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Section A provides proofs of all propositions in the main text. Section B provides proofs of

results in Section 5.3 of the main text. Section C analyzes the impact of foreign purchases of

domestic bonds. Section D describes data sources for Figure 1 in the main text.

A Proofs of all propositions

Proof of Proposition 1: We substitute the conjectured value function into the Bellman

equation and write it as

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt

= max
Hjt;Ijt;Bjt+1

RktKjt + PtHjt �Bjt � � jtIjt � PtHjt+1 +
Bjt+1
Rft

+�

Z
�t+1
�t

vt+1 (�)Kjt+1f (�) d� + �

Z
�t+1
�t

pt+1 (�)Hjt+1f (�) d�

��
Z
�t+1
�t

't+1(�)Bjt+1f (�) d�

subject to

Kjt+1 = (1� �)Kjt + Ijt (A.1)

Bjt+1
Rft

� �PtHjt+1; (A.2)

Hjt+1 � !Hjt; (A.3)
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and

0 � � jtIjt � RktKjt +
Bjt+1
Rft

�Bjt � Pt(Hjt+1 �Hjt): (A.4)

De�ning Qt = �
R �t+1

�t
vt+1 (�) f (�) d� and plugging (A.1) into the Bellman equation above,

we obtain (10) in the main text. More speci�cally, if Pt > �
R �t+1

�t
pt+1 (�) f (�) d�; then each

entrepreneur j wants to sell land so that Hjt+1 = !Hjt all all j: Then the land market cannot

clear. But if Pt < �
R �t+1

�t
pt+1 (�) f (�) d� ; then each entrepreneur j wants to buy as much

land as possible. Thus we must have Pt = �
R �t+1

�t
pt+1 (�) f (�) d� : Similarly we must have

1=Rft = �
R �t+1

�t
't+1 (�) f (�) d� :

Now the Bellman equation becomes

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt

= max
Hjt+1;Ijt;Bjt+1

RktKjt + PtHjt �Bjt � � jtIjt +QtIjt +Qt(1� �)Kjt: (A.5)

(i) By (A.5) and (A.4), when � jt � Qt; we must have

� jtIjt = RktKjt +
Bjt+1
Rft

�Bjt � Pt(Hjt+1 �Hjt): (A.6)

In addition, it follows from (A.2) and (A.3) that both the borrowing and resaleability constraints

bind. When � jt > Qt; it follows that Ijt = 0: Because Bjt+1 and Hjt+1 are canceled out in

the objective of (A.5), the entrepreneur is indi¤erent among the feasible choices of Bjt+1 and

Hjt+1:

(ii) Substituting the decision rules in part (i) into (A.5) and matching coe¢ cients, we obtain

vt(� jt) =

(
Qt
�jt
Rkt + (1� �)Qt if � jt � Qt;
Rkt + (1� �)Qt if � jt > Qt

; (A.7)

pt(� jt) =

(
Pt + (1� ! + !�)

�
Qt
�jt
� 1
�
Pt if � jt � Qt;

Pt if � jt > Qt
; (A.8)

't(� jt) =

(
Qt
�jt

if � jt � Qt;
1 if � jt > Qt

: (A.9)

Using equation (10) in the main text of the paper, and the de�nition of Qt; we can derive

equations (11)-(13) in the main text. The transversality conditions follow from the in�nite-

horizon dynamic optimization problem, e.g., Ekeland and Scheinkman (1986). Q.E.D.
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Proof of Proposition 2: By part (i) of Proposition 1, we can derive aggregate investment

It =

Z
�jt�Qt

1

� jt
[RktKjt + (1� ! + �!)PtHjt �Bjt] dj:

Since � jt is independently and identically distributed and since Kjt; Bjt; and Hjt are predeter-

mined, � jt is independent of these variables. By a law of large numbers, we obtain

It =

R
�jt�Qt

1
�jt
[RktKjt + (1� ! + �!)PtHjt �Bjt] djR

�jt�Qt dj

Z
�jt�Qt

dj

= E

�
1

� jt
[RktKjt + (1� ! + �!)PtHjt �Bjt] j� jt � Qt

� Z
�jt�Qt

dj

=

Z
�jt�Qt

1

� jt
dj

�
Rkt

Z
Kjtdj + (1� ! + �!)Pt

Z
Hjtdj �

Z
Bjtdj

�
= [RktKt + (1� ! + �!)Pt]

Z
��Qt

1

�
f (�) d� ;

where we have used the market-clearing conditions to derive the last equality.

By equation (1) in the main text and the labor market-clearing condition,

1 = Nt =

Z
Njtdj =

�
1� �
Wt

� 1
�
Z
Kjtdj =

�
1� �
Wt

� 1
�

Kt:

From this equation, we can derive other equations in the proposition. Q.E.D.

Proof of Proposition 3: The right hand side of equation (20) in the main text is strictly

decreasing in Qf . When Qf approaches the lower support of the distribution for � jt, the right-

hand side approaches in�nite. When Qf approaches the upper support of the distribution, the

right-hand side approaches �� < 1��(1� �): Thus, by the Intermediate Value Theorem, there
is a unique solution Qf 2 (�min; �max) to equation (20) in the main text. Condition (21) in the
main text ensures that Cf > 0: Q.E.D.

