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■ Abstract Water plays a central role in the structures and properties of biomole-
cules—proteins, nucleic acids, and membranes—and in their interactions with ligands
and drugs. Over the past half century, our understanding of water has been advanced
significantly owing to theoretical and computational modeling. However, like the blind
men and the elephant, different models describe different aspects of water’s behavior.
The trend in water modeling has been toward finer-scale properties and increasing
structural detail, at increasing computational expense. Recently, our labs and others
have moved in the opposite direction, toward simpler physical models, focusing on
more global properties—water’s thermodynamics, phase diagram, and solvation prop-
erties, for example—and toward less computational expense. Simplified models can
guide a better understanding of water in ways that complement what we learn from
more complex models. One ultimate goal is more tractable models for computer sim-
ulations of biomolecules. This review gives a perspective from simple models on how
the physical properties of water—as a pure liquid and as a solvent—derive from the
geometric and hydrogen bonding properties of water.
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WATER HAS INTERESTING PHYSICAL PROPERTIES

Water is arguably the most important fluid on Earth. It is the most abundant liquid
on Earth’s surface, it influences the landscape and climates, and it plays a critical
role in biology (5, 31, 85). Because of water’s large heat capacity, the oceans store
considerable thermal energy, acting as vast thermostats that govern the planet’s
temperature. The density maximum of liquid water is just above its freezing point,
resulting in top-down freezing that enables life at the bottoms of rivers and lakes
to survive winters. As a result of its high surface tension, water penetrates into
rocks. Upon freezing, it then expands, fracturing the rocks and eventually turning
them into soil.

Water has almost universal solvent action (31). Nearly all known chemical
substances will dissolve in water at least to a small extent. It is one of the most
corrosive substances known and yet is physiologically harmless. Water constitutes
about half the weight of living cells (85), and it must be displaced from the surfaces
of proteins, nucleic acids, and membranes when ligands bind or when biomolecules
change conformations. The limitations in our understanding of water are largely
responsible for the limitations in our ability to predict protein structures or to
design drugs.

Despite its abundance, water is regarded as an unusual liquid when compared
to simpler fluids such as argon (83). Although water is similar to simpler liquids
in its van der Waals attractions and repulsions, water is interesting because of its
ability to form hydrogen bonds and a three-dimensional tetrahedral network-like
structure. Thus, compared to other liquids having the same molecular size, water
is more cohesive, as indicated by its higher boiling and freezing temperatures,
surface tension, and vaporization enthalpies (26). Further, it has a high dielectric
constant and exists in numerous crystalline polymorphs. Liquid water’s fluidity
increases with increasing pressure. The mobility of H+ and OH− ions is higher in
water than in other liquids (83).

Water also has volumetric anomalies (26, 31, 63, 83, 98). Whereas most solids
are denser than their corresponding liquids, ice floats on water. Also, a typical
liquid’s density decreases monotonically with increasing temperature. For water,
this is true at high temperatures (above 3.984◦C, the temperature of maximum
density). But it is not true for cold water, between 0◦ and 3.984◦C. Cold water
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gets denser upon warming. Other related anomalies include minima in the isobaric
heat capacity and isothermal compressibility with temperature in the normal liquid
range (at 36◦ and 46◦C, respectively) (25).

A BRIEF HISTORY OF WATER MODELING

We focus here on modeling, the enterprise that aims to understand how water’s
properties are encoded within its molecular structure and energetics. Modeling
water has been a large scientific undertaking. There have been several book-length
reviews (9, 23, 26, 31, 40). Only a brief summary is given here.

Perhaps the earliest model of water originated from Roentgen in 1892 (9).
Roentgen postulated a “mixture model,” according to which liquid water consists
of two kinds of molecules, liquid-like and ice-like. In 1933, Bernal & Fowler (12)
concluded that the unique properties of water are due to the tetrahedral geometry
of each water molecule. In 1946, Samoilov (67) proposed an interstitial model
in which liquid water has the structure of ice, some of the cavities of which are
filled with water molecules. Similarly, Pauling (57) suggested that liquid water is
a hydrate with clathrate-like structures. Further insights came in 1951 from Pople
(61), who postulated a point-charge model for the tetrahedral water molecule,
whereby the four hydrogen bonds in ice are distorted or bent, rather than broken,
upon melting.

In the 1960s and 1970s, as computer technology improved, there was a move
toward computer simulations (32). One of the first simulations of liquid water
was that of Barker & Watts in 1969 (6). Using Monte Carlo sampling with an
intermolecular pair potential from Rowlinson (65), Barker & Watts calculated the
energy, specific heat, and radial distribution function of liquid water. In 1972,
Rahman & Stillinger used molecular dynamics simulations with a simple interac-
tion site model proposed by Ben-Naim and Stillinger (the BNS model) (40). That
model was later modified by Stillinger & Rahman (82, 84) and called the ST2
model. ST2 water is a five-site model in which four point charges are tetrahedrally
distributed around the central oxygen atom. The central oxygen has a point charge
and is a Lennard-Jones (LJ) interaction site. Another commonly used interaction
site model is SPC water (11), in which the charges on three positively charged
hydrogen interaction sites are balanced by an appropriate negative charge on the
oxygen. Jorgensen has applied his transferable intermolecular potential functions
(TIP) to water and other organic liquids (43, 44). The TIP water models, which
originated in ST2, use three, four, or five interaction sites in TIP3P, TIP4P, and
TIP5P, respectively. All these models treat water as rigid.

More complex models have also been developed. Ferguson, on the basis of the
SPC potential, lifted the rigidity approximation by including bond stretching and
bending terms (29). Sprik & Klein (81) have explicitly introduced the effects of
polarization and many-body interactions. In their potential, the polarization center
is represented as a collection of four tetrahedrally arranged charges whose values
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are permitted to vary, but the sum of which is zero. Beginning in 1975 (48, 49),
pair potentials for water models have also been derived from ab initio calculations.
Examples include the MCY (51), CH (18), CC (16), and SHP (80) models.

The approaches described above aim to predict various properties of water
solely on the basis of an energy function, i.e., on some conception of the structure
of a water molecule and its interactions—energetic and entropic—with other water
molecules nearby. Another approach, which has been pioneered by Chandler &
Pratt and the Los Alamos group, has been hybrid models, in which experimental
observables substitute for part of the theory. Pratt & Chandler (62) use the pair
correlation function of liquid water as input, and the Los Alamos group (42),
through a maximum entropy strategy, uses experimentally determined moments of
water population distribution functions. Although those approaches have provided
important insights into the behavior of water, our objective here is different. Our
aim is to understand water’s properties starting strictly from an energy function
that is based on water’s geometric and physical properties, without additional
experimental inputs.

TOWARD SIMPLIFIED MODELS OF WATER

It is clear that making models ever more accurate, more detailed, and more faithful
to the underlying quantum mechanics should lead to improved accuracy in com-
puter simulations involving water. Why, then, should we be interested in simplified
models? There are three reasons. First, simplified models often give insights that
are not obtainable from computer simulations. For example, physical chemistry
courses teach the ideal gas law, the van der Waals equation of state, the Ising model
of magnetization, the Flory-Huggins theory of polymers, and other simple models
not because they more accurately represent physical reality than computer simu-
lations of more detailed models, but because the chain of logic from the model
premises to conclusions is so much more transparent. Simpler models are more
flexible in providing insights and illuminating concepts, and they do not require big
computer resources. Simple models can unify our knowledge in the form of uni-
versal principles, such as the law of corresponding states. Second, simple models
can explore a much broader range of conditions and external variables. Whereas
simulating a detailed model may predict the behavior at one temperature and pres-
sure, a simpler model can be used to study a whole phase diagram of temperatures
and pressures. Third, analytical models can provide functional relationships for
engineering applications and lead to improved models of greater computational
efficiency. It has been noted that when detailed models of proteins in water are
simulated on a 256-node computer, 255 of those nodes just simulate the water.
There is a need for computationally cheaper models of water that can retain the
relevant physics.

