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This paper develops a method for numerical approximation of dynamic competitive equilibria 
which can be applied quite generally. This method produces approximations to the equilibrium 
decision rules via a direct attack on the stochastic Euler equations which define competitive 
equilibrium. This approach does not require the Pareto optimal@ of competitive equilibrium. 
We provide a detailed discussion of the implementation of this computational method, and 
discuss considerations important for the choice of one computational technique versus another. 
For illustrative purposes, the paper presents several examples based on the analysis of taxation 
in the one-sector neoclassical model. 

1. Introduction 

Many research questions necessarily involve the study of suboptimal dy- 
namic equilibria. For example, one might be interested in studying the effect 
of a change in the income tax laws on the joint time series behavior of 
investment, production, and asset returns under rational expectations. Since 
taxes induce a wedge between private and social returns, the resulting 
dynamic equilibrium is suboptimal and cannot generally be studied with 
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methods which rely on the Pareto optimality of competitive equilibrium. 
Since dynamic equilibrium problems do not generally have analytic solutions, 
one must choose between (i> studying special cases of these problems in 
which closed forms exist or (ii> using numerical methods to compute approxi- 
mate equilibria. 

This paper develops a method for numerical approximation of dynamic 
competitive equilibria which can be applied quite generally.’ In a dynamic 
competitive equilibrium problem, individual agents are assumed to make 
their decisions in a privately rational manner. The result of this maximization 
is a set of first-order necessary conditions or ‘stochastic Euler equations’ for 
the individual’s problem; these conditions restrict the dynamic evolution of 
the individual’s choice variables. When combined with aggregate consistency 
conditions, the stochastic Euler equations restrict the dynamic behavior of 
the entire economic system. 

On a theoretical level, we are familiar with viewing dynamic competitive 
equilibrium in an economy as a set of functions which satisfy the economy’s 
stochastic Euler equations and aggregate consistency conditions. The proper- 
ties of equilibrium can therefore be explored by finding numerical approxi- 
mations to these equilibrium functions. The method described in this paper 
finds discrete approximations to the equilibrium functions that solve the 
stochastic Euler equations. That is, approximate equilibria are computed 
using an algorithm which involves discretization of the state space as in 
Bertsekas (1976) and Sargent (1979). This paper provides a detailed discus- 
sion of this method, and demonstrates its use by application to the stochastic 
one-sector neoclassical growth model of Brock and Mirman (1972), modified 

to allow distortionary taxation. 
While this paper is organized around the problem of capital accumulation 

in the presence of distortions, the basic computational approach is applicable 
to a wide variety of problems in which competitive equilibrium can be 
characterized as a system of Euler equations. For example, this method can 
be used to study overlapping generations (OLG) economies with long-lived 
agents, as discussed in Baxter (1987). Because equilibria in OLG economies 
are generally suboptimal, these equilibria cannot be studied using methods 
which rely on the optimality of competitive equilibrium. The method can also 
be used to study monetary economies in which the introduction of money 
means that competitive equilibrium is not socially optimal, as in Cooley and 
Hansen (1989), Baxter (19911, and Hodrick, Kocherlakota, and Lucas (1991). 
Other potential applications of the methodology are to economies in which 

‘This paper develops in more detail the computational strategy outlined in Baxter (1987), and 
which is briefly discussed in Baxter, Crucini, and Rouwenhorst (1990). Working independently, 
Danthine, Donaldson, and Smith (1987), Bizer and Judd (1989), and Coleman (1990,1991) have 
developed methods that are similar to the one described here, in that the central insight is to 
work with the system’s first-order conditions. 
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suboptimality of competitive equilibrium is due to (i) the existence of 
monopoly power at the firm level, as in dynamic versions of the model of 
Blanchard and Kiyotaki (1987); (ii) productive externalities of the types 
studied by Romer (19861, Lucas (1988), and Baxter and King (1990); or (iii) 
incompleteness in asset markets, as in Persson and Svensson (1987) and 
Svensson (1988). 