Proof of Propositions 4 and 5: Equation (11) in the main text implies that the bubbly

steady-state Tobin�s Q, denoted by Qb, satis�es the equation,

��1 � 1
1� !(1� �) =

Z
��Qb

Qb � �
�

f(�)d�: (A.10)

By the Intermediate Value Theorem, if

��1 � 1
1� !(1� �) < �max

Z
1

�
f(�)d� � 1; (A.11)
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then (A.10) has a unique solution Qb 2 (�min; �max) :We can then derive the steady-state rental
rate of capital Rkb using equation (12) in the main text,

Rkb =
1� �(1� �)

�
R
max

�
1
� ;

1
Qb

�
f(�)d�

: (A.12)

We then use (18) in the main text to determine the steady-state capital stock Kb: The bubbly

steady-state investment, output, and consumption are given by Ib = �Kb, Yb = K�
b ; and

Cb = Yb� Ib; respectively. We use equation (15) in the main text to determine the steady-state
land price P;

P

Yb
=

1

1� !(1� �)

24 ���

1� �(1� �)

R
max

�
1
� ;

1
Qb

�
f(�)d�R

��Qb
1
� f(�)d�

� �

35 : (A.13)

We need P > 0 and Cb > 0 for the existence of a bubbly steady state.

The proof consists of two parts.

Part I. Suppose that the bubbly and bubbly steady states coexist. We then prove Propo-

sition 5 and the necessity of condition (24) in the main text.

Step 1. We prove Qb < Qf : By equation (20) in the main text,

1� �(1� �) = ��

R
max

�
1
� ;

1
Qf

�
f(�)d�R

��Qf
1
� f(�)d�

: (A.14)

Equation (A.13) and P > 0 imply that

Rkb <
�R

��Qb
1
� f(�)d�

:

Combining equation (A.12) and the preceding inequality, we can derive that

1� �(1� �) = �Rkb

Z
max

�
1

�
;
1

Qb

�
f(�)d�

< ��

"
1 +

1� F (Qb)
Qb
R
��Qb

1
� f(�)d�

#
:

Combining the preceding inequality with (A.14) yields

��

R
max

�
1
� ;

1
Qf

�
f(�)d�R

��Qf
1
� f(�)d�

< ��

"
1 +

1� F (Qb)
Qb
R
��Qb

1
� f(�)d�

#
:

This inequality is equivalent to the following inequality:

1� F (Qb)
Qb
R
��Qb

1
� f(�)d�

>
1� F (Qf )

Qf
R
��Qf

1
� f(�)d�

:
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Thus Qb < Qf :

Step 2. We prove Rkf > Rkb: The steady-state version of equation (12) in the main text is

given by

1 = �

�
(1� �) +Rk

Z
max

�
1

�
;
1

Q

�
f(�)d�

�
: (A.15)

The equation above implies that Rkf > Rkb since Qb < Qf :

Step 3. Because Rkb = �K��1
b < Rkf = �K��1

f , we have Kb > Kf . Hence, Yb = K�
b >

Yf = K�
b ; Ib = �Kb > If = �Kf . In addition, equation (13) in the main text implies that

1=Rfb = �
R
max(Qb� ; 1)f(�)d� < �

R
max(

Qf
� ; 1)f(�)d� = 1=Rff , i.e., Rfb > Rff :

Step 4. In the bubbly steady state, equation (11) in the main text implies that

1 = �

�
1 + (1� ! + !�)

Z
��Qb

Qb � �
�

f(�)d�

�
: (A.16)

Since Qb < Qf ; condition (24) in the main text must hold. This proves the necessity of (24) in

the main text as well as Proposition 5.

Part II. Now,we suppose that conditions (22), (23), and (24) in the main text hold. We

then prove that the bubbly and bubbleless steady states coexist.

Step 1. The right-hand side of (A.10) is strictly increasing in Qb: It is equal to 0 when

Qb = �min and equal to �max
R
1
� f(�)d� � 1 when Qb = �max: If condition (A.11) holds, then

(A.10) has a unique solution Qb 2 (�min; �max) by the Intermediate Value Theorem.
Step 2. By (A.16) and condition (24) in the main text, Qb < Qf ; where Qf is given by

equation (20) in the main text. By Step 2 of Part I, Rkb < Rkf : Condition (23) in the main

text implies that Rkf > Rkb > ��: By Proposition 3, a bubbleless steady state exists.

Step 3. To show the existence of a bubbly steady state, we must show Cb > 0 and P > 0:

Since

Cb = Yb � Ib = Yb � �Kb = Kb
�
�K��1

b =�� �
�
= Kb (Rkb=�� �) ;

condition (23) in the main text ensures that Cb > 0 holds. We now check P > 0: By (A.13),

P

Yb
=

1

1� !(1� �)

24 ���

1� �(1� �)

R
max

�
1
� ;

1
Qb

�
f(�)d�R

��Qb
1
� f(�)d�

� �

35
>

1

1� !(1� �)

24 ���

1� �(1� �)

R
max

�
1
� ;

1
Qf

�
f(�)d�R

��Qf
1
� f(�)d�

� �

35
=

1

1� !(1� �)

�
���

1� �(1� �)
1� �(1� �)

��
� �

�
= 0; (A.17)
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where the �rst inequality follows from Qf > Qb by Step 2 of Part II and the second equality

follows from equation (20) in the main text. Q.E.D.

