQt
Bt, (F.11)

rft = r − π (Qt − 1)

1− ηQt
< r. (F.12)

We now show that this solution is the same as that in the continuous-time setup. We derive

the continuous-time limit of the dynamic programming problem as

rVt

(
Kj
t , L

j
t

)
= max

Dj0t,D
j
1t,I

j
t ,L

j
1t

Dj
0t + V̇t

(
Kj
t , L

j
t

)
(F.13)

+π
[
Dj

1t + Vt

(
Kj
t + Ijt , L

j
1t

)
− Vt

(
Kj
t , L

j
t

)]
subject to

L̇jt = rftL
j
t +Dj

0t −RtK
j
t , (F.14)

Dj
1t = Lj1t − L

j
t − I

j
t , (F.15)

Ijt ≤ L
j
1t − L

j
t , (F.16)

Vt(K
j
t + Ijt , L

j
1t) ≥ Vt

(
Kj
t + Ijt , 0

)
− Vt(ξKj

t + ηIjt , 0). (F.17)

When no investment opportunity arrives, capital simply depreciates so that K̇j
t = −δKj

t . Whenever

an investment opportunity arrives, capital jumps to Kj
t + Ijt .

Conjecture the value function takes the form

Vt

(
Kj
t , L

j
t

)
= QtK

j
t − L

j
t +Bt, (F.18)

and hence the credit constraint (F.17) becomes

Lj1t ≤ QtξK
j
t + ηQtI

j
t +Bt, (F.19)

where Bt ≥ 0 is the bubble component of equity value.
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Substituting the conjectured value function into the Bellman equation yields

r
(
QtK

j
t − L

j
t +Bt

)
= max L̇jt − rftL

j
t +RtK

j
t + Q̇tK

j
t −QtδK

j
t − L̇

j
t + Ḃt

+π
[(
Lj1t − L

j
t − I

j
t

)
+
(
QtI

j
t − L

j
1t + Ljt

)]
.

Thus L̇jt cancels itself out so that firm j is indifferent between saving and borrowing when no

investment opportunity arrives. Simplifying yields

r
(
QtK

j
t − L

j
t +Bt

)
= max − rftLjt +RtK

j
t + Q̇tK

j
t −QtδK

j
t + Ḃt (F.20)

+π (Qt − 1) Ijt .

Using the credit constraint (F.19) and the financing constraint (F.16), we obtain

Ijt ≤ L
j
1t − L

j
t ≤ ξQtK

j
t + ηQtI

j
t +Bt − Ljt .

If 1 < Qt < 1/η, it is profitable for firm j to invest as much as possible and both constraints bind.

In this case firm j borrows by selling bonds. We then have

Ijt =
ξQtK

j
t +Bt − Ljt

1− ηQt
.

Substituting this investment rule back into the Bellman equation (F.13) and matching coefficients,

we derive the equations for Qt, Bt, and rft given above.

We now compute aggregate investment

It =

∫
Ijt dj =

ξQtKt +Bt −
∫
Ljtdj

1− ηQt
.

Since rft < r, households’ short-sale constraints bind so that Lht = 0 and the bond market-clearing

condition becomes
∫
Ljtdj = 0. Thus

It =
ξQtKt +Bt

1− ηQt
. (F.21)

We can then derive the law of motion for aggregate capital∫
Kj
t+∆dj =

∫
(1− δ∆)Kj

t dj + π∆

∫
Ijt dj.

Taking the limit as ∆→ 0 yields

K̇t = −δKt + πIt.

Substituting (F.21) into the above equation yields the equation for Kt

K̇t = −δKt + π
ξQtKt +Bt

1− ηQt
, (F.22)
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Finally, we can use the same procedure in the proof of Proposition 2 to derive Rt = αKα−1
t . The

equilibrium system for (Qt, Bt, rft,Kt) consists of (F.10), (F.11), (F.12), and (F.22) when 1 < Qt <

1/η. The usual transversality conditions must be satisfied. We can see that the equilibrium system

presented in Proposition 12 is the special case with η = 0.

We can also prove the following result.

Proposition 14 For the model in this subsection with intertemporal bonds, if

0 < ξ <
δ(1− η)

r + π
, (F.23)

then the bubbly and bubbleless steady states with 1 < Q < 1/η coexist. Moreover, the interest rates

in the bubbleless and bubbly steady states are given by r∗f = r + π − δ (1− η) /ξ < 0 and rf = 0,

respectively.

Proof. We first derive the bubbly steady state in which B > 0. Using the equilibrium system

derived above, we can show that

Qb =
r + π

ηr + π
, rf = 0, (F.24)

Rb = αKα−1
b =

r + π

ηr + π
[(1− ξ)r + δ], (F.25)

B

Kb
=
δ

π
− ξ(r + π)

π(1− η)
. (F.26)

Since η ∈ (0, 1) , we have 1 < Qb < 1/η. Given condition (F.23), we have B > 0 and hence a bubbly

steady state exists.

We next derive the bubbleless steady state in which B = 0. Using the equilibrium system derived

above, we can show that

Q∗ =
δ

πξ + ηδ
,

R∗ = αK∗α−1 =
δr

πξ + ηδ
+ δ,

r∗f = r + π − δ (1− η) /ξ.