The paper proceeds as follows. Section 2 describes the method of obtain- 
ing approximate equiIibrium policy functions via iteration on Euler equa- 
tions. The presentation is organized around the stochastic one-sector growth 
model with distortionary taxation, and highlights the conceptual similarity 
between this method and the more familiar method of value function 
iteration. Section 3 applies the Euler equation approach to computing 
equilibrium policy functions for several variants of this problem, and evalu- 
ates the computational accuracy of the approach. This is done by comparing 
approximate policy functions to exact policy functions in the context of an 
example economy possessing a closed-form solution for the poIicy function. 
Section 4 addresses the problem of the choice of computational method. 
Section 5 contains concluding remarks and discusses directions for future 
research. 

2. ‘The Euler equation approach 

The Euler equation approach is illustrated within the framework of the 
neoclassical model of capital accumulation under uncertainty. In this mod& 
individuals maximize expected utility: 

where /3 is a discount factor between zero and one, the utility function u(.) is 
assumed to be twice continuously differentiable, and where the expectation 
taken at time zero is conditioned on the initial capital stock, k,, and the 
initial value of the technology shock, A,. Agents face a sequence of resource 
constraints of the form 

A,.#-(k,) +(I -wt~ct+kel7 (2) 

where A, is a technology shock; k, is the capital stock, f(k) is the produc- 
tion function, assumed to be twice continuously digerentiabie with f’(k) > 0 
and f”(k) < 0; and 6 is the rate of depreciation of capital. The technolo~ 
shock, A,, follows a discrete Markov process with state transition matrix n. 
Agents in this model own the capital stock and directly operate the technol- 
ogy. In period t, they receive output from production, A,f(k,), and there is 
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undepreciated capital left over after production in the amount (1 - 6)k,. 
They allocate this gross output between current consumption, c,, and capital 
to be used in production in the subsequent period, k,+r. Thus the period 
t + 1 capital stock is determined at the end of period t, and cannot be 
adjusted after the period technology shock A,,, is realized at the beginning 
of period t -t- 1. 

Using the notation Dx to denote the derivative of the function X, the 
first-order necessary conditions for the consumer’s problem are 

WC,) =PE([4+, Df(k,.,) I- (1 -a>] D+t+dl~ 

and the budget constraint (2). Since this problem is recursive we let unprimed 
variables denote period 1, single primes denote period t + 1, and double 
primes denote period t + 2. Making these substitutions and using the re- 
source constraint to substitute for c, eq. (3) becomes 

=@E([A’Df(k’) + (1 -S)] D~~~~(~~) -t (1 -6)/Gk”)j. (4) 

Under the assumptions imposed on this problem, there is unique function 
relating the optimal choice of k’ to the current level of k and the current 
technology shock A; call this function h: 

k’=h(k,A). (51 

To take a specific example, suppose that there are only two possible 
realizations of the technology shock, A, E {A, A}, and that A, follows a 
Markov process with transition matrix II. Fig. 1 plots the policy functions for 
k’ as a function of k, conditional on the technology shock. One fixed point is 
at k = k; this is the level of capital that would obtain if the economy turned 
out always to have the high realization of the technology shock, A, =x for 
all t even though in each period there is positive probability that A =A in 
some future period? There is a second fuied point k = &, which is the level of 

‘In general, the function h(k, x) is not the function that would obtain in a deterministic 
version of the model in which the technology variable always took on the value A[similarly for 
h(k, A)]. In the stochastic model, there is always a positive probability associated with each of 
the two shocks, and the equilibrium policy functions incorporate individuals’ response to the risk 
associated with the randomness in A. 
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Fig. 1 

capital that would obtain if the economy always had the low realization of the 
technology shock, A, =A for all t. In addition, all the points in the interval 
(k, _k> generally have positive mass in the stationary distribution of k. 

Except for very special choices of the parameters of preferences and 
technologies, it is not possible to solve (4) to obtain a closed-form solution for 
the function h(k, A). We turn now to a discussion of two approaches to 
computing approximations to the equilibrium policy function. The first is the 
approach of stochastic dynamic programming and value function iteration. 
This method relies on the equivalence between competitive equilibrium and 
Pareto optimum in the economy under consideration.3 The second approach 
is new, and involves iteration on a stochastic Euler equation. This approach 
does not rely on the Pareto optimality of competitive equilibrium. 