One of the simplest models was introduced by Ben-Naim in 1971 (8). In Ben-
Naim’s model, each water molecule is represented as a two-dimensional disk that
interacts with other waters through a LJ interaction and an orientation-dependent
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hydrogen bonding interaction. Three-dimensional simplified models have also
been developed (13, 21, 75). Overviews are given by Guillot (32) and by Nezbeda
(55).

The Mercedes-Benz Model Is a Two-Dimensional
Version of Water

We focus here on two models. Both are two-dimensional and derive from Ben-
Naim’s model cited above (8). Figure 1a shows the Mercedes-Benz (MB) model
of water, so named because of the resemblance of each water molecule to the
Mercedes-Benz logo. Each water molecule is a two-dimensional disk with three
radial arms (72).

In the MB model, the energy of interaction between two water molecules is
the sum of a LJ attraction and repulsion and an orientation-dependent hydrogen
bond interaction. Neighboring water molecules form an explicit hydrogen bond
when an arm of one water molecule aligns with an arm of another water molecule;
the corresponding energy is a Gaussian function of both separation and angle.
Hydrogen bonding arms are not distinguished as donors or acceptors. The strength
of a hydrogen bond is determined only by the degree of alignment of arms on
two neighboring waters (72). The LJ interaction energy, εL J , is set to be one tenth
of the hydrogen bond energy, εHB . Also, the LJ contact distance is 0.7 of that of
hydrogen bond length (72). The MB model has been studied extensively by Monte
Carlo (NPT) simulations (36, 70–74, 76–78).

Simulations of this two-dimensional model are much less expensive than com-
puter simulations of detailed three-dimensional models. A three-dimensional box
of eight molecules on a side contains 8 × 8 × 8 = 512 molecules, whereas a two-
dimensional box contains only 64 waters. One result is that in three dimensions,
computational modeling is unable to reversibly freeze water because simulations
get stuck in deep kinetic traps, whereas reversible freezing and melting are readily
studied in the two-dimensional MB model.

Figure 1 (a) MB water model. Each water is a LJ disk, with three hydrogen bonding
arms. (b) (Left) MB ice, the stable state at low temperature. (Right) A typical liquid
configuration at T∗ = 0.20, density ρ∗ = 0.9 (72).
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This review summarizes evidence that many of water’s interesting properties
are not so much due to its three-dimensionality, its tetrahedrality, or its atomic
details. Rather, many of water’s properties follow from the relatively rigid geo-
metric relationship among the hydrogen bonding orientations within each water
molecule, much of which can be captured even in simplified two-dimensional
models.

We now describe the simple insights that the MB model gives into the prop-
erties of pure water. Figure 1b shows the reversible freezing of MB “ice.” MB
ice has a hexagonal arrangement of six waters because of the symmetry dictated
by the hydrogen bonding interactions. MB ice forms spontaneously from a ran-
dom initial state in constant-pressure MC simulations when the temperature is low
enough (T ∗ = 0.14) (72). MB ice is stable at low temperatures because hydrogen
bonding is the dominant attraction—it is an order of magnitude stronger than the
van der Waals interactions. Water forms hexagonal structures in two dimensions
(tetrahedral structures in three dimensions) to maximize hydrogen bonding. The
hexagons have lower density than if water structure were dominated by its van der
Waals interactions (Figure 1).

The tendency of water to expand upon freezing shows up in the pressure-
temperature phase diagram. Figure 2 compares two materials. For simple materials
(left), the slope of the solid-liquid phase boundary is positive, indicating that
applying pressure squeezes a normal liquid into a solid. However, for water, the
solid-liquid phase boundary slope is negative, implying that applying pressure has
the opposite effect: squeezing ice melts it. It is commonly argued that this pressure-
induced melting is the basis for ice-skating. The pressure of the skate blade melts
the ice beneath it, creating a low-friction region of water on which the skater slides.
You cannot ice-skate on most other solids, such as iron. It is readily shown by the
Clapeyron relation that the negative slope of the phase boundary follows directly
for any material having a solid that is less dense than its liquid:

dp

dT
= �h

T �V
. 1.

Figure 2 Pressure-temperature phase diagram for a typical sim-
ple liquid (left) and water (right). Pressure melts typical solids,
but pressure freezes water (25).
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(A well-known caveat is that the pressures required for ice-skating are somewhat
lower than those predicted from the equation above, presumably owing to less
structuring in surface waters.) The MB model is consistent with such experiments
and gives a negatively sloped phase boundary between the liquid and solid phases
because its solid is less dense than its liquid.

The MB model qualitatively predicts the unusual properties of pure water,
including the density anomaly, the minimum in the isothermal compressibility,
and a large heat capacity (72). Figure 3 compares the MB model predictions with
experimental volumetric properties of liquid water. The properties of the MB model

Figure 3 Properties of liquid water: molar volume, thermal expansion coefficient,
heat capacity, and isothermal compressibility. Left: Experiments (2, 34, 46, 79). Middle:
MB model water (72). Right: 3S3W model water (90). Unbroken lines indicate the
stable liquid and crystalline phases; dashed curves represent the supercooled liquid.
In reduced variables: Tr = T/TC , Pr = P/PC , vr = v/vC , κ∗

T = −(∂ ln vr/∂ Pr )Tr ,
and α∗

P = (∂ ln vr/∂Tr )Pr . Subscript C denotes the value at the liquid-vapor critical
point.
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are given in reduced units—all energies and temperatures are normalized by the
energy of an optimal hydrogen bond (e.g., T ∗ = kB T/|εHB |, U ∗ = U/|εHB |).
Similarly, all distances are scaled by the length of an idealized hydrogen bond
(e.g., V ∗ = V/r2

HB).
Here is the physical basis for these volumetric anomalies in the model. Con-

sider the process of increasing temperature, starting from ice at the melting point
(Tmelt = 0◦C), through the temperature of maximum density (Tmd = 3.984◦C),
to the boiling point, Tboil = 100◦C. Upon melting, some of the highly regular ice-
like structure is lost because hydrogen bonds are broken. Upon further heating,
from Tmelt to Tmd , the density increases because hydrogen bond breakage leads to
opportunities for van der Waals interactions to pull water molecules closer together.
Above Tmd , up to Tboil , further heating weakens all the bonds—van der Waals and
hydrogen bonds—leading to lower densities. Hot water acts much like a normal
liquid—it expands upon heating—whereas water that is colder than approximately
4◦C is anomalous: It becomes denser upon heating. This anomaly is reflected in
the thermal expansion coefficient, which is the derivative of volume with temper-
ature. For most liquids, the thermal expansion coefficient is positive. For water,
the thermal expansion coefficient changes sign, from negative to positive, at Tmd .

The model gives a related explanation for the compressibility of water, the
change in volume with applied pressure. The compressibility correlates (loosely)
with density. At high densities, molecules—of both normal liquids and water—
pack together tightly, leading to a lower compressibility, i.e., to less susceptibility
to further increases in density with applied pressure. Because there is a maximum
in the density of liquid water, this implies that there should be a minimum in
the compressibility. For compressibility too, hot water resembles normal liquids,
whereas cold water is anomalous.

The heat capacity [cP = ( ∂ H
∂T )P ] is a measure of a system’s ability to absorb

thermal energy, for example, through the breaking of bonds. Liquid water’s high
heat capacity indicates its multiple modes of energy storage, through the breakage
of both van der Waals interactions and hydrogen bonds.

THE HYDROPHOBIC EFFECT: THE ANOMALOUS
THERMODYNAMICS OF MIXING OIL WITH WATER

Water also has anomalous properties as a solvent. An example is the hydrophobic
effect (10, 87) (see Figure 4). The transfer of a nonpolar solute into cold water
(approximately room temperature, for example) is opposed by a large entropy, but
transfer into hot water (near the boiling point) is opposed instead by a large en-
thalpy. In simpler solvents, the process of transferring a solute molecule is usually
opposed by a relatively small enthalpy at all temperatures. Why is hydrophobic
solvation different from simpler solvation?