Under condition (F.23), we have 1 < Q∗ < 1/η. Thus a bubbleless steady state exists.

G Cross-Holdings

In this appendix we assume that households hold a fraction 1 −H shares of a market porfolio of

all firm stocks and firms hold H ∈ (0, 1) shares of the market porfolio in the model of Section 6.5.

For technical convenience we consider the continuous-time setup. Assume that firms do not use

the market portfolio to finance investment for the reasons discussed in Section 6.6.
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Let Vt

(
Kj
t , L

j
t , H

j
t

)
denote the ex ante market value of firm j, where Hj

t denotes firm j’s

holdings of the market portfolio prior to the investment opportunity shock. Then Vt satisfies the

continuous-time Bellman equation

rVt

(
Kj
t , L

j
t , H

j
t

)
= max Dj

0t + V̇t

(
Kj
t , L

j
t , H

j
t

)
(G.1)

+π
[
Dj

1t + Vt

(
Kj

1t, L
j
1t, H

j
1t

)
− Vt

(
Kj
t , L

j
t , H

j
t

)]
subject to the flow-of-funds constraints

L̇jt = rftL
j
t +Dj

0t −RtK
j
t +Qt

(
K̇j
t + δKj

t

)
+ PtḢ

j
t −XtH

j
t , (G.2)

Dj
1t = QtI

j
t + Lj1t − L

j
t − I

j
t +QtK

j
t −QtK

j
1t + Pt

(
Hj
t −H

j
1t

)
, (G.3)

the financing constraint

Ijt ≤ L
j
1t − L

j
t , (G.4)

and the credit constraint

Vt

(
Kj

1t, L
j
1t, H

j
1t

)
≥ Vt

(
Kj

1t, 0, H
j
1t

)
− Vt(ξKj

t , 0, 0), (G.5)

where Hj
1t denotes firm j’s holdings of the market portfolio when an investment opportunity arrives.

Here Pt denotes the value of the market portfolio,

Pt =

∫
Vt

(
Kj
t , L

j
t , H

j
t

)
dj,

and Xt denotes the total dividends of the portfolio

Xt =

∫
Dj
tdj =

∫
Dj

0tdj + π

∫
Dj

1tdj.

Note that the value of the market portfolio does not jump even if the value of an individual firm

can jump when an investment opportunity arrives. This is because

Pt+∆ = (1− π∆)

∫
Vt+∆

(
Kj
t+∆, L

j
t+∆, H

j
t+∆

)
dj + π∆

∫
Vt+∆

(
Kj

1t+∆, L
j
1t+∆, H

j
1t+∆

)
dj

so that Pt+∆ → Pt as ∆→ 0.

The financing constraint (G.4) means that firm j only uses debt and savings to finance in-

vestment. The interpretation of the credit constraint (G.5) is similar to that in Section 6.5. In

particular, the lender can only recover a fraction ξ of capital and take over the firm in the event of

default.

Conjecture that the value function takes the form

Vt

(
Kj
t , L

j
t , H

j
t

)
= QtK

j
t +Bt − Ljt + PtH

j
t . (G.6)

67



Substituting this conjecture and the flow-of-funds constraints into the preceding Bellman equation

yields

r
(
QtK

j
t − L

j
t +Bt + PtH

j
t

)
= max L̇jt − rftL

j
t +RtK

j
t −QtK̇

j
t −QtδK

j
t − PtḢ

j
t +XtH

j
t

+QtK̇
j
t + Q̇tK

j
t − L̇

j
t + Ḃt + ṖtH

j
t + PtḢ

j
t

+π
[
(Qt − 1) Ijt + Lj1t − L

j
t +QtK

j
t −QtK

j
1t + PtH

j
t − PtH

j
1t

]
+π
[
QtK

j
1t − L

j
1t +Bt + PtH

j
1t −

(
QtK

j
t − L

j
t +Bt

)
− PtHj

t

]
.

Given the conjectured value function, the credit constraint becomes

Lj1t ≤ QtξK
j
t +Bt.

If Qt > 1, the financing constraint and the credit constraint bind so that optimal investment is

given by

Ijt = QtξK
j
t +Bt − Ljt .

Substituting this investment rule back into the Bellman equation and matching coefficients, we

obtain (20), (21), (62), and

rPt = Xt + Ṗt.

Thus the rate of return on the market portfolio is equal to r. Aggregation yields the law of motion

for aggregate capital (27). Thus the equilibrium system for (Qt,Kt, Bt, rft) is the same as that in

Section 6.5 and Appendix B.5 and hence Proposition 13 still holds. The only difference lies in the

valuation of the firm.

Since
∫
Hj
t = H, aggregation of (G.6) yields

Pt =
QtKt +Bt

1−H
.

As discussed in Fedenia, Hodder, and Triantis (1994) and Elliott, Golub, and Jackson (2014), the

equation above and equation (G.6) show that cross-holdings inflate the market capitalization. Since

households hold 1−H shares of all firms, the portfolio value to the households is QtKt +Bt. Thus

cross-holdings do not have any effects on welfare and real allocation as long as cross-holdings do

not help finance investment.
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