Proof of Proposition 6: Denote by F the cumulative distribution function of � and de�ne

J(Qt) =
R Qt
�min

1
� f(�)d� . We can use Proposition 2 to show that the equilibrium system can be

described by the following four di¤erence equations:

Ct +Kt+1 � (1� �)Kt = K�
t ; (A.18)

Qt
Ct
= �

1

Ct+1

�
(1� �)Qt+1 + �K��1

t+1 [Qt+1J(Qt+1) + 1� F (Qt+1)]
	
; (A.19)

Pt
Ct
= �

Pt+1
Ct+1

f1 + (1� ! + !�)[Qt+1J(Qt+1)� F (Qt+1)]g ; (A.20)

Kt+1 � (1� �)Kt = [�K�
t + (1� ! + !�)Pt]J(Qt); (A.21)

for four unknowns fKt; Ct; Qt; Ptg. Only Kt is predetermined. The other three variables are
nonpredetermined.

Linearizing Pt around zero and log-linearizing Qt, Kt and Ct around their bubbleless steady

state values, we obtain

Cf
K�
f

Ĉt +
Kf
K�
f

K̂t+1 �
(1� �)Kf
K�
f

K̂t = �K̂t;

Q̂t � Ĉt = �Ĉt+1 � (1� �)[1� �(1� �)]K̂t+1 + �Q̂t+1;

Pt = � f1 + (1� ! + !�)[QfJ(Qf )� F (Qf )]gPt+1; (A.22)

K̂t+1 � (1� �)K̂t = �
f(Qf )

J(Qf )
Q̂t + ��K̂t + (1� ! + !�)

J(Qf )

Kf
Pt;

where Ĉt, K̂t; and Q̂t denote log-deviation from the steady state. We rewrite the system in the

following matrix form:

B

2664
Ĉt+1
K̂t+1
Q̂t+1
Pt+1

3775 = G
2664
Ĉt
K̂t
Q̂t
Pt

3775 ;
where

B =

26664
0 �Kf

K�
f

0 0

�1 �(1� �)(1� � + ��) � 0
0 0 0 B34
0 1 0 0

37775 ;
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G =

266664
Cf
K�
f

� (1��)Kf

K�
f

� � 0 0

�1 0 1 0
0 0 0 1

0 1� � + �� �
f(Qf )
J(Qf )

(1� ! + !�)J(Qf )Kf

377775 ;
with

B34 � �f1 + (1� ! + !�)[QfJ(Qf )� F (Qf )]g:

It is straightforward to check that G is invertible.

To study the local dynamics around the bubbleless steady state, we study the eigenvalues

of the matrix M � G�1B.
First, we check that 0 must be an eigenvalue of matrix M . Note that matrix B is singular

because its columns 1 and 3 are linearly dependent. Thus det(M) = det(M � 0 � I) = 0,

implying that 0 is an eigenvalue.

Second, note that

det(M �B34 � I) = det[G�1B �B34 �G�1G]

= det(G�1) � det(B �B34G)

= 0:

Thus B34 = �f1+(1�!+!�)[QfJ(Qf )�F (Qf )]g is an eigenvalue of matrixM . Let �1 � B34
denote this eigenvalue.

Third, we can show that the other two eigenvalues are positive real numbers, with one

greater than 1 and the other smaller than 1. Let �2 and �3 denote these two eigenvalues. We

can then write

det(M � �I) = �(�1 � �)(��2 + b�+ c);

where

b � 1

d

(
[1 + �(1� � + ��)] Cf

K�
f

+ (1� �)(1� � + ��)� f(Qf )
J(Qf )

Cf
K�
f

+(2� �)�f(Qf ) + ��
f(Qf )

J(Qf )

�
;

c � �1
d

"
�
Cf
K�
f

+ �K1��
f

f(Qf )

J(Qf )

#
;

d � (1� � + ��) Cf
K�
f

+ �(1� �)f(Qf ) + ��
f(Qf )

J(Qf )
> 0:
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Since c < 0, it follows that �2�3 > 0. We can also show that

�1 + b+ c = �(1� �)
d

Cf
Yf

�
(1� �) + (1� � + ��)f(Qf )

J(Qf )

�
> 0:

Thus the quadratic equation always has two real solutions, with one larger than 1 and the other

smaller than 1.

Without loss of generality, we suppose that �2 < 1 < �3. We then have two eigen-

values (0 and �2) inside the unit circle and one (�3) outside the unit circle. Whether the

local dynamic around the bubbleless steady state is determinate depends on whether �1 =

� f1 + (1� ! + !�) [QfJ(Qf )� F (Qf )]g is smaller than 1. By Proposition 4, when both the
bubbly and bubbleless steady states exist, condition (24) in the main text must hold, i.e.,

�1 = � f1 + (1� ! + !�) [QfJ(Qf )� F (Qf )]g > 1;

implying that the matrix M has two eigenvalues outside the unit circle and two eigenvalues

inside the unit circle. Since there are three nonpredetermined variables, this means that the

bubbleless steady state is a saddle with indeterminacy of degree 1.