In the MB model, a nonpolar solute is modeled as a LJ disk with no hydro-
gen bonding arms (72). Figure 4 compares the free energy, enthalpy, entropy,
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Figure 4 Hydrophobic effect: Transfer thermodynamics of a LJ solute in MB
water (left panels) versus the experimental transfer of argon from gas into water
(right panels) (72). See text for reduced units.

heat capacity, and the volume of transfer of an MB nonpolar molecule into wa-
ter (36, 70–74, 76–78) with experiments (20). The model shows good qualitative
agreement with the experiments. Such simulations are much more challenging
in detailed three-dimensional models, particularly for properties such as the heat
capacity.

The essence of hydrophobicity is the large positive heat capacity of transfer of
a nonpolar solute into water. For simpler systems, the heat capacity of transfer is
small. What is the origin of this large hydrophobic heat capacity? In 1945, Frank
& Evans (30) proposed the iceberg model. According to their model, the first shell
of waters around a nonpolar solute is structured, like ice. Heating a solution leads
to a melting of this “iceberg,” i.e., giving an increased energy and entropy of the
first-shell waters, and thus to an increased heat capacity, Cv = dU/dT .

Figure 5 shows that the MB model has features of the iceberg model. Figure 6
(see color insert) shows the first-shell water orientational distributions as a func-
tion of temperature (72). In cold water, first-shell waters have a slight preference
for cage-like structures around nonpolar solutes (hence low entropy, and low en-
ergy, reflecting favorable water-water hydrogen bonding). Water molecules avoid
pointing hydrogen bonds at the solute to avoid wasting those bonds. In hotter wa-
ter, the orientational preferences are weaker, hence the structure has melted out.
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Figure 5 Iceberg model for the large heat capacity of transfer of
nonpolar solutes into water.

There are second-shell effects as well, but they are smaller. Historically, the main
criticism of the iceberg model has been that first-shell waters cannot be as highly
ordered around nonpolar solutes as they can in ice. In the MB model, this order-
ing is reflected more in the thermodynamics than in the structures. The structural
preferences are small, much smaller than in ice.

The Fingerprints of Hydrophobicity Depend on Solute Size

MB model studies of hydrophobicity give an unexpected and interesting result:
Transferring a small nonpolar solute (approximately the size of a water molecule)
into water shows all the anomalous characteristics of the hydrophobic effect (large
positive heat capacity, opposed by entropy at room temperature, opposed by en-
thalpy at higher temperatures), but transferring a large nonpolar solute (several
times the radius of a water molecule) shows no such thermal anomalies. While
transferring a large planar nonpolar slab into water would be unfavorable (positive
free energy), it would neither be mainly opposed by entropy at room temperature
nor have a large heat capacity of transfer, according to MB model simulations.
Figure 7 (see color insert) shows the simulations using the MB model for solutes
of different sizes (76).

As noted above, for small nonpolar solutes, first-shell waters straddle the solute,
losing entropy to gain hydrogen bonding. Increasing the temperature disorders the
first-shell waters, breaking hydrogen bonds. However, as the radius of a spherical
nonpolar solute grows larger, first-shell waters become increasingly challenged
by the geometrical restrictions of the adjacent solute surface, such that they can-
not form a full complement of hydrogen bonds with neighboring waters. Hence
around solute molecules that are sufficiently large, first-shell water molecules must
waste a hydrogen bond, even at room temperature, pointing it directly at the solute
surface. The first-shell water wastes this hydrogen bond because it has no geo-
metric alternative. Pointing one hydrogen bond as directly as possible toward the
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Figure 8 (a) MB entropy (long dash), enthalpy (short dash), and heat capacity (solid
line) of transferring a nonpolar solute as a function of solute diameter at T ∗ = 0.18
(76). (b) MB free energy of transfer as a function of solute diameter at T ∗ = 0.18 (76):
extrapolation from small solutes (solid line) from large solutes (dashed line).

surface gives each water molecule as much conformational freedom as is otherwise
possible.

Figure 8a shows the thermal consequences. For a small nonpolar solute, the
transfer into cold water leads to a large negative entropy (because the first-shell
waters become ordered), a large positive heat capacity (because a first-shell struc-
ture is formed that melts out with temperature), and a small change in the enthalpy.
But for large solutes, the transfer into cold water has rather different physics: the
enthalpy is large and positive (because each water breaks a hydrogen bond), the
entropy is small (because the surface waters are no more restricted than bulk wa-
ters), and the heat capacity is small (because no additional bond breakage or water
disordering can be achieved by increasing the temperature). These predictions re-
main to be tested experimentally. The experimental challenge is that large nonpolar
spheres have so little solubility in water that they are detectable only by methods
of high sensitivity.

This MB model resolves a puzzle. In discussions among Dill, Hildebrand,
Sharp et al., Tanford, and others (24, 37, 38, 68, 86), it was noted that transferring
a small nonpolar solute into water costs approximately 25 cal mol −1 A2, whereas
the interfacial tension between oil and water gives a value approximately threefold
larger, 75 cal mol −1 A2. The MB model result in Figure 8b explains this as the
difference between water ordering entropy (around small solutes) and the hydrogen
bond breaking enthalpy (around large solutes). Around small solutes the entropic
cost of ordering waters is approximately 25 cal mol−1, whereas around large solutes
the enthalpic cost of breaking a hydrogen bond is approximately 75 cal mol −1 A2

(76).
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Solute-Solute Interactions in Water: In Contact or Not?

In 1977, Pratt & Chandler (62) addressed whether two nonpolar solutes in water
come into contact with each other or are stable when separated by a single layer of
water. The first situation is called the contact minimum, and the second is called
the solvent-separated minimum. We have explored this question using the MB
model. Figure 9a (see color insert) shows the result: When two nonpolar solutes
are small, they prefer the solvent-separated state, but when two solutes are large,
they come into contact.

The reason is shown in Figure 9b. A small solute is surrounded by a water
clathrate cage. When two small solute molecules come together, their clathrate
cages share a common interface, i.e., a sort of fence of water separates the solutes.
In contrast, larger solutes cannot form a stable clathrate interface with a good
hydrogen-bonded structure. Hence, large solutes come into contact to minimize
the surface area of solute exposure to water. For small solutes, the tendency to
minimize the free energy is not equivalent to a tendency to minimize their shared
contact area because other aspects of local geometry become more important on
that size scale than just the surface area.

KOSMOTROPES ARE IONS THAT ORDER WATER;
CHAOTROPES ARE IONS THAT DISORDER WATER

How do ions dissolve in water? Since the 1930s, an important unifying concept has
been the idea that some ions are kosmotropes (from kosmos, meaning orderly) and
some are chaotropes (from chaos, meaning disorder). Kosmotropic ions order water
and chaotropic ions disorder water, according to various experimental measures.
For example, the change of entropy of hydration water owing to the presence of an
ion can be either positive or negative (47) (see Figure 10). The dissolution of small
ions, such as lithium, in water leads to a large negative entropy change, indicating
that lithium orders water. Lithium is a kosmotrope. In contrast, dissolving cesium
in water leads to a positive entropy change. Cesium is a chaotrope (41).

Another measure of the ionic ordering and disordering of water is given by the
viscosity of water η(c) as a function of the ion concentration c. The Jones-Dole B
coefficient is a measure of the ion-water interaction (64):

η(c)/η0 = 1 + Ac1/2 + Bc + . . . , 2.

where η0 is the viscosity of pure water and A is a concentration-independent co-
efficient that describes Debye-Huckel-like counterion screening effects at low ion
concentrations. The B coefficient describes the effect of higher ion concentrations;
B is positive for lithium ions and negative for cesium ions, for example, indicat-
ing that lithium increases water’s viscosity and cesium decreases water’s viscosity.
Hence, viscosity enhancement is regarded as another measure of ordering. Another
experimental property that is used to characterize the ionic ordering of water is the
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Figure 10 (a) MB + dipole model liberation free energy, �Glib, at T ∗ = 0.20
(41). (b) The change of entropy, �SII , of water brought about by the presence of
an ion (47) at 198 K for different ions.

activation energy, �Ei , needed to strip a water molecule away from an ion relative
to the activation energy needed to strip a water molecule away from another water
molecule (66). Kosmotropic ions are strongly bound to their neighboring water
molecules and therefore have a large positive activation energy; this is not the case
for chaotropes. Strong correlations between water solvation entropies and viscos-
ity enhancements indicate that an ion’s designation as a chaotrope or kosmotrope
is general and not restricted to a single experimental observable (47).