2.1. Stochastic dynamic programming and value function iteration 

Since the problem described above has a recursive structure, it can be 
studied using the methods of stochastic dynamic programming. Thus, the 
problem can be rewritten as 

v(kA) = ,my 44 +PE{v(~~+~J~+~)~~ 
I’ ,+* 

(6) 

3Two recent papers which use this computational approach are Sargent (1979) and 
Greenwood, Hercowitz, and Huffman (1988). 
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subject to the constraint (2). The function L’ gives the value, in utility terms, 
of entering a period with capitaf equal to k, and encountering the technology 
shock A,, assuming that the agent makes individuaIly optimal decisions. Eq. 
(6) is a functional equation in the unknown function L’. Using (2) to substitute 
for c, in eq. (4), we obtain 

v(L 4) = Fax 44f(k,) + (I- +, - k,+,) 
,+I 

Define the operator T by 

Since the form of (8) does not depend on the time period, t, time subscripts 
can be suppressed and (8) can be written as 

TV= mkF{u(Af(k) + (1 -6)k-k’) +PEu(k’,A’)}, (9) 

where, as above, variabfes without superscripts refer to the current period (t) 
and primed variables refer to the subsequent period (1 + 1). Solving for the 
unknown function L! involves finding a fixed point of the mapping T, i.e., 
finding the function u for which TV = v. 

Because the mapping T defined by eq. (8) is a contraction mapping,4 
iteration on T produces a sequence of functions which converge to the 
unique fixed point of the mapping. This suggests that iteration on the 
mapping can be used as a computational approach to ending an approxima- 
tion to the optimal value function. The approximate nature of the solution is 
due to the computational necessity of ‘discretizing the state space’, i.e., 
choosing a discrete grid for k and A over which the value function will be 
defined. Having done this, the computational problem involves finding the 
approximate value function, u*, which is defined on the (k, Al grid and 
which appro~mately solves the equation TV* = u*. 

The iterative procedure begins by choosing an initial u* function, defined 
on the (k, A) grid. Call this function vz. Given uz, application of the 

4T can be shown to be a contraction by verifying that it satisfies Blackwell’s (1965) conditions. 
For a more detailed discussion of this problem, see Stokey and Lucas (1989). 
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operator T yields a new LI* function; call this new function ~17: 

where the maximization is over values of k in the chosen grid and is 
conditional on the current value of A. Subsequent iterations proceed in the 
same way, generating a sequence of u* functions, {UT}. The iterative process 
continues until the sequence of v* functions converges according to a 
criterion selected by the researcher. 

Often the value function chosen as the starting point for the iterative 
procedure is the zero function, vz = 0. This choice of ~1: means that the 
sequence of functions produced by application of the operator T has an 
economic interpretation as the sequence of value functions for finite 
economies, with the horizon lengthening one period at each iteration. Thus, 
VT is the approximate value function for an economy with one period left to 
go, vz is the approximate value function for an economy with two periods left 
to go, and so forth. In the one-sector growth model, the limit of the value 
functions for the finite horizon economies is the value function for the 
infinite horizon economy. 

If the economy under study satisfies the conditions of the second welfare 
theorem, the optimal solution obtained by value function iteration may be 
interpreted as a competitive equilibrium. In cases where competitive equilib- 
rium is not optimal, the approach outlined above is generally invalid. It can 
be used only if there is a way to rewrite the competitive problem as an 
optimum prob!em which properly reflects the constraints of the competitive 
problem. In general, studying suboptimal equilibria requires a direct attack 
on the first-order necessary conditions of the individual’s problem. The Euler 
equation approach proceeds in exactly this way. 

2.2. The Euler equation approach 

Unlike value function iteration, the method described here does not rely 
on the second welfare theorem. For illustrative purposes, we consider the 
neoclassical model of capital accumulation described above, modified to 
allow distortionary taxation in the form of an income tax with lump-sum 
rebates of the proceeds of the tax. This problem cannot be recast as a 
fictitious planner’s problem, so the method of value function iteration cannot 
be used.5 In this example, taxes can be functions of the Markovian technol- 
ogy shock and the level of the aggregate capital stock. The point of this is to 

