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Abstract

We study a model where limited enforcement permits bank owners to shift the risk of
their asset portfolios to the depositors. Incentive compatible equilibria require the franchise
value of the bank to exceed the value that the bank owners can obtain by undertaking
excessively risky investments and defaulting on deposits when investment returns are low.
Our model generates multiple stationary equilibria as well as chaotic equilibria that can
lead to coordination failures, making bank runs, bank defaults, and banking crises more
likely. We suggest that banking regulations, including leverage limits, restrictions on bank
asset portfolios,central bank credit policies, as well as restrictions on bank size and deposit
rate ceilings can be instituted not only to enhance stable franchise values and sound asset
porfolios, but also to eliminate multiple and complex equilibria that may result in bank
insolvency and moral hazard.
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1 Introduction

In response to the �nancial crisis of 2008 new legislation and regulations were introduced both in

Europe and the US to assure the solvency of large banks and �nancial institutions, and to avoid

the necessity of future government bailouts. In Europe Basel III Accords introduced regulatory

standards on bank capital requirements by increasing bank liquidity and by establishing a

minimum �leverage ratio.�1 In April 2014, the US Federal Reserve Bank, the FDIC, and the

O¢ ce of the Comptroller of the Currency announced minimum leverage ratios of 5% for eight

systemically important bank holding companies, and of 6% for their FDIC insured banks.

Earlier in 2010 the US Congress passed the Dodd-Frank bill that increased the government

oversight of large �nancial institutions. This bill included the Volcker rule, a modern version

of the Glass-Steagall Act of 1932, attempting to restrict riskier investment bank activities and

insulating such activities from commercial banking loans �nanced by bank deposits.

Such measures are designed to protect depositors by establishing capital requirements and

minimum leverage ratios, and by limiting risky bank investments. They are instituted because

a deregulated competitive environment may lead bank managers to acquire portfolios that

expose depositors to excessive risk, and also create moral hazard problems under FDIC insur-

ance. (See Keeley (1990), Gorton and Rosen (1995), Demsetz, Saidenberg, and Strahan (1997)

and Hellmann, Murdock, and Stiglitz (2000), Matutes and Vives (2000), and Gorton (2010)).

Excessive risk taking however may be avoided if banks operate in a regulated environment that

assures su¢ cient ongoing pro�ts, that is a su¢ ciently high franchise value (i.e., the present

discounted value of payouts from operating the bank).2 Bank owners and managers may then

refrain from undertaking excessively risky investments for fear of bank runs and bankruptcy

which results in their losing their equity, their �rm-speci�c human capital, and the bene�ts of

control (see Demsetz, Saidenberg, Strahan (1995)). The recent economics literature has mod-

elled such risk-shifting to depositors and moral hazard problems by introducing borrowing or

incentive compatibility constraints for banks. This literature is typically con�ned to static or

three-period models as surveyed by Allen and Gale (2007).

We extend this literature by constructing an in�nite-horizon model of banks. In the model

1The generally applicable leverage ratio under the 2013 revised capital approaches is the ratio of a banking
organization�s tier 1 capital to its average total consolidated assets as reported on the banking organization�s
regulatory report minus amounts deducted from tier 1 capital. The banks were expected to maintain a leverage
ratio in excess of 3% under Basel III.

2 In addition to bank regulations and oversight, bank charters can also enhance the franchise value of banks
with subsidies in the form of limited entry into banking, local deposit monopolies, interest-rate ceilings, and
underpriced deposit insurance. See Gorton (2009)
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households deposit their savings only in banks whose franchise value deters bank owners from

investing in excessively risky assets. These constitute incentive compatibility constraints that

arise under limited commitment, as in Kehoe and Levine (1993), Alvarez and Jermann (2000)

and more recently, as in Gertler and Karadi (2011), Gertler and Kiyotaki (2013), Miao and

Wang (2012b) for in�nite-horizon models with banks. In the last three papers, bank managers

can divert a fraction of bank assets for their own bene�t and the franchise value of the bank

acts as a deterrent to the diversion of assets by managers. Unlike these papers, we focus on

banks�risk taking behavior.3 Under incentive constraints bank owners and managers recognize

the franchise value of their banks and they refrain from risks that may lead to the loss of their

banking business. Competition among banks then drives pro�ts not to zero, but to the point

where the discounted value of franchise pro�ts is at least as large as the value of undertaking

risky investments that may be followed by deposit withdrawals, bank runs and the loss of the

franchise value.

We show in section 3 that under the incentive constraints in our model we can obtain two

stationary rational expectations equilibria, one with a high interest rate on deposits and a high

level of deposits, the other with a low interest rate and a low level of deposits.4 Furthermore,

we show in section 4 that we can have a continuum of non-stationary chaotic equilibria, as well

as equilibria with �branching�dynamics, that is, equilibrium dynamics described by di¤erence

correspondences with multiple values at each point in time, instead of the standard dynamics

of di¤erence equations. These complex equilibrium dynamics can occur even in the case of

a unique steady state. Clearly, the plethora of such complicated equilibria creates problems

of expectation coordination. The di¢ culty of rational expectations forecasting under such

conditions may well lead to fragility, divergent expectations, speculative risk taking and bank

runs. Therefore we can interpret bank regulations not only as mechanisms to assure that banks

do not violate their incentive constraints, and do not invest with moral hazard, but also as

tools to eliminate the multiplicity of complicated equilibria leading to coordination failure and

costly bank runs.

In section 5 we discuss various banking regulations to eliminate such multiple and complex

equilibria. The regulations and policies we study are capital or equity requirements, leverage

3Miao and Wang (2012b) also consider other types of o¤-equilibrium behavior and outside options of banks.
But they do not study banks�risk taking behavior.

4The literature on models of incentive compatibility or borrowing constraints due to limited enforcement that
can generate stationary and non-stationary equilibria and bubbles in macroeconomic problems is too large for
us to cite all relevant papers. Recent contributions include Benhabib and Wang (2013), Gu et al. (2014), Liu
and Wang (2013), and Miao and Wang (2012a, b).
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ratios, central bank credit policies to manage liquidity, limits on bank size, and restrictions on

risky investments Such restrictions can come at a cost, in particular, at the cost of eliminating

sustainable rational expectations equilibria with high lending and high interest on deposits.5

The trade-o¤ re�ects the potential costs of �nancial fragility that results not only from moral

hazard considerations, but also from the di¢ culty of coordinating expectations when multiple

equilibria exist.

2 A Baseline Model

We consider an in�nite-horizon environment. There is no aggregate uncertainty. Time is

discrete and denoted by t = 0; 1; 2; :::. There are two types of identical agents: households

and bankers. We will focus on frictions in the banking sector. We thus intentionally make the

household problem as simple as possible.

2.1 Households

We model the supply of deposits to bank in a highly simpli�ed fashion. There is a continuum

of households of unit measure on [0; 1]. Each household i 2 [0; 1] receives constant income Y
at the beginning of each period t. It has access to a storage technology that yields a return

rit = a + xit at the end of period t, where a > 0 is a constant and xit is independently and

identically drawn from a power function distribution with the cumulative distribution function

G (x) = (x=xmax)
� ; � > 0; on [0; xmax] : The household can deposit Dit 2 [0; Y ] at a bank and

receive a return constant Rt: It maximizes expected utility

E
1X
t=0

�tu
�
cit
�

subject to the budget constraint

cit = RtD
i
t +

�
Y �Dit

�
rit;

where u is strictly increasing and strictly concave.