Figure 10 shows two prominent aspects of ion solvation in water. First, water
ordering depends systematically on the ionic radius. Water is ordered by smaller
ions and disordered by larger ions. Second, there is an offset between anions and
cations. F− has about the same radius as K+, yet the negative ion acts as if it were
smaller in causing greater water ordering. What is the explanation for these two
effects?

Figure 11a (see color insert) shows the model we use to study ion solvation:
The MB + dipole model includes a dipole moment on each water molecule in
addition to the MB model interactions described above. The dipole is negative at
the center of the water disk and positive at a point approximately 60% of the way
along one of the hydrogen bonding arms (41). This is intended to mimic the dipole
moment of water, which has a partial negative charge on the oxygen at the center
and a partial positive charge on each hydrogen atom. Using this model, we compute
the liberation free energies of water next to an ion, �Glib, as suggested by Chong
& Hirata (17). The results are in good agreement with the experimental results of
Samoilov (66).

The model explains the ionic ordering of water in terms of the charge density
on the ion. The positive end of water’s dipole tends to point toward a negative ion,
or away from a positive ion. The electrostatic interaction with water is strongest
for a small ion because it can reach closest to water’s dipole, and weakest for a
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large ion (see Figure 11b). In short, small ions such as lithium get closer to waters
and order them more strongly than larger ions such as cesium.

Figure 11c also explains the charge asymmetry. An anion can come closer to
the positive end of water’s dipole (which is near the surface of the water molecule)
than a cation can come to the negative end of water’s dipole (which is at the center
of the water). Hence, for a given ionic radius, a negative ion interacts more strongly
with water than a positive ion does.

Figure 12 (see color insert) illustrates these points differently. Around a small
ion such as lithium, waters are ordered predominantly by the electrostatic inter-
actions of their dipoles with the ion. However, around a large ion such as cesium,
electrostatic interactions are weaker, so water ordering is dominated by water-water
hydrogen bonding. In that regard, large ions act much like nonpolar solutes.

THE HOFMEISTER SERIES IS A RANK-ORDERING OF
SALT EFFECTS ON HYDROPHOBIC INTERACTIONS

Proteins precipitate out of solution (i.e., are salted out) if they are put into salty
water containing certain types of ions, yet proteins become more soluble (salted
in) in water containing other types of ions. Ions can be rank-ordered by the extent
to which they solubilize or precipitate proteins. This rank-ordering is called the
Hofmeister series, after F. Hofmeister, who made the first observation of this effect
more than a century ago (39). These effects are observed at high concentrations of
salts, typically greater than 0.1 M, and are thus not predominantly due to long-range
electrostatics, which are largely shielded in solutions of high salt concentrations.
Experiments show that adding salt to water reduces the solubility of a nonpolar
solute in water in roughly the same rank-ordering and at the same concentrations
as those found for protein precipitations (14, 19). The general interpretation is that
Hofmeister effects are ionic effects on hydrophobic interactions through first- and
second-neighbor water shells (52).

The degree to which a salt reduces, for example, benzene’s solubility in water
depends on the type of salt (52) (Figure 13, see color insert). The molar solubility,
c, of a nonpolar solute in salt water is typically given by the Setchenow equation
(4):

ln[c/c(0)] = −kscs, 3.

where c(0) is the molar solubility in pure water, cs is the molar concentration of
the salt, and ks is the salt’s Setchenow salting-out coefficient.

What explains the Hofmeister effect? We compared experimental Setchenow
coefficients with the computed free energy of transferring a hydrophobic solute
into MB + dipole water with salt (41). We found good qualitative agreement
between the model and the experiments. The results support a volume-exclusion
mechanism (see Figure 13a). As noted above, a large ion, such as cesium, acts
much like a hydrophobic solute. The benzene sees the large ion as largely another
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hydrophobic molecule and readily comes into contact with it. In contrast, benzene
cannot penetrate the first shell of waters around a small ion such as lithium because
lithium binds those waters tightly through electrostatic forces on the water’s dipole.
Hence, benzene has less volume accessible to it in a solution with lithium than in
a solution with cesium at the same ion concentration (41).

TOWARD ANALYTICAL MODELS OF WATER

Even with modern computer simulations of water, it is of considerable value to
develop theories that are analytical because they can give complementary insights,
they do not require extensive computational resources, they can explore a wider
range of variables and parameters, they can suggest mathematical functional forms
that can be used for engineering, and they can lead to better and more computa-
tionally efficient models of solvation.

The simplest model of liquids is the van der Waals equation of state. The van
der Waals model treats the steric repulsions and the centrosymmetric attractions
between molecules; it explains the sharp boiling transition and the critical point.
But by itself, the van der Waals model cannot describe water because it does not
deal with the strong orientational attractions due to water’s hydrogen bonding, and
it therefore does not predict water’s interesting anomalies. Hydrogen bonding is
central to water’s peculiar behavior (1, 5, 22, 54).

Recent analytical treatments of water (3, 60, 88, 89) have extended the van der
Waals model to incorporate hydrogen bonding interactions. These approaches in-
troduce effective intermolecular potentials that account approximately for water’s
open (low-density) and bonded (low-energy, low-entropy) states (7, 15, 27, 28,
35, 56, 58, 59, 69). Such models predict many of liquid water’s distinctive ther-
modynamic properties, but they do not directly relate water’s hydrogen bonding
structures to its thermodynamic properties. Thus, they cannot give insights into
the ordered phases of water (e.g., ice) or water structuring around solutes. Here,
we describe two analytical treatments that predict the properties of water from its
hydrogen bonding energetics and structure.

A Three-State Three-Water Mean-Field Model

Here we review a simple three-state three-water (3S3W) model (90–92). Each
water molecule is a two-dimensional disk with diameter d having three identical
bonding arms arranged as shown in the MB model. Although this two-dimensional
geometry is similar to that of the MB model, the energetics is slightly different so
that the model can be treated analytically. There are three different ensembles of
local states of three neighboring water molecules with different local structures,
volumes, and energy levels. The states are shown in Figure 14 (see color insert):
one is a hydrogen-bonded ice-like or cage-like state of three neighboring water
molecules having a relatively open structure; one is a van der Waals–bonded state
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of three molecules having a higher density; and one is an expanded state, whereby
the three waters do not interact with each other.

State 1: Cage-like The state of lowest energy is a cooperative hydrogen-bonded
configuration similar to the cage-like structures found in ice (72). In this
state, the hydrogen bond B C is made. The energy, u1, depends on the angle
of hydrogen bond B C with hydrogen bond A B, u1(φ) = −εHB + kSθ

2,
where kS is the angular spring constant and θ is the angle shown in Figure 14.
The B C hydrogen bond is cooperative insofar as its strength is modulated
by the angle with A B. εHB is the energy associated with a perfect B C
hydrogen bond, i.e., one in which the angle between B C and A B is 120
degrees. The local two-dimensional volume of the perfectly bonded cage-like
state is v1 = 3

√
3d2/4.

State 2: Dense The next higher energy level is a dense state, in which molecules
A, B, and C are in van der Waals contact, but there is no B C hydrogen
bond. The energy of this state is u2 = −εd , where εd is a constant, and the
local volume is given by v2 = (2 + √

3)d2/4.