When only the bubbleless steady state exists, we must have

�1 = � f1 + (1� ! + !�) [QfJ(Qf )� F (Qf )]g � 1:

If �1 < 1; then the matrix M has three eigenvalues inside the unit circles and one eigenvalue

outside the unit circle, implying that the local dynamic is determinate. If �1 = 1; then (A.22)

implies that Pt = Pt+1: Since limt!+1 Pt = 0, it follows that Pt = 0 for all t: In both cases,

there is a unique equilibrium, which is bubbleless. Q.E.D.

Proof of Proposition 7: See the proofs of Proposition 8 and Lemma 2. Q.E.D.

Proof of Proposition 8: Consider the equilibrium without bubble �rst. Let � = 1 and

! (1� �) = 0: Equation (12) in the main text becomes

Qt
(1� st)Yt

=
�

(1� st+1)Yt+1

�
�Yt+1
stYt

Z
max

�
Qt+1
�
; 1

�
f(�)d�

�
:

We can further reduce the above equation to

Qt
1� st

=
�

1� st+1
�

st

Z
max

�
Qt+1
�
; 1

�
f(�)d� : (A.23)

Equation (15) in the main text implies that

Kt+1 = It = �Yt

Z
��Qt

1

�
f(�)d� = stYt;
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or

st = �

Z
��Qt

1

�
f(�)d�: (A.24)

Hence the system of two di¤erence equations (A.23) and (A.24) determine the bubbleless equi-

librium trajectories for Qt and st. Clearly a constant steady state is a solution to the system.

The following lemma shows that this is the unique local solution.

Lemma 1 There is a unique local solution to the system of two equations (A.23) and (A.24),

which is the bubbleless steady state.

Proof: We use F to denote the cumulative distribution function of � and de�ne H (Qt) �R
��Qt

1
� f(�)d� . In the steady state, equations (A.23) and (A.24) imply that

Qf =
��

sf
[QfH (Qf ) + 1� F (Qf )] ;

sf = �H (Qf ) :

Then log-linearizing the system around this steady state, we obtain

Q̂t +
sf

1� sf
ŝt =

sf
1� sf

ŝt+1 � ŝt + �Q̂t+1;

ŝt =
f (Qf )

H (Qf )
Q̂t:

We rewrite the above two equations as

Bf

�
ŝt+1
Q̂t+1

�
= Gf

�
ŝt
Q̂t

�
;

where

Bf =

"
sf
1�sf �

0 0

#
;

Gf =

24 1
1�sf 1

1 � f(Qf)
H(Qf)

35 :
In order to understand the local dynamics around this steady state, we need to study the two

eigenvalues of the matrix G�1f Bf . They are 0 and �f where

�f =

sf
1�sf

f(Qf)
H(Qf)

+ �

1
1�sf

f(Qf)
H(Qf)

+ 1
:
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It is straightforward that 0 < �f < 1 since 0 <
f(Qf)
H(Qf)

sf
1�sf <

1
1�sf

f(Qf)
H(Qf)

and 0 < � < 1. This

means the two eigenvalues are both inside the unit circle. Therefore there is a unique local

solution to the system since both st and Qt are nonpredetermined.

The lemma above shows that the steady state is the unique solution to the system of two

equations (A.23) and (A.24) for st and Qt in the neighborhood of the bubbleless steady state.

We then use these two equations to determine Qf by

1

�
� 1 = 1� F (Qf )

Qf
R
��Qf

1
� f(�)d�

: (A.25)

Since limQf!�min
1�F (Qf )

Qf
R
��Qf

1
�
f(�)d�

= +1 and limQf!�max
1�F (Qf )

Qf
R
��Qf

1
�
f(�)d�

= 0, by the Interme-

diate Value Theorem, there is a unique solution in (�min; �max). Once Qf is determined, then

the saving rate is given by

sf = ��

Z
max

�
1

�
;
1

Qf

�
f(�)d�: (A.26)

from equation (A.23).

We need sf 2 (0; 1) for a bubbleless equilibrium to exist. This condition is equivalent to (21)
in the main text. This is because that equation implies that 1R

��Qf
1
�
f(�)d�

> �. By equation

(A.24), sf = �
R
��Qf

1
� f (�) d� < 1.

We compute the life-time utility as

Uf (K0) =

1X
t=0

�t[ln(1� sf ) + ln(Yt)] =
ln(1� sf )
1� � + �

1X
t=0

�t ln(Kt);

where sf is given by equation (A.26) and

ln(Kt+1) = ln (sfYt) = ln(sf ) + � ln(Kt):

Hence, the welfare for any given K0 is given by

Uf (K0) =
ln(1� sf )
1� � +

�

1� ��

�
�

1� � ln(sf ) + ln(K0)
�
: (A.27)

Next, consider the equilibrium path to the bubbly steady state. Equation (A.23) still holds.

Equation (15) in the main text becomes

Kt+1 = It = (�Yt + Pt)

Z
��Qt

1

�
f(�)d� = stYt:
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Dividing by Yt on the two sides of this equation yields

st = (�+ pt)

Z
��Qt

1

�
f(�)d� ; (A.28)

where pt = Pt=Yt. Using Ct = (1� st)Yt; we rewrite equation (11) in the main text as

pt
1� st

= �
pt+1

1� st+1

Z
max

�
Qt+1
�
; 1

�
f(�)d�: (A.29)

Therefore, the system of three di¤erence equations (A.23), (A.28) and (A.29) determine

three sequences for st; pt; and Qt: Clearly, the steady state is a solution to this system. The

following lemma shows that it is a unique local solution.