Since the household�s decision problem is essentially static due to our modeling, the house-

hold decision rule is simply given by

Dit =

�
Y if rit < Rt
0 otherwise

: (1)

5See however section 5.3 below on central bank credit policy.
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We can then compute total deposits as

Dt =

Z
Ditdi = Y G (Rt � a) = Y

�
Rt � a
xmax

��
:

It follows that the deposit supply function is given by

Rt = R (Dt) � a+ xmax
�
Dt
Y

�1=�
:

Since Dt 2 [0; Y ] ; Rt 2 [a; a+ xmax] : Note that this supply function satis�es the property that
R (D)D is strictly convex in D: It turns out that this is the key property to generating multiple

equilibria and chaotic dynamics. There are other approaches to the microfoundation of deposit

supply with such a property.

If we let � = 1,

Rt = a+
xmax
Y

Dt = a+ bDt; (2)

where b = xmax=Y: We will use this simple deposit supply function in what follows and take a

and b as parameters.

2.2 Banks

There is a continuum of competitive banks indexed by j 2 [0; 1] : Each bank is managed by
a risk-neutral banker. Each banker has access to two investment projects each period: a safe

project and a risky project. Each unit of investment in the safe project yields a constant return

A: Each unit of investment in the risky project generates a constant return Ar with probability

� 2 (0; 1) and zero with probability 1 � �: We assume that A > �Ar so that it is socially

optimal to invest in the safe project. This implies that the banker has no incentive to invest his

own net worth in the risky project. However due to limited liability the banker will be tempted

to engage in risk-shifting, and to invest in the risky project using funds from depositors if

A � Rt < � (Ar �Rt) : In the event of failure, the banker is protected by limited liability and
hence will not pay the depositors. Nevertheless the banker who gambles with depositors�money

and invests in such a risky project would lose his reputation and the trust of depositors. He

would not be able to attract any deposits in the future and would have to quit the banking

business. We therefore introduce an incentive (compatibility) constraint associated with an

optimal contracting problem under limited commitment, similar to those in Kehoe and Levine

(1993) and Alvarez and Jermann (2000).

We consider the optimal implicit contract in which banker j will always invest in the safe

project each period. If banker j deviates and invests in the risky project, he will receive pro�ts
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ANjt + �(Ar � Rt)Djt in the current period but will be punished by being excluded from
banking in the future. We can then write the incentive constraint as

Vt(Njt) � ANjt + �(Ar �Rt)Djt; (3)

where Vt (Njt) denotes banker j�s value function in the optimal contract, Njt denotes the bank�s

net worth, and Djt denotes deposits in the bank. This constraint ensures that banker j has no

incentive to invest in the risky project in any period.6

Given that banker j always invests in the safe project in the optimal contract, we can write

his �ow-of-funds constraint as

Xjt +Njt+1 + '(Njt+1) � ANjt + (A�Rt)Djt; (4)

where Xjt represents the banker�s payo¤s and the term '(Njt+1) is a strictly convex increasing

function representing adjustment costs of bank capital. Capital adjustment costs can result

from the moral hazard problem emphasized by Jensen (1986): the manager may divert some

of the bank capital (net worth) for their own bene�t and monitoring can become more di¢ cult

as the amount of asset in management increases. There can also be physical adjustment costs,

for example disruption costs during installation of new software or IT systems with associated

learning and maintenance costs required as banking capital grows. To derive a closed-form

solution, we assume that ' (N) = N2= (2�) ; � > 0:

Assume that banker j may choose to default and exit after investing in the safe project in

the end of period t: In this case he obtains pro�ts ANjt+ (A�Rt)Djt: If he chooses to stay in
business, he obtains Xjt � �+ �Vt+1(Njt+1); where � represents a �xed cost of managing the
bank. We will show later that the �xed cost � plays a crucial role in the subsequent analysis.7

Assume that both bankers and depositors have the same discount factor �: We can then write

banker j�s decision problem by dynamic programming

Vt(Njt) = max
Njt+1;Xjt;Djt

fXjt � �+ �EtVt+1(Njt+1); ANjt + (A�Rt)Djtg; (5)

6For the role of reputation in a setting where unregulated shadow banks coexist with regulated banks under
limited enforcement and incentive constraints, see Ordonez (2013).

7Fixed costs, for example administrative expenses are signi�cant in the banking business. These costs can
also be interpreted as an opportunity cost of the banker, who gives up an occupation in other industries. The
bank also has to have equipment like computers and software and pay rent for its o¢ ce building. In addition,
the banker has to spend to spend costly e¤ort to acquire information, conduct market research or manage and
monitor its investment.All of these costs are �xed to some extent.
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subject to (3) and (4). Using the �ow-of-funds constraint (4), banker j�s decision problem in

(5) becomes

Vt(Njt) = max
Njt+1;Djt

ANjt + (A�Rt)Djt + f0;�Njt+1 � '(Njt+1)� �+ �EtVt+1(Njt+1)g ; (6)

subject to the incentive constraint (3). Banker j takes the market deposit rate Rt as given and

chooses net worth Njt+1 and the amount of deposits Djt.

The preceding problem is related to those in Gertler and Karadi (2011), Gertler and Kiyotaki

(2013), and Miao and Wang (2012b). Gertler and Karadi (2011) and Gertler and Kiyotaki

(2013) assume that a banker dies stochastically and consumes the bank net worth only when

he dies. In addition, they assume that at the end of the period the banker can divert a fraction

� of bank assets. If the banker diverts, depositors will force the bank into bankruptcy. In this

case the incentive constraint that ensures the banker will never divert is given by

Vt (Njt) � � (Njt +Djt) ; � 2 (0; 1]:

Miao and Wang (2012b) generalize the approach of Gertler and Karadi (2011), Gertler and Kiy-

otaki (2013) by analyzing several other types of incentive constraints. However, they have not

considered the incentive constraint as in (3). The key innovation of (3) is that the banker�s de-

viation is to choose risky investments. We believe that this incentive problem is more prevalent

than diverting funds in the banking sector.

Using (6), we can rewrite the incentive constraint (3) as

[�(Ar �Rt)� (A�Rt)]Djt (7)

� max f�Njt+1 � '(Njt+1)� �+ �EtVt+1(Njt+1); 0g :

This becomes an endogenous borrowing constraint. The left-hand side of (7) represents ad-

ditional gains from risk taking and the right-hand side represents the loss of pro�ts from

the future banking business or the opportunity cost of risk taking. Whenever A > Rt and

�(Ar �Rt) > (A�Rt); the banker�s optimization problem (6) implies that this constraint will

bind. The intuition is as follows. When A > Rt; the banker would like to borrow as much as

possible to invest in the pro�table safe project. But when �(Ar � Rt) > (A� Rt), risk taking
is also pro�table and the banker would like to gamble the depositors�money. The incentive

constraint in (3) or (7) limits the banker�s gambling behavior by restricting the amount of

borrowings.
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When �(Ar � Rt) > (A � Rt); the incentive constraint in (3) ensures that staying in the
banking business is always more pro�table than quitting and obtaining (A�Rt)Dt if Dt > 0
in any period. Thus the banker will never exit when Djt > 0: Exit is possible only if Djt = 0:

The �rst-order condition for Njt+1 is

1 + '0(Njt+1) = �Et
@Vt+1(Njt+1)

@Njt+1
; (8)

where the left-hand side of this equation gives the marginal cost of increasing bank capital

Njt+1 and the right-hand side represents the associated marginal bene�t.

Conjecture that the value function takes the following form:

Vt (Njt) = ANjt + vt; (9)

where vt is a term to be determined, which represents the future value of the bank. Following

the �nance literature, we may interpret ANjt as the bank�s value of assets in place and vt as

the value of the growth opportunities. We may also interpret vt as the franchise value of the

bank.