State 3: Expanded The highest energy level is an expanded state that has neither
hydrogen bonds nor van der Waals contacts. Its energy is u3 = 0, and its local
volume is assumed to be that of an excluded-volume gas v3 = (β P)−1 +
v2, where β = (kB T )−1, kB is Boltzmann’s constant, T is temperature, and
P is pressure. Interactions beyond the triplet level are accounted for in a
self-consistent way by incorporating a background cohesive energy—Na/v,
where a is the van der Waals dispersion parameter and v is the average molar
volume (90).

The isothermal-isobaric partition function, �B(T, P, N ), for each molecule B
can be expressed as an integral over the allowed positions and orientations for
each state type and summed over the three types of states—cage-like, dense, and
expanded (90). The partition function for the entire system of N molecules � =
(�cell)N/N ! is given by

� =
(

3∑
j=1

� j

)N

. 4.

Here � j = g j exp[−β(〈u j 〉+ Pv j )], where 〈u j 〉 is the ensemble-averaged energy
of state j,

〈u1〉 = −εHB + 1

2β
−

√
kSπ

β

exp(−βkSπ
2/9)

3erf
(√

βkSπ2/9
) 5.

〈u2〉 = −εd

〈u3〉 = 0
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and the g j ’s are the corresponding densities of states:

g1 = 2πd2c(β)e
erf

(√
βkSπ2/9

)
√

βkSπ
exp

(
1

2
−

√
βkSπ exp(−βkSπ

2/9)

3erf
(√

βkSπ2/9
)

)
6.

g2 = 2πd2c(β)e

g3 = 2πc(β)e
1

β P
.

To predict experimental observables, the chemical potential is given by µ(β,

P) = −(βN )−1 ln �, and the molar volume (i.e., the equation of state) is given by
v(β, P) = (∂µ/∂ P)β (90), for example.

THE THREE-STATE THREE-WATER MODEL PREDICTS WATER’S ANOMALOUS PROPER-

TIES FROM HYDROGEN-BONDING STRUCTURE AND GEOMETRY This 3S3W model
is simple enough that properties can be calculated in a few seconds on a personal
computer. Figure 3 shows that the model (90, 91) predicts liquid water’s expan-
sion upon cooling and its minima in volume, isothermal compressibility, and heat
capacity (2, 34, 46, 79).

The model also predicts the populations f j of the three types of local states ( j =
1, 2, 3) as a function of temperature and pressure (see Figure 15). Cold liquid water
molecules are predominantly in cage-like configurations with open structures. As
the temperature is raised, hydrogen bonds break, and the cages collapse into denser
states of higher enthalpy. This explains cold water’s negative thermal expansion
coefficient and its unusually large heat capacity. Further heating breaks the van
der Waals contacts, leading to hot water’s expansion with temperature. Liquid
water shifts with temperature from cage-like to dense to expanded configurations,
accounting for the density reversals.

What are the effects of pressure? Applying pressure to the cold liquid collapses
the open cage-like states into dense structures (90), readily explaining cold water’s
large isothermal compressibility in terms of Le Chatelier’s principle: Compression
shifts the liquid structure away from the high-volume cages to the low-volume
dense structures. In addition, the model correctly predicts that the anomalies shown
in Figure 3 are suppressed at high pressures (90) because the high-pressure van der
Waals state of water more nearly resembles a normal liquid than the low-pressure
cage-like state does. Thus, applying pressure to cold water converts it to a more
normal liquid.

Figure 15 also shows good qualitative correspondence between the three pre-
dicted states of the model water with experimental populations observed in IR
spectra (50). On the basis of an analysis of OH stretching bands, Luck (50) has
identified three distinct OH states present in water (in order of increasing energy):
strongly cooperative hydrogen bonded, weakly cooperative hydrogen bonded, and
nonbonded. Figure 15 shows that these observed populations correlate well with
the cage-like, dense, and expanded states, respectively, of the 3S3W model.
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Figure 15 (a) Populations of OH states versus temperature Tr along water’s saturation
curve as determined from IR spectra [adapted from figure 5 of (50)]. (b) Populations, f j ,
of the three states—cage-like, dense, and expanded—versus temperature Tr for the
3S3W model liquid at atmospheric pressure (91). The vertical lines indicate the freezing
and boiling points (see Figure 16).

THE THREE-STATE THREE-WATER MODEL PREDICTS THE PHASE DIAGRAM OF WATER

The 3S3W model predicts a freezing transition. We considered two crystalline
forms of water: low-pressure (LP) and high-pressure (HP) ice. LP ice is an open
cage-like MB solid found at low pressures and temperatures (72). HP ice is the
same as LP ice, except that HP ice has an additional water molecule in the center
of each cage (see Figure 16); it is a self-clathrate (57).

Figure 16 compares the model predictions with the experimental phase diagram
for water. The model correctly predicts a vapor-liquid transition that terminates at
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Figure 16 Phase diagram of the 3S3W model (top) compared with experiments
(bottom): pressure Pr versus temperature Tr (91). Dashed curves locate the metastable
liquid-liquid (L-L) transition in the theory and a schematic of its proposed location in
water (see 54). LP ice consists of open cages in which each molecule bonds to three
neighbors. HP ice is LP ice, except with an additional molecule in the center of each
cage.

a critical point, and it predicts freezing transitions to the LP and HP forms of ice
at low and high pressure, respectively. LP ice correctly shows a negatively sloped
melting curve (contraction upon melting), whereas HP ice displays the normal
positively sloped melting curve (expansion upon melting). The two ice forms are
separated by a first-order phase transition. The melting and boiling curves converge
to a triple point, below which only the vapor or solid states are thermodynamically
stable.

The 3S3W model also predicts glassy behavior in supercooled water. Re-
cent experiments show that glassy water (i.e., amorphous ice) has an appar-
ent first-order transition between its low-density and high-density forms at low
temperature and high pressure (53, 54). This observation suggests the insight-
ful hypothesis (59) [although not yet experimentally verified (22, 54)] that the
transformation may reflect an underlying liquid-liquid phase transition in super-
cooled water. Consistent with this hypothesis, the 3S3W model predicts a low-
temperature transition between two supercooled liquid phases: a predominantly
cage-like phase at low temperatures that melts out to a denser state of water at higher
temperatures.

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

05
.3

4:
17

3-
19

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 B

os
to

n 
U

ni
ve

rs
ity

 o
n 

09
/1

6/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



31 Mar 2005 15:30 AR AR243-BB34-08.tex XMLPublishSM(2004/02/24) P1: KUV

192 DILL ET AL.

Treating Mercedes-Benz Water Using Thermodynamic
Perturbation and Integral Equation Theories

Another analytical strategy is based on thermodynamic perturbation and integral
equation methods. This strategy may be particularly useful for solutes that are
not at high dilution in water, for example, in multicomponent solutions. Wertheim
recently developed a theory for fluids of molecules that interact with highly direc-
tional attractive forces (45, 96, 97).

We have applied a thermodynamic perturbation theory (TPT) and an integral
equation theory (IE) to the MB model. The key quantity in the TPT approach (96)
is the Helmholtz free energy A of a system,

A = AL J + AHB, 7.

where AL J is the Helmholtz free energy of a LJ system and AHB is the hydrogen
bond contribution. The term AL J is calculated using the Barker-Henderson per-
turbation theory (33), with hard disks as a reference system. The three hydrogen
bonds of the MB molecule (see Figure 1) are equivalent, so the number of dis-
tinguishable states is four: Each water molecule has from zero to three hydrogen
bonds. For the hydrogen bond contribution to the Helmholtz free energy, we use
the expression (94)

AHB

NkB T
= 3

(
log xi − xi

2
+ 1

2

)
, 8.

where N is the number of particles and xi is the fraction of molecules not bonded
at arm i, which is obtained from a mass-action equation of the form

xi = 1

1 + 3xi�
, 9.

where  is the total number density and � is defined by

� = 2π

∫
gL J (r ) f̄ HB(r )rdr , 10.

where f̄ HB(r ) is an orientationally averaged Mayer function for the hydrogen-
bonding potential of one site. The pair distribution function gL J (r ) is obtained
by solving the Percus-Yevick equation for the LJ disks (33). Details are given in
Reference 94.