Lemma 2 There exists a unique solution st = sb, pt = pb and Qt = Qb for all t to the system

of three equations (A.23), (A.28) and (A.29) in the neighborhood of the bubbly steady state.

Proof: Substituting (A.28) into (A.23) and (A.29), we obtain

Qt

1� (�+ pt)
R
��Qt

1
� f (�) d�

=
�
R
max

�
Qt+1
� ; 1

�
f (�) d�

1� (�+ pt+1)
R
��Qt+1

1
� f (�) d�

�

(�+ pt)
R
��Qt

1
� f (�) d�

;

pt

1� (�+ pt)
R
��Qt

1
� f (�) d�

=
�pt+1

R
max

�
Qt+1
� ; 1

�
f (�) d�

1� (�+ pt+1)
R
��Qt+1

1
� f (�) d�

:

As before, denote J (Qt) =
R
��Qt

1
� f (�) d� . Then

R
max

�
Qt+1
� ; 1

�
f (�) d� = Qt+1J (Qt+1)+

1� F (Qt+1). At the bubbly steady state, the two equations above imply that

1 = � [QbJ (Qb) + 1� F (Qb)] ;

� = Qb (�+ pb) J (Qb) :

We log-linearize these two di¤erence equations around the bubbly steady state and obtain�
1 +

sb
1� sb

pb
�+ pb

�
p̂t +

sb
1� sb

f(Qb)

J(Qb)
Q̂t

=

�
1 +

sb
1� sb

pb
�+ pb

�
p̂t+1 +

�
�

�

�+ pb
+

sb
1� sb

f(Qb)

J(Qb)

�
Q̂t+1;

1

1� sb
pb

�+ pb
p̂t +

�
1 +

1

1� sb
f(Qb)

J(Qb)

�
Q̂t

=
sb

1� sb
pb

�+ pb
p̂t+1 +

�
�

�

�+ pb
+

sb
1� sb

f(Qb)

J(Qb)

�
Q̂t+1:

11



We rewrite the two equations above in the following form

Bb

�
p̂t+1
Q̂t+1

�
= Gb

�
p̂t
Q̂t

�
;

where

Bb =

"
1 + sb

1�sb
pb

�+pb
� �
�+pb

+ sb
1�sb

f(Qb)
J(Qb)

sb
1�sb

pb
�+pb

� �
�+pb

+ sb
1�sb

f(Qb)
J(Qb)

#
and

Gb =

"
1 + sb

1�sb
pb

�+pb
sb
1�sb

f(Qb)
J(Qb)

1
1�sb

pb
�+pb

1 + 1
1�sb

f(Qb)
J(Qb)

#
:

As before, we need to check the eigenvalues of the matrixG�1b Bb. The characteristic function

of the matrix G�1b Bb is �
2 + b�+ c where

b � �1
d

"
�

�
�

�+ pb

�2
+

sb
1� sb

pb
�+ pb

f(Qb)

J(Qb)
+ 1 +

1

1� sb
f(Qb)

J(Qb)
+

sb
1� sb

pb
�+ pb

#
< 0;

c � 1

d

�
�

�

�+ pb
+

sb
1� sb

f(Qb)

J(Qb)

�
> 0;

d � 1 + 1

1� sb
f(Qb)

J(Qb)
+

sb
1� sb

pb
�+ pb

> 0:

We then prove the following two facts: (1) 0 < c < 1; (2) 1 + b+ c > 0.

(1) Claim 0 < c < 1:

Since

0 � sb
1� sb

f(Qb)

J(Qb)
� 1

1� sb
f(Qb)

J(Qb)
;

0 < �
�

�+ pb
< 1;

then

0 <
sb

1� sb
f(Qb)

J(Qb)
+ �

�

�+ pb

< 1 +
1

1� sb
f(Qb)

J(Qb)

< 1 +
1

1� sb
f(Qb)

J(Qb)
+

sb
1� sb

pb
�+ pb

;

which implies 0 < c < 1.

(2) Claim 1 + b+ c > 0.

12



We use the de�nition of b and c to compute

1 + b+ c =
�

d

�

�+ pb

pb
�+ pb

> 0:

Given these four facts, if the two roots (denoted by �1 and �2) are real numbers, they must

both be positive because 0 < �1�2 = c < 1 and �1 + �2 = �b > 0. Since 1 + b+ c > 0, the two
roots must be smaller than 1, otherwise �1�2 > 1. If the two eigenvalues are complex numbers,

it follows from 0 < c = �1�2 < 1 that they must be inside the unit circle. We conclude that,

in both cases, there is a unique local solution for pt and Qt since both are nonpredetermined

variables. The solution is the bubbly steady state. We then use (A.28) to determine the solution

for st; which is also the steady state value.

Now we compute the bubbly equilibrium welfare for any given initial non-steady-state cap-

ital stock K0 :

Ub(K0) =
ln(1� sb)
1� � +

�

1� ��

�
�

1� � ln(sb) + ln(K0)
�
: (A.30)

We then compare Uf (K0) and Ub (K0). Note that the life-time utility in equation (25) of

the main text as a function of the saving rate s is concave and has a maximum at s = ��.