Given the preceding conjectured value function, the envelope condition gives

@Vt(Njt)

@Njt
= A:

Substituting this equation into (8), we can derive that

Njt+1 = �(�A� 1) � �N: (10)

Thus the optimal net worth is always constant. The following assumption ensures that �N > 0:

Assumption 1 �A > 1:

Since � and �N have a one-to-one relationship, we will treat �N as an exogenous parameter

instead of �:

Using (9) and (10), we can derive that

�Njt+1 � '(Njt+1)� �+ �EtVt+1(Njt+1) =
1

2
(�A� 1) �N � �+ �vt+1:

It follows that the binding borrowing constraint (7) becomes

Djt =
max

�
1
2(�A� 1) �N � �+ �vt+1; 0

	
�(Ar �Rt)� (A�Rt)

: (11)
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Substituting this expression into the Bellman equation (6) and matching coe¢ cients, we obtain

vt = �(Ar �Rt)Djt = �(Ar �Rt)
max

�
1
2(�A� 1) �N � �+ �vt+1; 0

	
�(Ar �Rt)� (A�Rt)

: (12)

Because the incentive constraint (3) binds, equation (9) implies that the future bank value vt

is equal to the pro�ts from investing in the risky project.

Now we summarize the solution to banker j�s decision problem as follows:

Proposition 1 Suppose that assumption 1 holds and

A > Rt >
A� �Ar
1� � > 0: (13)

Then banker j�s value function Vt (Njt) is given by (9), where vt satis�es the di¤erence equation

(12) and the transversality condition limt!1 �tvt = 0. The optimal net worth Njt+1 and deposit

issuance Djt are given by (10) and (11).

This proposition gives an individual bank�s demanded deposits as a function of the market

deposit rate Rt in (11). This demand is also a¤ected by the future value of the growth oppor-

tunities vt or the franchise value of the bank. As will be clear later, this is the key feature that

generates multiple equilibria.

The transversality condition in the preceding proposition ensures that the value function

satis�es limt!1 �tVt (Njt) = 0: Technically this condition ensures that the value function de-

rived from the Bellman equation is equal to the optimal value in a sequence problem (Stokey,

Lucas, and Prescott (1989, Theorem 4.3)). Intuitively this condition ensures that no asset is

left with positive value in the in�nite future.

The condition in (13) involves the deposit rate Rt, which is taken as given in the banker�s

decision problem. Since Rt is endogenous in general equilibrium, we need to check (13) ex post

in equilibrium. By the microfoundation of the deposit supply in Section 2.1, the equilibrium

deposit rate must satisfy Rt 2 [a; a+ xmax]. Thus we can replace (13) by the following primitive
assumption:

Assumption 2 Let

A > a+ xmax > a >
A� �Ar
1� � > 0: (14)
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2.3 Equilibrium

In equilibrium, we have
R
Njt+1dj = Nt+1 = �N and

R
Djtdj = Dt: In particular, total deposits

demanded by banks are equal to total deposits supplied by depositors.

Using equation (12), we can derive that the aggregate deposit demand Dt satis�es the

di¤erence equation

Dt [�(Ar �Rt)� (A�Rt)] = max
�
1

2
(�A� 1) �N � �+ ��(Ar �Rt+1)Dt+1; 0

�
: (15)

Imposing the market-clearing condition and using the deposit supply function Rt = R (Dt)

in (15), we can derive that the equilibrium sequence of aggregate deposits fDtg satis�es the
following di¤erence equation:

�(Dt) � Dt [�(Ar �R (Dt))� (A�R (Dt))] = max f	(Dt+1); 0g ;

where

	(Dt+1) �
1

2
(�A� 1) �N � �+ ��(Ar �R (Dt+1))Dt+1:

The expression � (Dt) represents the net bene�t from investing in the risky project. The

expression max f	(Dt+1); 0g gives the loss of pro�ts from the future banking business. This

loss represents the opportunity cost of risk taking and re�ects the bank franchise value. In

equilibrium the cost must be equal to the bene�t.

The transversality condition limt!1 �tvt = 0 will be satis�ed if (Ar �R (D))D is bounded

since vt = �(Ar�R (Dt))Dt � 0: The boundedness property holds whenever fDtg takes values
in a �nite interval.

Under condition (13), � is a strictly increasing function. We can then write the equilibrium

dynamic system as

Dt = �
�1 (max f	(Dt+1) ; 0g) � f (Dt+1) ; (16)

for some function f: Note that this is a backward nonlinear dynamic system. The function f

may not be invertible so that we may not be able to write forward dynamics explicitly. As a

result, multiple equilibria can arise and equilibria can be quite complex, including cycles, chaos,

branch switching, and sunspots.

A simple case for the existence of multiple equilibria is the following. When high future

deposits Dt+1 imply a high franchise value in the future, investing in risky assets using current

deposits and endangering the future value of the franchise value becomes more costly. The

banker does not have the incentive to invest in the risky project, and hence the incentive

9



constraint is relaxed. This in turn raises the amount Dt of deposits that the banker can

borrow today. Thus the optimistic belief about future high deposits can be self-ful�lling.

Similarly the pessimistic belief about low future deposits can also be self-ful�lling. This dynamic

complementarity across time is di¤erent from the static complementarity in the Diamond and

Dybvig (1983) model. In the Diamond-Dybvig model, a depositor will withdraw his deposit

early if he thinks the others will do so as well, so a bank run will occur. As Peck and Shell

(2003) show, an equilibrium with a bank run in the Diamond-Dybvig model always exists.

They typically happen during economic downturns.

In our model we de�ne a bank run as Dt = Dt+1 = 0, when depositors no long lend to

banks. We will show that the existence of a bank run equilibrium in our model depends on

economic fundamentals so we can give more precise characterization of when bank runs are

possible. Below we will illustrate the various equilibria of our model using a phase diagram.

Before analyzing equilibria with incentive problems, we brie�y describe the �rst-best equi-

librium. In the �rst best, the deposit rate is equal to the lending rate, A = Rt: The �rst-best

deposit level DFB satis�es R
�
DFB

�
= A:

3 A First Look at Equilibria

In this section we analyze the steady states of the equilibrium system and local dynamics.

3.1 Steady States and Local Stability

The following proposition characterizes the steady states of the equilibrium system (16), which

are �xed points of f .

Proposition 2 Suppose that assumptions 1 and 2 hold. Suppose that

Y [� (Ar �R (Y ))� (A�R (Y ))] > max
�
1

2
(�A� 1) �N � �+ �� [Ar �R (Y )]Y; 0

�
: (17)

(a) If
1

2
(�A� 1) �N > �; (18)

then there exists a unique steady state deposit level D� 2 (0; Y ) : (b) If

1

2
(�A� 1) �N = �; (19)

and

A�R (0) > � (1� �) (Ar �R (0)) ; (20)
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Figure 1: Determination of steady states.

then there exist two steady-state deposit levels 0 and D�� 2 (0; Y ) : (c) Suppose that (20) holds.
If

1

2
(�A� 1) �N < � < �max; (21)

where �max is such that

max
D2[0;Y ]

[	 (D)� � (D)] = 0; (22)

then there exist three steady-state deposit levels 0 < DL < DH < Y:

Assumptions 1 and 2 ensure that we can apply Proposition 1 and hence the dynamic system

in (16) characterizes any equilibrium. Figure 1 illustrates Proposition 2. In each panel of

this �gure, the dashed and solid curves show the functions 	 and � respectively. Given the

conditions in Proposition 2, the function � is strictly convex, strictly increasing, and satis�es