INTEGRAL EQUATION APPROACH The IE theory is based on the multidensity ver-
sion of the Ornstein-Zernike integral equation (94–96). IE goes beyond TPT in
giving spatial distributions in addition to thermodynamic properties. The basic
equation of this approach is the associative Ornstein-Zernike equation,

ĥ(k) = ĉ(k) + ĉ(k)ρĥ(k), 11.
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where ĥ(k) and ĉ(k) are the matrices, the elements are the Fourier transforms of
the partial correlation functions hi j (r ) and ci j (r ), respectively. ρ is the matrix con-
taining number densities (94). We use the Polymer Percus-Yevick (PPY) closure
(96).

The main approximation of the TPT and IE theories described above is the use
of orientationally averaged functions to take advantage of the simplicity of cen-
trosymmetric interactions. According to that approximation, the hydrogen bonding
arms are not at fixed angles of 120 degrees with respect to each other, but rather
are approximated as being randomly oriented with respect to each other.

These methods predict well the high-temperature properties (above T ∗ = 0.24)
of both pure MB water and MB nonpolar solutes in water. The IE and TPT treat-
ments, however, deviate from the MB model Monte Carlo simulations for cold
liquid water (T ∗ = 0.18) because of limitations of the random-angle approxima-
tion (95). A key property of MB water, and of real water, is that the hydrogen
bonding vectors within each molecule have fixed relative orientations.

Figure 17 Two-dimensional slices of g(r∗, θ1, θ2) as a function of θ2 with (a) r∗ and θ1

fixed at 0.7 and 60◦, (b) r∗ = 1.0 and θ1 = 0◦, (c) r∗ = 1.72, θ1 = 30◦, and (d) as
function of r∗ with θ1 = θ2 = 30◦. The MC results (symbols), PMSA lines; T∗ = 0.20
and ρ∗ = 0.90.
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ORIENTATION-DEPENDENT INTEGRAL EQUATION THEORY To improve upon the
TPT and IE methods, we have generalized the Ornstein-Zernike equation to treat
angular correlations (93). We expanded the two-particle correlation function in a
complete set of orthogonal angular functions. We studied two different approxi-
mate closure conditions, PPY and the Polymer MSA (PMSA) closure, and found
the latter to be slightly better.

Solving the orientation-dependent integral equation theory (ODIET) yields an
angle-dependent two-particle distribution function, g(r∗, θ1, θ2). Including the ex-
plicit dependence on the intramolecular hydrogen bond angle improves the pre-
diction of structure, relative to the angle-averaged models above, particularly of
the second and third solvation shells.

Figure 17 shows predicted angular distributions, two-dimensional slices of
g(r, θ1, θ2) as a function of θ2, for T ∗ = 0.20 and ρ∗ = 0.90. The ODIET approach
captures the qualitative features of the orientation dependence of water-water
interactions.

Figure 18 Orientational pair distribution, g(r, θ1), for various orientations θ1 of the
first molecule, averaged over all possible θ2 values, together with a picture showing
the arrangement of molecules in the solid phase, i.e., for the MB model ice. (a) θ1 =
0◦ ( full line), θ1 = 10◦ (dashed line), and θ1 = 20◦ (dotted line). (b) θ1 = 30◦ ( full
line), θ1 = 45◦ (dashed line), and θ1 = 60◦ (dotted line). (c) Arrangement of MB
molecules in the solid phase.
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Figure 18 (93) shows the degree of MB ice-like ordering in the liquid. The first
molecule is fixed in orientation θ1, and we calculate the distributions with respect
to r∗, averaging over all θ2 values [g(r∗, θ1) = 〈g(r∗, θ1, θ2)〉θ2 ].

In short, simple pair correlation functions, g(r ), are too averaged to contain
much information about water structure and cages. The orientational distribution
functions g(r, θ1, θ2) contain much more information about water structure. The
ODIET method gives much better predictions than simpler integral equation meth-
ods, although still not perfect, for these angle-dependent properties of water.

SUMMARY

We have reviewed simplified models and the insights they give into water, including
its thermal properties, phase diagram, volumetric anomalies, and its properties as
a solvent for nonpolar solutes and ions. Monte Carlo simulations of MB water
have provided a springboard for new analytical treatments, such as a 3S3W mean-
field model and thermodynamic perturbation and IE methods, that can be used
for orientational liquids such as water. These models suggest that many of the
qualitative and global properties of water—water’s thermodynamics, its volume
anomalies, and its properties in the hydrophobic effect and as a solvent for ions—
may not depend strongly on atomic details or on water’s tetrahedrality per se;
rather, they depend on water’s fixed angular interactions owing to its hydrogen
bonding geometry. One long-term goal of simplified modeling is to develop more
computationally efficient ways to understand pure water and aqueous solvation.

The Annual Review of Biophysics and Biomolecular Structure is online at
http://biophys.annualreviews.org

LITERATURE CITED

1. Angell CA. 1983. Supercooled water.
Annu. Rev. Phys. Chem. 34:593–630

2. Angell CA, Oguni M, Sichina WJ. 1982.
Heat capacities of water at extremes of
supercooling and superheating. J. Phys.
Chem. 86:998–1002

3. Ashbaugh HS, Truskett TM, Debenedetti
PG. 2002. A simple molecular thermody-
namic theory of hydrophobic hydration. J.
Chem. Phys. 116:2907–21

4. Baldwin RL. 1996. How Hofmeister ion in-
teractions affect protein stability. Biophys.
J. 71:2056–63

5. Ball P. 1999. Life’s Matrix: A Biography of
Water. New York: Farrar, Straus, & Giroux

6. Barker JA, Watts RO. 1969. Structure of

water: a Monte Carlo calculation. Chem.
Phys. Lett. 3:144–45

7. Bellissent-Funel MC. 1998. Is there a liq-
uid liquid phase transition in supercooled
water? Europhys. Lett. 42:161–66

8. Ben-Naim A. 1971. Statistical mechanics
of “waterlike” particles in two dimensions.
I. Physical model and application of the
Percus-Yevick equation. J. Chem. Phys.
54:3682–95

9. Ben-Naim A. 1974. Water and Aqueous So-
lutions. New York: Plenum. 474 pp.

10. Ben-Naim A. 1983. Hydrophobic Interac-
tions. New York: Plenum. 311 pp.

11. Berendsen HJC, Grigera JR, Straatsma TP.
1987. The missing term in the effective

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

05
.3

4:
17

3-
19

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 B

os
to

n 
U

ni
ve

rs
ity

 o
n 

09
/1

6/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



31 Mar 2005 15:30 AR AR243-BB34-08.tex XMLPublishSM(2004/02/24) P1: KUV

196 DILL ET AL.

pair potentials. J. Phys. Chem. 91:6269–
71

12. Bernal JD, Fowler RH. 1933. A theory of
water and ionic solutions, with particular
reference to hydrogen and hydroxyl ions.
J. Chem. Phys. 1:515–48

13. Bol W. 1982. Monte-Carlo simulations of
fluid systems of waterlike molecules. J.
Mol. Phys. 45:605–16

14. Cacace MG, Landau EM, Ramsden JJ.
1997. The Hofmeister series: salt and sol-
vent effects on interfacial phenomena. Q.
Rev. Biophys. 30:241–77

15. Canpolat M, Starr MR, Sadr-Lahijany A,
Scala O, Mishima S, et al. 1998. Local
structural heterogeneities in liquid water
under pressure. Chem. Phys. Lett. 294:9–
12

16. Carravetta V, Clementi E. 1984. Water-
water interaction potential: an approxima-
tion of the electron correlation contribution
by a functional of the SCF density matrix.
J. Chem. Phys. 81:2646–51

17. Chong SH, Hirata F. 1997. Ion hydra-
tion: thermodynamic and structural anal-
ysis with an integral equation theory of liq-
uids. J. Phys. Chem. B 101:3209–20