Using (19) of the main text and � = 1, sf = �=Rkf = �
R
��Qf

1
� f (�) d� : By assumption,

sf > �. By Proposition 5, Rkb < Rkf : Thus sb = �=Rkb > �=Rkf = sf > � > ��. Hence,

Uf (K0) > Ub (K0).

Another su¢ cient condition for Uf (K0) > Ub (K0) is � 2 [0; 1]. Under this condition,Z
max

�
1

�
;
1

Qf

�
f (�) d� > 1;

so that sb > sf = ��
R
max

�
1
� ;

1
Qf

�
f (�) d� > ��, where the equation for sf follows from

(A.26).

Finally, we compare Uf (Kf ) and Ub (Kb). In any steady state, K = I = sK�: It follows

that the steady-state capital stock satis�es K = s1=(1��): Using (25) in the main text, we can

then compute the steady-state welfare as

U =
1

1� �

�
ln (1� s) + �

1� � ln (s)
�
:

It is a concave function of s and is maximized at s = �. Since sb > sf > �, it follows that

Uf (Kf ) > Ub (Kb). Q.E.D.
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B Proof of results in Section 5.3

We �rst prove the following result.

Proposition 1 The equilibrium system for the economy with transaction taxes is given by the

following equations:

(1 + �)Pt = �
�t+1
�t

Pt+1

(
1 + �+ �

Z
1����
1+���Qt+1<��Qt+1

Qt+1 � �
�

f(�)d� (B.1)

+

Z
�� 1����

1+���Qt+1

�
[�! + (1� !)(1� �)] Qt+1 � �

�
� 2� (1� !)

�
f(�)d�

)
;

It = RktKt

Z
��Qt

1

�
f (�) d� + PtHt�

Z
1����
1+�+�

Qt<��Qt

1

�
f (�) d�

+PtHt [!� + (1� !) (1� �)]
Z
�� 1����

1+���Qt

1

�
f (�) d�; (B.2)

and equations (12), (13), (16), (17), and (18) in the main text for nine variables fCt; It; Yt;
Kt+1; Wt; Rkt; Rft; Qt; Ptg. The usual transversality conditions hold.

Proof: We conjecture that entrepreneur j�s value function takes the form, Vt(� jt;Kjt;Hjt; Bjt) =

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt, where vt; pt and 't are functions to be determined and
satisfy

(1 + �)Pt = �
�t+1
�t

Z
pt+1(� jt+1)dj; (B.3)

1

Rft
= �

�t+1
�t

Z
't+1(� jt+1)dj: (B.4)

Denote Qt = �
�t+1
�t

R
vt+1(� jt+1)dj as Tobin�s marginal Q. Given the preceding conjecture, we

can rewrite the Bellman equation as

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt (B.5)

= max
Ijt;Hjt+1

RktKjt �Bjt + (Qt � � jt) Ijt +Qt(1� �)Kjt

�Pt(Hjt+1 �Hjt)� Pt�jHjt+1 �Hjtj+ (1 + �)PtHjt+1;

subject to (A.2), (A.3), Ijt � 0, and

RktKjt � � jtIjt � Pt(Hjt+1 �Hjt) +
Bjt+1
Rft

�Bjt � �PtjHjt+1 �Hjtj � 0: (B.6)
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Note that terms related to Bjt+1 are canceled out in the Bellman equation.

We �rst consider a low-� entrepreneur with � jt � Qt. This entrepreneur would like to invest
as much as possible until (B.6) and (A.2) bind. Thus,

� jtIjt = RktKjt +
Bjt+1
Rft

�Bjt � Pt (Hjt+1 �Hjt)� �Pt jHjt+1 �Hjtj ;

and
Bjt+1
Rft

= �PtHjt+1:

Substituting this investment rule into the preceding Bellman equation yields

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt (B.7)

= max
Hjt+1�0

RktKjt �Bjt � Pt(Hjt+1 �Hjt)� Pt�jHjt+1 �Hjtj+Qt(1� �)Kjt

+

�
Qt
� jt

� 1
�
[RktKjt �Bjt + �PtHjt+1 � Pt(Hjt+1 �Hjt)� Pt�jHjt+1 �Hjtj]

+(1 + �)PtHjt+1;

subject to (A.3).

Now consider the choice of Hjt+1. We claim that entrepreneur j will never buy land (i.e.

Hjt+1 > Hjt) because this would imply that the marginal bene�t of holding one more unit of

land is negative, i.e., �(1 + �� �)
�
Qt
�jt
� 1
�
Pt < 0. It must be the case that Hjt+1 � Hjt. We

can then compute the marginal bene�t of holding one more unit of land as�
2�� (1� �� �)

�
Qt
� jt

� 1
��
Pt:

This expression is positive when � jt >
1����
1+���Qt. In this case, entrepreneur j will keep buying

until Hjt+1 = Hjt: However, when � jt <
1����
1+���Qt, the marginal bene�t of holding one more

unit of land is negative so that entrepreneur j prefers to sell as much land as possible until

Hjt+1 = !Hjt. In sum, optimal land holdings are given by

Hjt+1 =

(
Hjt when 1����

1+���Qt < � jt � Qt
!Hjt when � jt � 1����

1+���Qt
:

Substituting the decision rule for Hjt+1 above into the Bellman equation in (B.7), we can

simplify the Bellman equation. In particular, for � jt � 1����
1+���Qt, the value function satis�es

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt (B.8)

=
Qt
� jt

(RktKjt �Bjt) +Qt(1� �)Kjt

+

�
(1� �) (1� !) +

�
Qt
� jt

� 1
�
[�! + (1� !) (1� �)] + ! (1 + �)

�
PtHjt;
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where
h
(1� �) (1� !) +

�
Qt
�jt
� 1
�
(1� !) (1� �)

i
PtHjt is the investment �nanced by selling

a fraction (1� !) of the current land holdings net of transaction tax,
�
Qt
�jt
� 1
�
�!PtHjt is the

investment �nanced by borrowing using a fraction ! of the current land holdings as collateral,

and ! (1 + �)PtHjt is the shadow value of the land.

For 1����1+���Qt < � jt � Qt, the value function satis�es

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt (B.9)

=
Qt
� jt

(RktKjt �Bjt) +Qt(1� �)Kjt +
��
Qt
� jt

� 1
�
� + (1 + �)

�
PtHjt;

where
�
Qt
�jt
� 1
�
�PtHjt is the investment �nanced by borrowing with the current land holdings

as collateral, and (1 + �)PtHjt is the shadow value of the land.

Next, consider a high-� entrepreneur with � jt > Qt. In this case, investing is unpro�table

so that Ijt = 0. The Bellman equation in (B.5) becomes

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt (B.10)

= max
Hjt+1�0

RktKjt �Bjt � Pt(Hjt+1 �Hjt)� Pt�jHjt+1 �Hjtj

+Qt(1� �)Kjt + (1 + �)PtHjt+1;

subject to (A.3). If Hjt+1 � Hjt, then the marginal bene�t of holding one more unit of land
is 2�Pt > 0. In this case, the entrepreneur will increase land holdings until Hjt+1 = Hjt:

If Hjt+1 � Hjt; then the terms related to Hjt+1 are canceled out in the preceding Bellman

equation. This means that the entrepreneur is indi¤erent among any feasible choices of Hjt+1 �
Hjt. We can then rewrite (B.10) as

vt(� jt)Kjt + pt(� jt)Hjt � 't(� jt)Bjt = RktKjt + (1 + �)PtHjt �Bjt +Qt(1� �)Kjt: (B.11)

Matching coe¢ cients of Kjt; Hjt and Bjt on the two sides of equations (B.8), (B.9), and

(B.11), respectively, we can derive expressions for vt(� jt); pt(� jt); and 't(� jt): Substituting

these expressions into (B.3), (B.4) and using the de�nition of Qt; we obtain equations (B.1)

and (12) and (13) in the main text after some manipulation.
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Using a law of large numbers, we compute aggregate investment as

It =

Z
�jt� 1����

1+���Qt

1

� jt

h
RktKjt �Bjt + [�! + (1� !) (1� �)]PtHjt

i
dj

+

Z
1����
1+���Qt<� jt�Qt

1

� jt

h
RktKjt �Bjt + �PtHjt

i
dj

=

Z
�jt� 1����

1+���Qt

1

� jt
dj

�
Rkt

Z
Kjtdj + [�! + (1� !) (1� �)]Pt

Z
Hjtdj �

Z
Bjtdj

�
+

Z
1����
1+���Qt<� jt�Qt

1

� jt
dj

�
Rkt

Z
Kjtdj + �Pt

Z
Hjtdj �

Z
Bjtdj

�
= RktKt

Z
��Qt

1

�
f (�) d�

+Pt

"
[!� + (1� !) (1� �)]

Z
�� 1����

1+���Qt

1

�
f (�) d� + �

Z
1����
1+���Qt<��Qt

1

�
f (�) d�

#
;

where we have used the market-clearing condition Ht = 1: We can also derive equations (16),

(17), and (18) in the main text as before. It is known from the literature that the transversality

conditions are part of the necessary and su¢ cient conditions for optimality in in�nite-horizon

problems. Q.E.D.

By adapting the proof of Proposition 4, we can show that there is a unique bubbly steady

state in which Pt = P > 0 for all t if and only if

1 < �

(
1 + �

Z
1����
1+���Qf<��Qf

Qf � �
� (1 + �)

f(�)d�

+

Z
�� 1����

1+���Qf

�
[�! + (1� !)(1� �)] Qf � �

� (1 + �)
� 2� (1� !)

1 + �

�
f(�)d�

)
;

where Qf is determined by (20) in the main text. Since the right-hand side of the above

inequality is decreasing in �; when � is su¢ ciently high the inequality is violated. As a result,

a land bubble cannot exist.

C Foreign purchases of bonds

We now use our model to study the impact of capital in�ow through foreign purchases of

domestic private bonds on asset bubbles. It is often argued that the increased capital �ows as

a result the global saving gluts were an important reason for the US housing bubbles (see e.g.,

Bernanke�s celebrated speech on �the global saving glut and the U.S. current account de�cit�

on March 10, 2005, and Greenspan�s testimony at the Financial Crisis Inquiry Commission
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in April 2010). We now extend our model to investigate this hypothesis by assuming that

investors from the rest of worlds buy �Bt domestic bonds. We will focus the bubbly equilibrium

only. With capital in�ow, the bond market-clearing condition is given byZ 1

0
Bjtdj = �Bt; (C.1)

By Proposition 1 in the main text and the bond market-clearing condition (C.1), we can derive

aggregate investment

It = [RktKt + (1� ! + !�)Pt � �Bt]

Z
��Qt

1

�
f(�)d� : (C.2)

The resource constraint becomes

Ct + It + �Bt = Yt +
�Bt+1
Rft

: (C.3)

The other equilibrium conditions described in Proposition 2 in the main text remain unchanged.