� (0) = 0. The function 	 is strictly concave and satis�es 	(0) = (�A� 1) �N=2��: Condition
(17) implies that 	(Y ) < � (Y ) : The intersection points of the curves for � and 	 give

the steady states. Figure 2 illustrates the corresponding phase diagrams in the backward

dynamics. The intersection points of the phase curve Dt = f (Dt+1) and the 45-degree line give

the steady states. The forward dynamics gives rise to a di¤erence correspondence exhibiting

�branching�with the possibility of two values of Dt+1 given Dt, corresponding to the increasing

and decreasing branches of f in Figure 2. (See section 4 below.)
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Under the condition in (18), 	(0) > � (0) = 0: By (17), 	(Y ) < � (Y ) : Thus the two curves

for � and 	 intersect only once as illustrated on the left panel of Figure 1. The intersection

point gives the unique steady-state deposit level D�: If the following condition��f 0 (D�)�� = ��	0 (D�) =�0 (D�)�� < 1
is satis�ed, then D� is locally stable in the backward dynamics and hence is locally unstable

in the forward dynamics: trajectories originating in the local neighborhood of D� will diverge

from D�. Since fDtg is non-predetermined, Dt = D� for all t is the unique stable rational

expectation solution. By contrast, if jf 0 (D�)j > 1; then D� is locally unstable in the backward
dynamics and hence is locally stable in the forward dynamics8. This implies that, for any initial

value of D0 in the neighborhood of D�; the solution Dt will converge to D�: Thus equilibrium

is indeterminate in the neighborhood of D�.

Under the condition in (19), 	(0) = 0 and the two curves � and 	 intersect twice as

illustrated in the middle panel of Figure 1. The origin is an intersection point. The other

intersection point gives the positive steady-state deposit D��: The analysis of the stability of

this steady state is the same as in the previous case. If condition (20) holds, then we can check

that f 0 (0) > 1 so that 0 is an unstable steady state in the backward dynamics. This means that

for any initial value D0 > 0 in the neighborhood of 0; the equilibrium path Dt will converge

to zero. Thus a bank run will eventually occur starting from any su¢ ciently small amount of

deposits. The middle panels of Figures 1 and 2 illustrate this case. If condition (20) is violated,

the bank run equilibrium is the unique steady state.

Under the condition in (21), 	(0) < 0 and the two curves � and 	 also intersect twice as

illustrated in the right panel of Figure 1. Since the right-hand side of the equilibrium system

in (16) is max f	(D) ; 0g ; zero deposit is also a steady state. This steady state is unstable in
the forward dynamics since f 0 (0) = 0. The analysis of the stability of the two positive steady

states DL and DH will be similar to the one given above. In particular, the low steady state DL

is unstable in the backward dynamics and stable in the forward dynamics. But the high steady

state DH can be either stable or unstable in the backward dynamics depending on parameter

values.

Note that if � > �max; then � (D) > 	(D) for all D: The gain from risk taking is always

larger than the loss. Depositors will never lend to banks (Dt = 0) and hence bank run is the

8Since the forward dynamics is given by a di¤erence correspondence and exhibits branching, the local stability
of D� can be established only if we restrict attention to those local equlibrium trajectories originating in the
neighborhood of D� on the decreasing branch of f: See section 4 below.
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Figure 2: Phase diagram for the backward dynamics.

unique equilibrium.

From the analysis above, a crucial condition for a bank run equilibrium to exist is that

� � �max. This condition depends on economic fundamentals. They are more likely to hold

when � is large, A is small, or �N is small. This means that a bank run is more likely to happen

if the bank is more cost ine¢ cient, the investment is less pro�table, or the bank net worth is

lower.

An important feature shown in Figure 2 is that the phase curves are hill-shaped. This

feature comes from the fact that the loss from risk taking 	(D) or the franchise value of the

bank is hill-shaped. The convexity of R (D)D is crucial for this shape. We will show in the

next section that the global dynamics can exhibit complex behavior such as chaos and cycles.

3.2 Incentive Constraints and Multiple Equilibria

Why can multiple steady states exist? We use the right panel of Figure 1 to illustrate the

intuition. We ignore the trivial steady state at the zero deposit level. When the deposit level

D is increased gradually from zero, the gain from risk taking � (D) rises. In the mean time

the opportunity cost of risk taking or the continuation value from the future banking business,

	(D) ; also rises from a value below � (D). At some high value of D, the cost exceeds the gain.

Thus, by the intermediate value theorem, there is a value DL such that � (DL) = 	 (DL) :
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This value gives a steady-state equilibrium. When the deposit level is increased further from

DL; the opportunity cost of risk taking 	(D) will exceed the gain � (D). Such a deposit level

cannot be an equilibrium. But when the deposit level is su¢ ciently high, the increased deposit

rate R (D) causes the opportunity cost of risk taking or the continuation value from the future

banking business to decline. Since the gain from risk taking always increases with borrowings or

deposits, � (D) will exceed 	(D) eventually. By the intermediate value theorem, there exists

another value DH > DL such that � (DH) = 	 (DH) : This value DH gives another steady

state equilibrium.

So far we assumed that banks are competitive and showed how multiple equilibria and two

steady states can exist. Along an equilibrium, say at the stationary equilibrium DL; a unilateral

increase in the deposit rate Rt that attracts deposits from other banks may seem pro�table

if the incentive constraint continues to hold as other banks follow suit within the period. For

example, in a stationary equilibrium where Dt = DL; raising the interest rate to R (DH) when

all other banks follow suit can result in higher pro�ts if the pro�ts from investing in the risky

asset �(Ar � Rt (Djt))Djt are increasing in Djt: Such a simultaneous move to DH driven by

seeking higher pro�ts is an equilibrium because the incentive constraint also binds at DH :

However, if there is a lag in the response of other banks, then the bank initiating the response

may attract a large amount of deposits away from other banks. For a large in�ow �Djt; since

A � Rt < � (Ar �Rt) ; the value of investing in the risky project will dominate the value of
staying with the safe project. Therefore this bank will deviate by investing in the risky project.

Even if the bank initiating the raise in Rt commits to limiting deposit intakes or staying with

the safe project, this will not be credible. Therefore the depositors will not trust the lone bank

o¤ering the higher return. They will withhold their deposits, and competing banks will not

follow suit in raising their rates. Therefore the initial equilibrium at DL will remain. However

if banks could coordinate on selecting Rt and D (Rt) across equilibria at which (3) holds, they

will coordinate on the most pro�table equilibrium.

3.3 Example

We now give an explicitly solved example. Let the deposit supply function be Rt = a + bDt;

where a > 0 and b > 0 are some constants. Let

� � 1

2
(�A� 1) �N � �:
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Then

� (D) = D [�Ar �A+ (1� �) (a+ bD)] ;

	(D) = � + �� (Ar � a� bD)D:

The equation � (D) = 	 (D) becomes a quadratic equation

b ((1� �) + ��)D2 + (�Ar (1� �)�A+ (1� � + ��)a)D � � = 0:

We �rst solve the steady-state system � (D) = max f	(D) ; 0g explicitly. When � > 0;

there is a unique positive steady state

D� =
��1 +

p
�21 + 4�0�

2�0
> 0;

where

�0 � b (1� � + ��) > 0;

�1 � � (1� �)Ar �A+ (1� � + ��)a:

When � = 0; there are two steady states 0 and

D�� =
��1
�0

> 0;

where we assume �1 < 0; which ensures that (20) is satis�ed.