18. Clementi E, Habitz P. 1983. A new two-
body water-water potential. J. Phys. Chem.
87:2815–20

19. Collins KD, Washabaugh MW. 1985. The
Hofmeister effect and the behaviour of wa-
ter at interfaces. Q. Rev. Biophys. 18:323–
422

20. Crovetto R, Fernandez-Prini R, Japas ML.
1982. Contribution of the cavity-formation
or the hard-sphere term to the solubility
of simple gases in water. J. Phys. Chem.
86:4094–95

21. Dahl LW, Andersen HC. 1983. Cluster ex-
pansions for hydrogen-bonded fluids. III.
Water. J. Chem. Phys. 78:1962–79

22. Debenedetti PG. 1996. Metastable Liquids.
Princeton, NJ: Princeton Univ. Press. 411
pp.

23. Debenedetti PG. 2003. Supercooled and
glassy water. J. Phys. Condens. Matter
15:R1669–726

24. Dill KA. 1990. The meaning of hydropho-
bicity. Science 250:297–98

25. Dill KA. Brombert S, eds. 2003. Molec-
ular Driving Forces, pp. 571. New York:
Garland Sci.

26. Eisenberg D, Kauzmann W. 1969. The
Structure and Properties of Water. Oxford,
UK: Oxford Univ. Press

27. Errington JR, Debenedetti PG, Torquato S.
2001. Relationship between structural or-
der and the anomalies of liquid water. Na-
ture 409:318–21

28. Errington JR, Debenedetti PG, Torquato
S. 2002. Cooperative origin of low-density
domains in liquid water. Phys. Rev. Lett.
89:215503

29. Ferguson DM. 1995. Parameterisation and
evolution of a flexible water model. J. Com-
put. Chem. 16:501–11

30. Frank HS, Evans MW. 1945. Free volume
and entropy in condensed systems. III. En-
tropy in binary liquid mixtures; partial mo-
lal entropy in dilute solutions; structure and
thermodynamics in aqueous electrolytes. J.
Chem. Phys. 13:507–32

31. Franks F, ed. 1972–1982. Water: A Com-
prehensive Treatise, Vols. 1–7. New York:
Plenum

32. Guillot B. 2002. A reappraisal of what we
have learnt during three decades of com-
puter simulations on water. J. Mol. Liq.
101:219–60

33. Hansen JP, McDonald IR. 1986. Theory of
Simple Liquids. London: Academic

34. Hare DE, Sorensen CM. 1986. Densities of
supercooled H2O and D2O in 25 µm glass
capillaries. J. Chem. Phys. 84:5085–89

35. Harrington S, Zhang R, Poole PH,
Sciortino F, Stanley HE. 1997. Liquid-
liquid phase transition: evidence from sim-
ulations. Phys. Rev. Lett. 78:2409–12

36. Haymet ADJ, Silverstein KAT, Dill KA.
1996. Hydrophobicity reinterpreted as
‘minimisation of the entropy penalty of sol-
vation.’ Faraday Discuss. 103:117–24

37. Hildebrand JH. 1968. A criticism of the
term “hydrophobic bond”. J. Phys. Chem.
72:1841–42

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

05
.3

4:
17

3-
19

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 B

os
to

n 
U

ni
ve

rs
ity

 o
n 

09
/1

6/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



31 Mar 2005 15:30 AR AR243-BB34-08.tex XMLPublishSM(2004/02/24) P1: KUV

MODELING WATER AND SOLVATION 197

38. Hildebrand JH. 1979. Is there a “hydropho-
bic effect”? Proc. Natl. Acad. Sci. USA
76:194

39. Hofmeister F. 1888. Zur Lehre von der
Wirkung der Salze. Arch. Exp. Pathol.
Pharmakol. 24:247–60

40. Horne RA, ed. 1972. Water and Aque-
ous Solutions: Structure, Thermodynam-
ics, and Transport Properties. New York:
Wiley-Intersci. 837 pp.

41. Hribar B, Southall NT, Vlachy V, Dill KA.
2002. How ions affect the structure of wa-
ter. J. Am. Chem. Soc. 124:12302–11

42. Hummer G, Garde S, Garcia AE, Pratt LR.
2000. New perspectives on hydrophobic ef-
fects. Chem. Phys. 258:349–70

43. Jorgensen WL. 1981. Transferable inter-
molecular potential functions for water, al-
cohols, and ethers. Application to liquid
water. J. Am. Chem. Soc. 103:335–40

44. Jorgensen WL, Chandrasekhar J, Madura
JD, Impey RW, Klein ML. 1983. Compari-
son of simple potential functions for simu-
lating liquid water. J. Chem. Phys. 79:926–
35

45. Kalyuzhnyi YV, Holovko MF, Haymet
ADJ. 1991. Integral equation theory for
associating fluids: weakly associating 2-2
electrolytes. J. Chem. Phys. 95:9151–64

46. Kell GS. 1967. Precise representation of
volume properties of water at one atmos-
phere. J. Chem. Eng. Data 12:66–69

47. Krestov GA. 1991. Thermodynamics of
Solvation. New York: Horwood. 284 pp.

48. Lie GC, Clementi E. 1975. Study of the
structure of molecular complexes. XII.
Structure of liquid water obtained by Monte
Carlo simulation with the Hartree-Fock po-
tential corrected by inclusion of dispersion
forces. J. Chem. Phys. 62:2195–99

49. Lie GC, Clementi E, Yoishimine M. 1976.
Study of the structure of molecular com-
plexes. XIII. Monte Carlo simulation of liq-
uid water with a configuration pair poten-
tial. J. Chem. Phys. 64:2314–23

50. Luck WAP. 1998. The importance of coop-
erativity for the properties of liquid water.
J. Mol. Struct. 448:131–42

51. Matsuoka O, Clementi E, Yoishimine M.
1976. CI study of the water dimer potential
surface. J. Chem. Phys. 64:1351–61

52. McDevit WF, Long FA. 1952. The activ-
ity coefficient of benzene in aqueous salt
solutions. J. Am. Chem. Soc. 74:1773–81

53. Mishima O, Calvert LD, Whalley E. 1985.
An apparently first-order transition be-
tween two amorphous phases of ice in-
duced by pressure. Nature 314:76–78

54. Mishima O, Stanley HE. 1998. The rela-
tionship between liquid, supercooled, and
glassy water. Nature 396:329–35

55. Nezbeda I. 1997. Simple short-ranged
models of water and their application. A
review. J. Mol. Liq. 73–74:317–36

56. Paschek D, Geiger A. 1999. Simulation
study on the diffusive motion in deeply
supercooled water. J. Phys. Chem. B 103:
4139–46

57. Pauling L. 1939. The Nature of the Chemi-
cal Bond. London: Oxford Univ. Press

58. Poole PH, Essman U, Sciortino F, Stanley
HE. 1993. Phase diagram for amorphous
solid water. Phys. Rev. E 48:4605–10

59. Poole PH, Sciortino F, Essman U, Stan-
ley HE. 1992. Phase behavior of metastable
water. Nature 360:324–28

60. Poole PH, Sciortino F, Grande T, Stanley
HE, Angell CA. 1994. Effect of hydrogen
bonds on the thermodynamic behavior of
liquid water. Phys. Rev. Lett. 73:1632–35

61. Pople JA. 1951. Molecual association in
liquids. II. Theory of the structure of water.
Proc. R. Soc. London Ser. A 205:163–78

62. Pratt LR, Chandler DJ. 1977. Theory of
the hydrophobic effect. J. Chem. Phys.
67:3683–704

63. Robinson GW, Zhu SB, Singh S, Evans
M. 1996. Water in Biology, Chemistry
and Physics: Experimental Overviews and
Computational Methodologies. Singapore:
World Sci.