Comparing the equilibrium system with that in benchmark model in the main text, only

equations (C.2) and (C.3) are di¤erent. Therefore, in the bubbly steady state, fIb; Yb;Kb;Wb; Rkb; Rfb; Qbg
are all the same as in the benchmark model in the main text. We can derive the bubbly steady-

state land price P with capital in�ow as

P =
1

1� !(1� �)

240@ ���

1� �(1� �)

R
max

�
1
� ;

1
Qb

�
f(�)d�R

��Qb
1
� f(�)d�

� �

1AYb + �B

35 : (C.4)

We can see that the land price P increases with �B. In addition, a dollar capital in�ow increases

the land price by 1
1�!(1��) > 1 dollars. This means that there is an multiplier e¤ect of capital

in�ow on land bubbles in the steady state.

Finally we use the resource constraint to derive

Cb = Yb � Ib + �B

�
1

Rfb
� 1
�
� Yb � Ib (C.5)

Since Rfb � 1 and the inequality is strict for ! > 0, the households receive a net income transfer
in the bubbly steady state. This implies capital in�ow will be welfare improving in the bubbly

steady state.

In summary, we have the following proposition characterizing the bubbly equilibrium with

capital in�ow.
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Figure 1: Transition paths of the bubbly equilibrium in response to a gradual increase in foreign
purchases of bonds. Parameters values are given by � = 0:3; � = 0:99; � = 0:025; � = 5:7;
! = 0:2; � = 0:75; �B = 1; and � = 0:6:

Proposition 2 Suppose that the assumptions in Proposition 4 in the baseline model with-

out capital in�ow hold. Then there always exists a bubbly equilibrium in which the values of

fIb; Yb;Kb;Wb; Rkb; Rfb; Qbg are the same as those in Section 3.4 of the main text and Cb and
P > 0 are given by equation (C.5) and (C.4).

We now study the transition path. We assume that the economy is initially in the bubbly

steady state without capital �ows until period 10. In period 11, the capital account is opened.

We set the same parameters as in Section 4.2 of the main text. The steady-state capital in�ow

is set to �B = 1, which corresponds about 1=3 of the initial level of bubbly steady-state output.

Along the transition path, �Bt =
�
1� �t

�
�B where � 2 (0; 1) :

Figure 1 plots the net interest rate Rft�1 and the percentage deviations of the land price Pt,
output Yt, consumption Ct; investment It; and capital in�ows �Bt from their bubbly steady-state

values without capital �ows. The increase in the capital �ow raises the demand for domestic

bonds, thereby raising the bond price and lowering the net interest rate. The decline in the
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interest rate allows the household to substitute bonds for land, thereby raising the land price

dramatically on impact. Alternatively, the decline in the interest rate lowers the discount rate

for land and hence raises the land price. As the capital in�ow gradually rises to its steady

state level �B, the interest rate gradually rises back to its steady-state value. This induces the

household to gradually shift investments in land to investments in bonds. Thus the land price

gradually falls back to its steady-state value and the land price overshoots its long-run value

on impact. The new steady-state land price is higher than its old steady state value due to

the capital in�ow. With capital in�ow, the economy is able to �nance higher consumption and

investment simultaneously because the net interest rate is negative. The welfare as measured by

discounted future utility increases accordingly. In the long run, output and investment return

to its bubbly steady-state levels without capital in�ow, but consumption reaches a permanently

higher level. In sum, Figure 1 con�rms the hypothesis of the global saving glut that foreign

capital in�ow will reduce interest rate and push up asset prices. But unlike the conventional

wisdom, capital in�ow is bene�cial to the recipient economy.

D Data description for Figure 1 in the main text

We download the data from the Department of Economics of Queen�s University via the link

www.econ.queensu.ca/�les/other/House_Price_indices%20(OECD).xls. All series are quar-

terly and seasonally adjusted. The data are de�ned as follows.

1. The nominal house price index of the US is the all-transaction index (estimated using

sales price and appraisal data) from Federal Housing Finance Agency (FHFA).

2. The nominal house price index of Japan is the nationwide urban land price index from

the Japan Real Estate Institute.

3. The nominal house price index of Spain is the average price per square meter of private

housing (more than one year old) from the Bank of Spain.

4. The nominal house price index of Greece is the price per square meter of residential

properties (all �ats) in urban areas from the Bank of Greece.

5. The real house price index used in Figure 1 is the above nominal house price index de�ated

by the private consumption de�ator. The average real index in 2000 is normalized to 100.

6. The price-income ratio used in Figure 1 is the ratio of the nominal house price index to

the nominal per capita disposable income. The sample average is normalized to 100.
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7. The price-rental ratio used in Figure 1 is the ratio of the nominal house price index to

the rent component of the consumer price index. The sample average is normalized to

100.
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