When � < 0; 0 is a steady state. We assume that �21 + 4�0� > 0; which ensures that (22)

holds. Then there are two positive steady states

DH =
��1 +

p
�21 + 4�0�

2�0
> DL =

��1 �
p
�21 + 4�0�

2�0
> 0:

We can also solve for the backward dynamic system

Dt =
�� +

q
�2 + 4 (1� �) bmax f	(Dt+1) ; 0g

2 (1� �) b � f (Dt+1) ;

where � � �Ar �A+ (1� �) a: Since 	(D) is quadratic, f is not invertible and hill-shaped.

4 Complex Equilibrium Dynamics, Cycles, and Chaos

In addition to multiple steady states, our model can exhibit complicated equilibrium dynamics.9

The trajectories of equilibrium deposits described by (16) exhibit �branching�since f (Dt+1) is

9For an early application of chaotic dynamics in equilibrium OLG models, see Benhabib and Day (1982).
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not invertible: given Dt; the value of f (Dt+1) is not uniquely pinned down, as shown in Figure

2. There can be two possible choices for Dt+1 given Dt; one for each of the branches of f (Dt+1)

to the right and left of its peak. One possibility is to introduce a selection mechanism for the

branch at each t that is possibly a stochastic sunspot process. This is the approach followed by

Christiano and Harrison (1999), and can obviously generate complicated equilibrium dynamics

under the assumption that banks coordinate on such a sunspot. One can also construct a wide

class of examples for the function f (Dt+1) whose dynamics exhibits additional complexity: the

well-de�ned backward dynamics of the system can exhibit chaotic dynamics in the sense of

Li and Yorke (1975). This implies that the dynamics will give rise to periodic cycles of every

order, some of which will be stable,10 as well as an in�nite number of aperiodic or chaotic

trajectories that are not asymptotic to cycles or �xed points. Furthermore the dynamics will

exhibit sensitive dependence on initial conditions in that, for any � > 0, any D > 0 and a

neighborhood of D; there exists y in the neighborhood and an integer n such that the distance

jfn (D)� fn (y)j > �; where fn denotes the n0th iterates of f:
This chaos however is in the backward dynamics of our model. We can follow Grandmont

(1985) to construct a forecasting rule for Dt+1 by the banks that will sustain any cycle of order

k: For example the forecast functionDt+1 = fe (Dt�1) with fe (DH) = DH will not only convert

the backward dynamics under f to forward "learning" dynamics, Dt = f(fe (Dt�1)) but clearly

sustain the steady state DH : Similarly, a a period three cycle,
�
Dl; Dm; Dh

�
can be sustained

by a forecast function Dt+1 = fe (Dt�1; Dt�2) for which Dh = fe
�
Dm; Dl

�
; Dm = fe

�
Dl; Dh

�
and Dl = fe

�
Dh; Dm

�
:11 In the same way, forecast functions with k� 1 lagged arguments can

be constructed to sustain a cycle of any order k, although they get cumbersome for long cycles.

The above construction permits us to show that if we get chaos in backward dynamics,

implying the existence of cycles of every order, that those cycles can be sustained under forward

dynamics with an appropriate forecasting rule which is correct in the rational expectations

sense. The question of establishing chaos for the original forward dynamics with branching

when the backward map is chaotic has also been addressed by considering the full set of

possible forward orbits consistent with the multi-valued forward map. Forward iterates of Dt
10 If he Schwartzian derivative of f;

S =
f 000

f 0
� 3

2

�
f 00

f 0

�2
is negative at every D except at the point where f 0(D) = 0 or is unde�ned; then there is a unique stable cycle.
11See Grandmont (1985) for further technical assumptions on the forecasting rule. As also shown in Grandmont

(1985), if the cycle is locally stable under backward dynamics, it will also be locally stable in the foreward
"learning" dynamics.
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will now consist of sets rather than points. Applied to such sets it is possible to show that

if the backward dynamics exhibit chaos, sensitive dependence on initial conditions in terms

of sets de�ned by orbits will still obtain in the forward dynamics. Of course the backward

and forward dynamics will also share the cyclic trajectories. Kennedy and Stockman (2008)

show that under appropriate conditions forward dynamics are chaotic if and only if backward

dynamics are chaotic.

It is of course easy, under conditions of multiple equilibria, to construct sunspot equilibria

that coordinate expectations with the extrinsic uncertainty of a sunspot variable.12 Since such

constructions are by now quite standard, we leave this task to the reader.

We next use the linear deposit supply function studied in section 3.3 to construct numerical

examples of cycles and chaos.

The Case of Two Positive Steady States It is straightforward to construct examples of

multiple equilibrium paths when there are two positive steady states. Consider �rst setting the

parameters of our economy at the values give by � = 0:99; A = 1:1; Ar = 1:2; � = 0:9; b =

1; a = 1; � = 0:447; and �N = 10:13 In this case, � = (�A � 1) �N=2 � � = �0:002: The left
panel of Figure 3 illustrates the functions � and 	 and the right panel illustrates the function

f: We can compute two positive steady states, DL = 0:0287 and DH = 0:0704: The function f

is monotonic in the interval (DL; DH). Trajectories originating in interval (DL; DH ] converge

to DH and diverge from DL, implying that in forward dynamics they converge to DL: We

have therefore a continuum of equilibria already, even con�ning ourselves to one branch under

forward dynamics and without resorting to jumping across branches.

Next we construct examples in our model of robust cycles of period two and three under

backward dynamics. We reset the parameters of our model as A = 1:2; Ar = 1:255; � =

0:95; b = 1; a = 1, � = 0:942; and keep � = 0:99 and �N = 10: Figure 4 plots the functions

f; f2; and f3: We �nd that the 45-degree line crosses f at the downward sloping branch. The

domain for deposits is given by [0; f (Dmax)] = [0; 0:2440]; where Dmax achieves the maximum

of f (D) : The function f now maps the invariant interval I into itself; where the interval I

=
�
f2 (Dmax) ; f (Dmax)

�
= [0:0120; 0:2440].

There are now two positive steady states, DL = 0:0107 and DH = 0:1888; both of which

are locally unstable in the backward dynamics. The high steady state DH is surrounded by a

12For example one can construct sunspot equilibria that simply randomizes across the two stationary equilibria.
13Picking �N is equivalent to picking the parameter �:
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two-period cycle with coordinates (0:0914; 0:2254) as illustrated on the left panel of Figure 5.

The intuition is as follows. When bankers expect the future deposits to be at the high level

0:2254; the equilibrium deposit rate will be too high, causing the bank pro�ts and franchise

value to be low. This tightens the current incentive constraint, causing the bank to attract

a low level of deposits at 0:0914: On the other hand, when the future deposits are expected

to be at the low level 0:0914, the bank will have to pay a low deposit rate, causing the bank

pro�ts and franchise value to be high. This relaxes the incentive constraints and can support

a high current level of deposits at 0:2254: These dynamics are self-ful�lling and constitute a

period-two cycle equilibrium.

Furthermore in our example the backward dynamics under f produce two unstable period-

three cycles with coordinates (0:0348; 0:1092; 0:2393) and (0:0493; 0:1512; 0:2361) : We can

use any one of these two cycles to discuss the intuition, say the �rst one (see the right panel of

Figure 5). In period t+1; when bankers expect deposits in period t+2 to be at the high level

Dh � 0:2393; the deposit rate is too high, causing the bank pro�ts and franchise value to be low.
This tightens the incentive constraint and supports the low deposit level Dl = f

�
Dh
�
= 0:0348:

In period t; when bankers expect the deposits at date t + 1 to be at the low level Dl, they
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also expect the deposit rate at t+ 1 to be low and hence the franchise value to be high. This

can support a period-t deposit level Dm = f
�
Dl
�
= 0:1092; which is higher than Dl but lower

than Dh: Importantly, this deposit level is on the increasing branch of the backward map f:

This implies that bankers believe that the period-t franchise value of the bank at Dm will be

higher than at Dl: This allows the incentive constraint to be relaxed in period t � 1 and can
support a high deposit level Dh = f (Dm) : These dynamics are also self-ful�lling and constitute

a period-three cycle equilibrium.