‘If taxes are not rebated in a lump-sum manner, the tax shocks may be reinterpreted as 
technology shocks, as discussed in Abel and Blanchard (1983). and value function iteration could 
then be used to compute the equilibrium. With lump-sum rebates the problem cannot be recast 
in this way as a fictional ‘planner’s problem’, and an alternative to value function iteration must 
be found. This problem, therefore, is a natural one for illustrating the Euler equation method. 
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demonstrate that state dependence of the tax function does not add to the 
complexity of the problem to be solved. The economy’s capital stock (per 
capita) is denoted by K, and the individual agent’s choice of capital is 
denoted by k. This is not a very restrictive specification of taxes since, in 
equilibrium, all endogenous variables (output, consumption, investment, etc.) 
are functions of the state vector (K, A). Let dK,, A,) denote the tax rate in 
period t - note that taxes depend on the aggregate capital stock, not on 
individual’s capital accumulation decisions. The behavior of the government 
is very simple: it levies taxes and returns the proceeds in a lump-sum manner. 
Letting TR, denote period t transfer payments, the government’s budget 

constraint is just TR, = dK,, A,)A,f(K,), for all t. 
The problem facing the representative agent in this economy is 

mm E 
(c,,k,+J 

2 P’u(c,) lAo,ko 
r=o 

subject to 

c, + k r+ls (1 -7(Kt, A,))A,f(k,) + (1 - 6)kt + TR,, 

(10) 

(11) 

K r+1 =H(K,,A,). (12) 

Eq. (11) is the individual’s resource constraint; the first two terms on the 

right-hand side are after tax gross output, and the last term is the lump-sum 
rebate of the government’s tax revenues. Eq. (12) is private agents’ perceived 
law of motion for aggregate capital, K,. As before, it is convenient to 
suppress time subscripts, and the arguments of the tax function are sup- 
pressed as well: T should be read as 7(K, A). The first-order necessary 
condition for maximization with respect to choice of capital is D&c) = 
/3E{[(l - +)A’Df(k’) + (1 - S)]Du(c’)). Using (11) to substitute for c, yields 

Du((1 -T)Af(k) + (1-iS)k+Tf(K) -k’) 

+(l-6)k’+Mf(K’)-k”)}. (13) 

Individual maximization yields equilibrium decision rules of the form: 

k’=h(k,A;K,H). (14) 
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In equilibrium, the capital agents choose to carry out of the period is a 

function of capital brought into the period, k, and the current technology 
shock, A. Individuals take as given the tax function T(K, A) and the current 
level of the aggregate capital stock, K. They condition on their beliefs about 
the law of motion for aggregate capital as summarized by the function 

K’ = H(K, A). 
A rational expectations equilibrium requires that the law of motion for 

k r+l coincides the perceived law of motion for K,+l: 

h(k,A;K,H) =H(K,A). (15) 

This condition is sometimes referred to as a ‘consistency condition’, meaning 
that individual’s beliefs are consistent with the outcomes of the economy’s 

equilibrium: in equilibrium, k (capital chosen by the representative agent) 
must equal aggregate capital, K. Imposing this consistency condition on the 
first-order condition yields 

Du(Af(k)+(ld)k-k’) 

+(l -6)k’-k”)}. (16) 

Finding the competitive equilibrium means finding the function h of the form 
given by (15) which solves (16) and for which the implied function h is such 
that h(k, A; K, H) =H(K, A). Below, we use the notation h(k, A) when 
referring to equilibrium policy functions: functions for which h(k, A; 
K, H) = H(K, A). 

2.3. An iterative approach to approximating stochastic Euler equations 

This subsection provides a detailed description of the Euler equation 
approach to computing approximate equilibrium policy rules. This procedure 
is similar in spirit to the method of iterating on the value function described 
earlier. As with the value function approach, the first step is to discretize the 
state space by choosing a grid for k and A.6 And, as with value function 
iteration, the method of iterating on Euler equations can be viewed as 

‘The grid chosen will depend on the specific problem under study. If, for example, the 
exogenous state variable, A, is not discrete in the original problem but instead is normally 
distributed, Tauchen’s (1985) method can be used to provide a discrete Markov-chain approxi- 
mation to the normal distribution. The grid for the endogenous state variable will depend on 
whether the researcher is interested only in the steady state properties of the economy, in which 
case the grid should be concentrated in this area. If, on the other hand, the researcher wishes to 
study transitional dynamics, the grid must cover a larger area containing the initial value of the 
endogenous variable. 
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generating a sequence of optimal policy rules for finite economies with the 
horizon lengthening one period at each iteration. This perspective will be 
used in the following discussion of the computational algorithm. Under this 
perspective, we view ourselves as working backward from the end of the 
economy, in a manner similar to stochastic dynamic programming. 