64. Robinson RA, Stokes RH. 2002. Elec-
trolyte Solutions. New York: Dover. 571 pp.

65. Rowlinson JS. 1951. The lattice energy of
ice and the second virial coefficient of wa-
ter vapour. Trans. Faraday Soc. 47:120–29

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

05
.3

4:
17

3-
19

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 B

os
to

n 
U

ni
ve

rs
ity

 o
n 

09
/1

6/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



31 Mar 2005 15:30 AR AR243-BB34-08.tex XMLPublishSM(2004/02/24) P1: KUV

198 DILL ET AL.

66. Samoilov OY. 1957. A new approach to the
study of hydration of ions in aqueous solu-
tions. Discuss. Faraday Soc. 24:141–46

67. Samoilov OY. 1957. Struktura Vod-
nykh Rastvorov Elektrolitov i Gidratatsiya
Ionov. Moscow: Acad. Sci. USSR

68. Sharp KA, Nicholls A, Fine RF, Honig
B. 1991. Reconciling the magnitude of the
microscopic and macroscopic hydrophobic
effects. Science 252:106–9

69. Shiratani E, Sasai M. 1998. Molecular scale
precursor of the liquid-liquid phase transi-
tion of water. J. Chem. Phys. 108:3264–
76

70. Silverstein KAT, Dill KA, Haymet ADJ.
1998. Hydrophobicity in a simple model of
water: solvation and hydrogen bond ener-
gies. Fluid Phase Equilibria 150–151:83–
90

71. Silverstein KAT, Dill KA, Haymet ADJ.
2001. Hydrophobicity in a simple model of
water. Entropy penalty as a sum of com-
peting terms via full, angular expansion. J.
Chem. Phys. 114:6303–14

72. Silverstein KAT, Haymet ADJ, Dill KA.
1998. A simple model of water and the
hydrophobic effect. J. Am. Chem. Soc.
120:3166–75

73. Silverstein KAT, Haymet ADJ, Dill KA.
1999. Molecular model of hydrophobic sol-
vation. J. Chem. Phys. 111:8000–9

74. Silverstein KAT, Haymet ADJ, Dill KA.
2000. The strength of hydrogen bonds in
liquid water and around nonpolar solutes.
J. Am. Chem. Soc. 122:8037–41

75. Smith WR, Nezbeda I. 1984. Cluster ex-
pansions for hydrogen-bonded fluids. III.
Water. J. Chem. Phys. 81:3694–99

76. Southall NT, Dill KA. 2000. The mecha-
nism of hydrophobic solvation depends on
solute radius. J. Phys. Chem. B 104:1326–
31

77. Southall NT, Dill KA. 2001. Response
to “Comment on “The mechanism of hy-
drophobic solvation depends on solute ra-
dius,” J. Phys. Chem. B, 2000, 104, 1326.”
J. Phys. Chem. B 105:2082–83

78. Southall NT, Dill KA, Haymet ADJ. 2002.

The view of the hydrophobic effect. J. Phys.
Chem. B 106:521–33

79. Speedy RJ, Angell CA. 1976. Isothermal
compressibility of supercooled water and
evidence for a thermodynamic singularity
at −45◦C. J. Chem. Phys. 65:851–58

80. Sprik M, Huttel J, Parrinello M. 1996.
Ab initio molecular dynamics simulation of
liquid water: comparison of three gradient-
corrected density functionals. J. Chem.
Phys. 105:1142–52

81. Sprik M, Klein ML. 1988. A polarisable
model for water using distributed charge
sites. J. Chem. Phys. 89:7556–60

82. Stillinger FH. 1975. Theory and molecular
models for water. Adv. Chem. Phys. 31:1–
102

83. Stillinger FH. 1980. Water revisited. Sci-
ence 209:451–57

84. Stillinger FH, Rahman A. 1974. Improved
simulation in liquid water by molecular dy-
namics. J. Chem. Phys. 60:1545–57

85. Tait MJ, Franks F. 1971. Water in biological
systems. Nature 230:91

86. Tanford C. 1979. Interfacial free energy and
the hydrophobic effect. Proc. Natl. Acad.
Sci. USA 76:4175–76

87. Tanford C. 1980. The Hydrophobic Ef-
fect: Formation of Micelles and Biological
Membranes. New York: Wiley

88. Truskett TM, Debenedetti PG, Sastry S,
Torquato S. 1999. A single-bond approach
to orientation-dependent interactions and
its implications for liquid water. J. Chem.
Phys. 111:2647–56

89. Truskett TM, Debenedetti PG, Torquato S.
1999. Thermodynamic implications of con-
finement for a water-like fluid. J. Chem.
Phys. 114:2401–18

90. Truskett TM, Dill KA. 2002. A simple sta-
tistical mechanical model of water. J. Phys.
Chem. B 106:11829–42

91. Truskett TM, Dill KA. 2002. Predicting wa-
ter’s phase diagram and liquid-state anoma-
lies. J. Chem. Phys. 117:5101–4

92. Truskett TM, Dill KA. 2003. A simple an-
alytical model of water. Biophys. Chem.
105:449–59

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

05
.3

4:
17

3-
19

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 B

os
to

n 
U

ni
ve

rs
ity

 o
n 

09
/1

6/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



31 Mar 2005 15:30 AR AR243-BB34-08.tex XMLPublishSM(2004/02/24) P1: KUV

MODELING WATER AND SOLVATION 199
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MODELING WATER AND SOLVATION C-1

Figure 6 Angular distributions of first-shell (left panel) and second-shell (right
panel) water molecules around a nonpolar solute compared with the neighbors of
bulk water molecules at four temperatures: T* � 0.16 (blue), 0.20 (green), 0.24
(orange), and 0.28 (red) (72).

Figure 7 Angular preferences of the first-shell waters, percentage of hydrogen bonds
made, and solute size (relative to an MB water) for solutes of size 0.70lHB, 1.07lHB,
1.50lHB, 2.00lHB, 3.00lHB, and a planar solute, at T* � 0.18 (76).
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C-2 DILL ET AL.

Figure 9 (a) Solute-solute pair distribution functions from the MB model for different
solute sizes. (b) Small nonpolar solutes prefer to be solvent separated; large nonpolar
solutes prefer to come into contact.

Figure 11 (a) The MB � dipole model of water. The negative end of the dipole is at the
molecular center, and the positive end is along one hydrogen bond arm, 60% of the way to
water’s surface. (b) Smaller ions interact more strongly with water than larger ions do
owing to the monotonic decrease with distance of electrostatic interactions. The distribu-
tions on the right indicate the degree of orientational freedom due to electrostatic interac-
tions. (c) Anions interact more strongly with water than cations do, for a given ion radius,
owing to the asymmetry of water’s dipole.
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MODELING WATER AND SOLVATION C-3

Figure 12 Snapshots of waters around ions of different sizes. Around small ions,
waters are ordered electrostatically by their dipole orientations. Around large ions,
waters are ordered to achieve hydrogen bonding, as around hydrophobic solutes (41).
The red dots on the waters show the � end of the dipole; the – end is at the water’s
center.

Figure 13 (a) Most probable sites of hydrophobic solute insertion (yellow) in the first and
second shells around different ions, as predicted by the MB � dipole model, together with
the potential of mean force between an ion and a hydrophobe at T* � 0.20 (41). (b) Hof-
meister effect: Benzene is increasingly insoluble in water of increasing ion concentrations,
depending on the ion type (52).
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C-4 DILL ET AL.

Figure 14 The three-state three-water (3S3W) model. State 1: cage-like; State 2: dense;
State 3: expanded. Volumes vj ( j � 1, 2, 3) are computed using house-shaped cells (91)
(shaded). The house volume sums to �d2/4; i.e., one total water molecule per cell, plus free
volume. In the cage-like state, B–C is hydrogen bonded, modulated by the angle with A–B.
In the dense state, A, B, and C are in van der Waals contact, and B’s orientation is not con-
strained by hydrogen bonds. The expanded state has neither hydrogen bonds nor van der
Waals contacts. B’s orientation � is measured with respect to the axis connecting the cen-
ters of A and B.
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