Note that the periodic cycles lie above DL: Of course the cycles in backward dynamics are

also cycles in forward dynamics. Having shown the existence of period-three cycles under the

continuous function f : I ! I; we can immediately apply the theorem of Li and Yorke (1975) to

establish the existence of an in�nite number of distinct aperiodic trajectories as well as sensitive

dependence on initial conditions. Formally, we can verify that the example satis�es the Li and

Yorke condition for the existence of chaotic dynamics for the backward map f : there exists a

D in the interval (DL; DH) such that f3 (D) � D < f (D) < f2 (D) :14

14The emergence of chaos through succesive bifurcation of cycles has been characterized in the classic work of
Sarkovskii (1995).
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The Case of a Unique Steady State Let � = 0:99; A = 1:2; Ar = 1:27; � = 0:94;

a = 0:99; b = 0:99; �N = 10; and � = 0:938: In this case there is a unique steady state at 0:2207

as illustrated in Figure 6. The domain for deposits is given by [0; 0:2900] : The function f now

maps the invariant interval I into itself; where the interval I = [0:0015; 0:2900] : There is a two-

period unstable cycle with the periodic orbit (0:0960; 0:2680) : There are two unstable period-

three cycles with coordinates (0:0222; 0:1215; 0:2858) and (0:0384; 0:1684; 0:2823) : As discussed

above, we can apply Li and Yorke (1975) to establish the existence of chaotic equilibria. Figure

7 illustrates how a two-period cycle and two three-period cycles can occur. The intuition is

similar to that discussed earlier.

The above possibilities for the equilibrium trajectories of deposits, with sunspot selection

under branching, cycles of every order under forward learning dynamics, and possibilities of

chaos on dynamic sets induced by the multi-valued forward maps are extremely rich and very

complex. It would be very hard for competitive banks and depositors to have the foresight to

coordinate on one of the many complicated equilibria presented here. The inherent instabilities

associated with the rich multiplicity of non-stationary equilibria is likely to lead to coordination

failure and forecasting errors. The di¢ culty of coordinating on non-stationary equilibria may
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lead banks to unexpected default or to encourage speculative investments in risky assets. Sta-

tionary steady state equilibria however, possibly one with high interest and high deposits, and

another with low interest and low deposits, are much more likely to emerge as focal points for

coordination, especially if guided by the appropriate regulation of leverage ratios. We therefore

focus our attention on the stationary equilibria and consider the role of regulation and of min-

imum leverage ratios in order to minimize the possibilities multiple equilibria with consequent

coordination failures, defaults, and the need for bailouts.

5 Banking Regulation and Leverage Restrictions

Our model suggests that under the existence multiple and possibly chaotic equilibria and

�branching,�the banking system may not function well, and the economy may face bank runs

requiring costly bailouts. It is therefore natural to ask what type of policies can prevent such

undesirable outcomes. In this section we use our baseline model to evaluate the consequences

of di¤erent policies.

Proposition 2 establishes conditions for the existence of two stationary rational expectations

equilibria with positive deposits, DH and DL: In addition we provided examples to show that

there exist cyclic, chaotic, and branching non-stationary equilibria. Under these circumstances

coordinating agent expectations on a particular equilibrium may prove to be very di¢ cult.

In uncertain times, and given the di¢ culty of coordinating expectations on a particular equi-

librium, some pessimistic banks may choose to default, or may engage in Ponzi-like risky

investments that divert equity returns to managers and can result in default. Such defaults,

especially if they involve large �too big to fail� banks or occur in batches due to contagion,

can be very costly in terms of freezing the �nancial system. They may require costly bailouts

to curtail further runs, maybe even lead to the fDtg = f0g equilibrium. Banking regulators
then may prefer to eliminate the high deposit and high leverage equilibrium fDHg to reduce
the possibility of coordination failures and default whose social costs that can be particularly

large under high leverage. Bankers on the other hand can argue that the cost of eliminating

fDHg as an equilibrium is much too high in terms of forgone bank lending, bank pro�ts, as well
as forgone investment and output for the economy as a whole. They may also point out that

constraining banks can lead to disintermediation, and to the emergence of large, less regulated,

and still �too big to fail�shadow banks.

Eliminating the high deposit stationary equilibrium at fDHg may be achieved by specifying
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a maximum bank size, or alternatively by a minimum leverage ratio LR (de�ned as the ratio

of bank capital N to total assets D + N) for banks.15 Simply imposing a limit on bank

size by specifying a maximum deposit amount, �D; may achieve this objective. Such a limit

adds an additional constraint to the bank optimization problem and eliminates all equilibrium

trajectories on whichDt > �D. The only ones that remain are those trajectories for which the size

constraint remains slack: they are the ones that locally converge toDL in the forward dynamics.

In particular such remaining equilibrium trajectories remain on the increasing branch of f; and

cyclic as well as chaotic equilibria are ruled out. We note that imposing a ceiling on the deposit

rate R, as recently proposed by Hellmann, Murdock, and Stiglitz (2000), would also eliminate

the high leverage equilibrium fDHg in the same fashion.
Recent policies however have been formulated in terms of leverage ratios or risk adjusted

capital requirements. In addition, under the Volcker Rule, banks are prohibited from investing

in some risky assets. In this section we will analyze the impact of these policies. We will also

analyze the impact of the credit policy recently imposed in the Great Recession.

5.1 Leverage Ratio Restrictions

We �rst discuss the impact of the policy of leverage restrictions or capital requirements. We

model this policy by the following constraint

Djt � $Njt: (23)

This constraint will alter the optimization problem of a bank j: the optimal bank equity is no

longer �N: We therefore reconsider the bank optimization problem. We still assume that the

deposit supply function is linear,

Rt = a+ bDt:

We focus on the case with (�A � 1) �N=2 < � < �max, so there are multiple steady states

equilibrium (see Proposition 2). We want to show a leverage ratio or capital requirement

policy can eliminate the possible multiple equilibria.

Bank j�s optimization problem is described by the dynamic programming problem (6)

subject to (3) and (23). The incentive constraint (3) can be written as (7).

15This policy can be equivalently speci�ed as a minimum capital requirement ratio. Note that Gertler and
Karadi (2011) and Gertler and Kiyotaki (2013) de�ne the leverage ratio as (N +D) =N: According to the Basel
Accords, the tier 1 capital ratio is de�ned as the ratio of tier 1 capital to risk-adjusted assets and the leverage
ratio is de�ned as the ratio of tier 1 capital to average total consolidated assets. In our model we do not
distinguish between these two types of assets or di¤erent tiers of bank capital.