We therefore begin by considering an economy that will terminate at the 
end of period N. In an N period economy agents will plan to consume all of 
their capital by the end of period N, setting kN+l = 0 regardless of the levels 
of k, and A,. Thus, the equilibrium policy function relating k’ to (k, A) 
for an economy with zero periods to go is the zero function: kN+l = 
h,(k,, A,) = 0. Now, step back one period and consider the problem of the 
optimal choice of capital in period N - 1. This involves solving the period 
N - 1 version of eq. (16), using the fact that k,,,, 1 = h,(k,, AN) = 0. Thus, 
the period N - 1 version of (16) is 

Du[A,_,f(k,_,) + (I -a)k,-, -k~l 

= PE{ [Cl - Tiv)Ar., “f(k,v) + Cl- 611 “+bJ(W 

+ (1 - wv)l* (17) 

Eq. (17) defines a first-order stochastic difference equation in k. Solving the 
equation involves finding, for each (k,_,, A,_ 1) pair, the equilibrium amount 
of capital to take out of the period, k,. Solving (17) involves using the initial 
policy function, h,, together with the stochastic Euler equation to generate a 
new policy function, h,, i.e., the solution to (17) is the function k, = 
hl(kN_l, A,_,). 

It is good computing practice to use known properties of the problem to 
simplify the computations. The one-sector growth model is very well-behaved 
in that it has smooth, concave preferences and technology. We can use these 
properties to improve the efficiency of our computational algorithm. In other 
applications, the restrictions placed on the model’s ‘building blocks’ by the 
economic phenomenon being modeled should analogously be used to stream- 
line the computations. In this spirit, we rewrite eq. (16) as follows, denoting 
the right-hand side of (16) as W(k I A) (the expected marginal value of 
additional unit of capital invested for use in the subsequent period, condi- 
tional on the current value of the technology shock, A): 

Af(k)+(l-6)k=k’+Du-‘(W(k’(A)). (18) 

We have isolated all terms in k’ on the right-hand side of (18) and all terms 
in k on the left-hand side; this will turn out to be very useful. 
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k’ 

Fig. 2 

A two-step computational procedure is used to trace out the new policy 
function, hr. The first step of the computational procedure is to compute the 
right-hand side of (18) for each (k’, A) pair in the grid. Call this function Z: 

Z(k’lA) =k’+Du-‘(MV(k’[A)). (19) 

In this discrete environment Z is a two-dimensional matrix, with each 
column corresponding to a particular value of A and rows corresponding to 
different values of the capital stock. 

The second step is to find, for each (k, A) pair, the value of k’ in the 
matrix which comes closest to solving (18). This is the point at which it is very 
useful to have segregated terms in k from terms in k’. For each point (k, A), 
we simply compute the left-hand side of (181, Af(k) + (1 - 6)k, and then 
search the appropriate column of the Z matrix for the value of k’ that solves 
(18). Further, we know from the structure of the model that, conditional on 
A, Z is nondecreasing in k’, as illustrated in fig. 2. This makes the search 
procedure very straightforward. Given (k, A), if we choose a candidate value 
for k’ such that Af(k) + (1 - 6)k > Z(k’ I A), we know that we must try a 
larger value for k’. Further, the problem is simple in that, if we have found 
one value of k’ that solves (18) for given k and A, we need not look for 
another. This need not, of course, be true for other problems. But the virtue 
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of a grid method is that it can locate all the zeros of a function by a 
simple-minded search over the whole grid. 