23



We will solve for an equilibrium in which A > Rt; �(Ar �Rt) > A�Rt; and the incentive
constraint (7) will never bind. We can then ignore (7) and show that the constraint in (23)

always binds, i.e., Djt = $Njt:

Conjecture that the value function takes the following form:

Vt(Njt) = [A+$(A�Rt)]Njt + vt; (24)

where vt is a term independent of Njt: Substituting this conjecture into (6) and using the

�rst-order condition with respect to Njt+1; we can show that

Njt+1 = � [(�A� 1) + �$(A�Rt+1)] :

Thus Njt+1 is independent of j and Njt. We write this solution as

Nt+1 = �N + ��$(A�Rt+1); (25)

where we recall �N = �(�A� 1): Plugging this expression and (24) into (6), we can show that

vt = �Njt+1 � '(Njt+1)� �+ �EtVt+1(Njt+1)

= �[A+$(A�Rt+1)]Nt+1 �Nt+1 �N2
t+1= (2�)� �+ �vt+1

=
1

2
[(�A� 1) + �$(A�Rt+1)]Nt+1 � �+ �vt+1: (26)

In equilibrium,

Rt+1 = a+ bDt+1 = a+ b$Nt+1: (27)

Plugging this expression into (25), we can derive

Nt+1 =
�N + ��$(A� a)
1 + ��b$2

� N�: (28)

Substituting (27) and (28) into (26), we can derive that

vt = v
� �

1
2 [(�A� 1) + �$(A�R (N

�))]N� � �
1� � for all t;

where

R (N�) � a+ b$N�:

For A > Rt to hold in equilibrium, we need to assume

A > a+R (N�) : (29)
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For �(Ar �Rt) > A�Rt to hold in equilibrium, we need to assume

�(Ar �R (N�)) > A�R (N�) : (30)

Finally, for the incentive constraint (7) to never bind, we need to assume

[�(Ar �R(N�))� (A�R(N�))]$N� <
1
2 [(�A� 1) + �$(A�R (N

�))]N� � �
1� � : (31)

We summarize the preceding analysis in the following result:

Proposition 3 For parameter values �; a; b; A; Ar; �; �; �N; and $ such that (29)-(31) hold,

there exists a unique equilibrium in which Nt = N�; Rt = R (N�) ; and Dt = $N� for all t:

We use a numerical example to illustrate this proposition. Set � = 0:99; A = 1:2;

Ar = 1:255; � = 0:95; b = 1; a = 1; � = 0:942; and �N = 10. Without the capital require-

ment constraint (23), we have shown in section 4 that there are two steady-state equilibria

DL = 0:0107 and DH = 0:1888, as well as other complex equilibria. If we impose the capital

requirement constraint (23) and set $ = 0:01886, then we can show that conditions (29)-(31)

hold and the unique equilibrium is given by Nt = N� = 10:0111; Dt = 0:18876; and Rt = 1:1888

for all t. The complex equilibrium dynamics are eliminated. The intuition is that with the

constraint (23), the deposit Dt is no longer linked to the expectations about future bank values.

Thus self-ful�lling beliefs about future values cannot be initiated.

5.2 The Volcker Rule

Alternatively, we may also consider a type of Volcker Rule that directly prohibits investing

in risky assets for which A > �Ar (although bankers may object because they disagree about

the direction of the inequality). We now study the consequence of such a rule in various

economic environments. Without the risky asset, the bank�s problem is given by the dynamic

programming problem (6). But there is no incentive constraint (3). Since banks cannot engage

in risk shifting, perfect competition will then eliminate bank pro�ts from deposits. The interest

rate on deposits will adjust so that Rt = A. Optimal bank equity will again be Njt+1 =

�(�A� 1) � �N . To fully characterize the value function we again consider two cases. The �rst

case is 1
2(�A � 1) �N � � < 0. We have shown before that without a prohibition on investing

in the risky asset, there are potential multiple steady states and complex dynamics. With a

prohibition on the risky asset the results are di¤erent.

25



It is straightforward to show that if (�A � 1) �N=2 < �, then all banks will exit in a com-

petitive equilibrium under a rule that directly prohibits investing in risky assets. To see this,

we only need to consider the problem of a single bank, since banks are identical. If a bank

continues to operate, then

max
Njt

f�Njt+1 � '(Njt+1)� �+ �EtVt+1(Njt+1)g =
1
2(�A� 1) �N � �

1� � < 0:

When Rt = A; banks make no money on deposits. The condition (�A� 1) �N=2 < � just means
that �xed costs cannot be covered by pro�ts on bank equity. Hence the bank will choose to exit.

The prohibition on investing in the risky asset e¤ectively removes the moral hazard problem

and makes constraint (3) redundant. But the cost is that bank pro�ts from deposits are driven

to zero so that �xed costs cannot be covered.

In the case where (�A � 1) �N=2 > �; a rule prohibiting investments in risky assets is still
be feasible and competition would raise the deposit rate fRtg until bank pro�ts from deposits

are driven to zero, a �rst-best equilibrium in our benchmark model. Nevertheless, it may not

be easy to prevent banks from investing in o¤-balance-sheet risky assets16. This may lead to

the type of instability that the central bank want to avoid. To make this point, we can extend

our benchmark model to have three types of projects. We refer to the two types studied before

as the safe project and the bad risky project. We introduce a third type: a good risky project

that yields returns Ar > 1 with probability � and ar 2 (0; 1) with probability 1 � �. Good
risky projects may be closely monitored by restricting them to collateralized loans to �rms or

households, with limitations and controls on the valuation of collateral assets like houses, or

by risk weighing bank assets. Thus we suppose that good risky projects are not subject to the

incentive problem.

Banks may still invest in a bad risky project o¤ the balance sheet, which may be hard to

monitor. Assume that the safe project yields return A > 1 and that AH � Ar� + (1� �)ar >
A > Ar�. Here by construction the good risky project dominates the bad risky project so

banks will never invest in the bad risky project. Competition among banks will then leads to

Rt = AH and we then have Nt+1 = �(�AH � 1) > �N . Under a stringent rule that prohibits

investing in any risky asset, competition would result in Rt = A. Since AH > A, there would

be e¢ ciency loss. If the prohibition rule succeeds preventing only the good risky project the

16For example, a bank can sponsor a a mutual fund to purchase risky stocks. These o¤-balance-sheet assets
can be quite signi�cant. For example Citibank had an estimated $ 960 billion in o¤-balance-sheet assets in 2010,
roughly equal to 6% of the GDP of the US.
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situation may even be worse, as we have shown in section 4 that with only a bad risky asset

there can be chaotic equilibria in the case with 1
2(�A� 1) �N � � > 0.

The Volcker Rule, �nally implemented in January 2014 in the United States tries, however

imperfectly, to strike a balance. It attempts to exempt investments in good risky projects from

its prohibitions but prohibits risky projects that are likely to be undertaken for risk-shifting

purposes, and that may require costly bailouts.17

5.3 Credit Policy

We have focused on policies that achieve stability by removing equilibrium multiplicity. We

now study the possibility that the central bank can support the equilibrium with high deposits

using some unconventional monetary policies.18

Let Ljt be the discount window lending of the central bank to bank j. We �rst assume that

the funds lent by the central bank are perfectly monitored, and hence are not subject to the

risk-shifting problem studied before. Bank j�s decision problem becomes

Vt(Njt) = max
Njt+1;Djt

A(Njt +Djt + Ljt)�Rt(Djt + Ljt)

+ f0;�Njt+1 � '(Njt+1)� �+ �EtVt+1(Njt+1)g ; (32)

subject to the incentive constraint

Vt(Njt) � ANjt + (A�Rt)Ljt + �(Ar �Rt)Djt: (33)

By (32), this incentive constraint is still equivalent to (7).

Next we assume that the funds lent by the central bank cannot be perfectly monitored

and hence are subject to the risk-shifting problem studied above. In this case the incentive

constraint becomes

Vt(Njt) � ANjt + �(Ar �Rt) (Djt + Ljt) : (34)

17See for example, http://www.sec.gov/rules/�nal/2013/bhca-1.pdf
In particular the Volcker Rule "generally prohibits banking entities from engaging as principal in proprietary

trading for the purpose of selling �nancial instruments in the near term or otherwise with the intent to resell
in order to pro�t from short-term price movements" but speci�cally exempts from this prohibition the following
categories : "Trading in U.S. government, agency and municipal obligations; Underwriting and market making-
related activities; Risk-mitigating hedging activities; Trading on behalf of customers; Trading for the general
account of insurance companies; and Foreign trading by non-U.S. banking entities."

18Cecchetti and Disyatat (2010) discuss cental bank credit and liquidity policies in times of �nancial market
instability. In particular they note (see page 32) that the basic function of open market operations and liquidity
management in such times is "... to regulate the level of aggregate reserves to ensure smooth functioning of the
payments system and facilitate the attainment of the relevant policy interest rate target."
.
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Let eDjt � Djt + Ljt: The bank�s problem is the same as the one studied in section 2 with the

di¤erence that Djt is replaced by eDjt:
Let DH > 0 and RH denote the larger steady-state deposit level and the associated interest

rate characterized in Proposition 2. Suppose that the central bank establishes the following

policy rule,
A�RH
A�Rt

DH �Dt = Lt; (35)

where Dt and Lt represent the aggregate deposit level and the aggregate discount loan volume.

Assume that each bank takes the same level of discount loans so that Ljt = Lt: According to

this rule, Dt = Djt = DH and Ljt = Lt = 0 for all t and j constitute an equilibrium. We will

show that this is the only equilibrium.

Proposition 4 Suppose that the assumptions in part (c) of Proposition 2 hold so that there

are two positive steady states DH > DL > 0. Let the central bank impose the policy rule in

(35). Then there is a unique equilibrium in which Dt = DH for all t irrespective of whether

there is a risk-shifting problem with discount loans.

The preceding proposition shows that a credit policy rule in (35) can achieve stability

at a more e¢ cient steady state. The intuition for the stability is as follows. The feedback

credit policy rule (35) sets a countercyclical discount window lending to banks. This makes

the total one-period pro�ts from deposits and government loans always equal to a constant:

(A � Rt)(Ljt +Djt) = (A � RH)DH . This in turn makes the franchise value of the bank vt a
constant. Since the amount of deposits that a bank can attract depends on its franchise value,

this policy then automatically stabilizes households�expectations and hence the deposit level.

It is worth pointing out that since the economy always stays in the steady state equilibrium,

Lt = 0 for all t: By setting the policy rule given in (35), the central bank will never actually

intervene along an equilibrium path. Of course we need the central bank to be credible and

commit to the rule.

6 Conclusion

Banking regulations like leverage ratios, risk weighted capital requirements, restrictions on

bank asset portfolios, central bank credit policies, and limits on bank size are imposed to

contain risk-shifting to depositors, and to prevent moral hazard under government deposit

insurance. Such regulations are aimed at minimizing the possibility bank insolvency, and to
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prevent costly �too big to fail�government bailouts. In this paper we highlighted the possibility

of multiple as well as complex dynamic equilibria that can generate �nancial fragility. Multiple

and chaotic equilibria may lead to the failure of expectation coordination even when banks

operate pro�tably under incentive constraints, and the franchise value of the bank exceeds the

value of taking excessive risks. Appropriate bank regulations can then be designed to help avert

the failure of expectation coordination that may lead to speculative and risky asset portfolios

and bank runs. We showed that standard banking regulations including capital requirements,

leverage ratios, restrictions on bank asset portfolios and credit policies can be targeted not only

to ameliorate moral hazard problems, but also to minimize the dangers of the multiplicity of

equilibria.
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Appendix

A Proofs

Proof of Proposition 1: See the main text in Section 2.2. Q.E.D.

Proof of Proposition 2: Since DR (D) is strictly convex, we can show that

�0 (D) = [�(Ar �R)� (A�R)] + (1� �)DR0 (D) > 0;

�00 (D) = 2 (1� �)R0 (D) +D (1� �)R00 (D) > 0:

Thus � is an increasing and strictly convex function satisfying � (0) = 0:

We can also show that 	 is strictly concave since

	00 (D) = ���
�
2R0 (D) +DR00 (D)

�
< 0:

Note that

	(0) =
1

2
(�A� 1) �N � �:

If condition (18) holds, then 	(0) > � (0) = 0: Condition (17) implies that 	(Y ) < � (Y ) :

By the intermediate value theorem, there is a positive solution D� 2 (0; Y ) to � (D) =

max f	(D) ; 0g : The positive solution is unique since � (D)�	(D) is strictly concave.
If condition (19) holds, then � (0) = 	 (0) : When condition (20) holds, 	0 (0) > �0 (0) :

Thus the curve 	(D)� � (D) slopes upward at the origin and then eventually declines below
the horizontal axis by (17). Thus there is a unique positive solutionD�� 2 (0; Y ) to the equation
� (D) = 	 (D) > 0:

If condition (21) holds, 	(0) < � (0) = 0: In addition,

max
D2[0;Y ]

	(D)� � (D) > 0 for � < �max:

Thus the concave function 	(D)�� (D) starts at a negative function at D = 0; continuously

increases to a positive maximum, and then decreases to a negative value at D = Y: It follows

from the intermediate value theorem that there are two positive solutions 0 < DL < DH < Y

to the equation � (D) = max f	(D) ; 0g : Q.E.D.

Proof of Proposition 3: See the text in section 5.1. Q.E.D.
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Proof of Proposition 4: Conjecture that the value function still takes the form Vt(Njt) =

ANjt + vt, where vt is a term independent of Njt: First, suppose that there is no risk shifting

problem for discount loans. Given the assumption that A > Rt and �(Ar �Rt) > A�Rt; the
incentive constraint (7) must bind. Using this equation and substituting the conjectured value

function and (35) into (32), we can derive that

vt =
1

2
(�A� 1) �N � �+ �vt+1 + (A�RH)DH : (A.1)

The only stable rational expectations solution is given by

vt =
1
2(�A� 1) �N � �+ (A�RH)DH

1� � � vH (A.2)

for all t: Notice that Proposition 2 implies that we must have

1

2
(�A� 1) �N � �+ (A�RH)DH > 0

for a positive steady-state deposit level to exist.

Using the conjectured value function and the incentive constraint (33), we can derive that

vt = (A�Rt)Ljt + �(Ar �Rt)Djt

= (A�RH)DH +Dt[�(Ar �Rt)� (A�Rt)]; (A.3)

where we have used (35) to derive the second equality.

Since �(Ar � Rt)� (A� Rt) > 0, the term Dt[�(Ar � Rt)� (A� Rt)] is increasing in Dt.
Thus there is a unique solution to (A.3) at DH .

Next suppose that there is a risk shifting problem for discount loans. Then the incentive

constraint becomes (34). Conjecture that the value function for the bank still takes the form

Vt(Njt) = ANjt + vt. By a similar method, we can show that the term vt satis�es

vt =
1

2
(�A� 1) �N � �+ (A�Rt) (Dt + Lt) + �vt+1

=
1

2
(�A� 1) �N � �+ (A�Rt)

�
A�RH
A�Rt

DH

�
+ �vt+1;

where we have used the policy rule to derive the second equation. Thus the unique rational

expectations solution is also given by (A.2). The incentive constraint (34) becomes

vt = �(Ar �Rt) (Dt + Lt) =
�(Ar �Rt)
A�Rt

(A�RH)DH ; (A.4)
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This equation determines a unique interest rate Rt. Notice that Proposition 2 implies that vH

and DH satisfy

vH = �(Ar �R(DH))DH : (A.5)

Combining the two equations above, we deduce that there is a unique equilibrium in which

Rt = R(DH) and hence Dt = DH for all t. Q.E.D.
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