Applied to eq. (17), this two-stage procedure yields a function giving k, as 
a function of A,_, and kN_,, call this function hi: ~~=~~(~~_~,~~_~). 
This is the equilibrium policy function for k’ as a function of (k, A) for an 
economy with one period left to go. Now, step back again and consider the 
version of eq. (16) that applies to the economy in period N - 2. Using (19) 
and the function k, =h,(k,_,, A,_,) obtained from the first iteration, the 
period N - 2 Euler equation can be written as 

A,_,f(k,._,) + (11 S)k,-, = ~(kv-J4,-d~ 

Proceeding as in the first iteration, compute Z(k,_,, A,_,) for each 
(k,_,, A,_,) pair. Now, for each pair Ck,_,, A,_,) search the matrix 2 for 
the value of k,_, that comes closest to solving (19). Call this function h,: 
k,_, = h,(k,_,, A,_,). 

The way to proceed in the third and subsequent steps should, by now, be 
clear. At step j, the policy function h,_, is used to evaluate k”, and the 
resuhing equation is solved to obtain a new policy function p1j as described 
above, Iteration continues until the sequence of functions {hi) converges, i.e., 
when h, changes only a small amount between iterations. One natural norm 
is the sup norm with tolerance level d L 0; iteration stops when 

In the course of implementing this algorithm, the initial function h, = 0 has 
been found to work well in the sense that convergence is reasonably rapid. 
With h, = 0, the sequence of functions (hi) generated by the iterative 
procedure has a natural economic interpretation in much the same way as in 
vaIue function iteration discussed earlier. The sequence fhj) can be viewed as 
an approximation to the sequence of equilibrium policy functions for finite 
economies with j periods left to go. However, convergence will be more 
rapid if the initial function h, is closer to the equiIibrium policy function 
under the norm specified by the researcher. A good starting point for many 
applications is the function given by log-linear appro~mations to the true 
decision rules, as described for example in King, Plosser, and Rebel0 (1989). 
These log-linear approximations are easy to compute, and in problems with 
large state spaces a good starting point is likely to be essential to keeping 
computation time to a manageable level. 

There are no generally applicable theoretical results giving precise neces- 
sary and sufficient conditions under which the Euler equation approach will 
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yield the competitive equilibrium for a problem.’ But if the algorithm 
converges, if it satisfies the stochastic Euler equations, and if a check of the 
second-order conditions guarantees that a maximum has been found, then 
one can be sure that the procedure has found an equilibrium function in the 
space of policy functions. One cannot conclude, however, that this is the 
unique equilibrium function. Nevertheless, if multiple equilibria were sus- 
pected in a particular problem, one way to search for these would be to apply 
the algorithm repeatedly, starting with a different initial policy function each 
time. 

3. Computation of equilibrium in the one-sector model 

This section presents the results of applying the Euler equation approach 
to several variations of the distorted one-sector model described above. We 
begin by examining a special case of an undistorted economy for which a 
closed form solution exists. The approximate policy rules are compared to 
those computed from the closed form, in order to assess the accuracy of the 
approximation. Subsequently, several examples of economies with distor- 
tionary taxation are presented. 

3.1. A closed form example 

As an initial application of the approximation methodology, we study an 
economy possessing a closed form solution for the policy function k’ = 
h(k, A). In this economy, individuals maximize an objective function of the 
following form: 

E 2 P’ln(c,) I A,,k,. 
r=o 

The production function is Cobb-Douglas and is subject to technology 
shocks, A, which are identically and independently distributed: 

y=Af(k) =Ak*, (20) 

and there is 100% depreciation of capital in each period, S = 1. The govern- 
ment taxes output at the rate 7, where r is given by the function 

T(k,K) = 1 -M(k/K)-‘, (21) 

‘Coleman (1991) provides sufficient conditions for convergence of an algorithm related to this 
one, for an economy similar to the one studied here. However, interesting economic 
examples - including the one studied in section 3.3 below - violate these sufficient conditions. 
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where M and 4 are constants. According to this specification, the tax rate 
levied on an individual firm (with capital equal to k) depends on the size of 
the firm, in terms of capital input, relative to the average firm size, K. If 
4 = 0 the tax rate does not depend on relative firm size; the tax rate is 
constant at the level 1 -M. If # > 0 the tax rate increases with firm size, and 
if 4 < 0 the converse is true. The revenues of the firm (after taxes) are 
(I- ~)y = AMK+k”-“, so that cy > 4 is required for a positive marginal 
revenue product of private capital. 

In equilibrium, the consistency condition guarantees that the average tax 
rate is 1 - M, whatever the value of 4. But individuals considering their own 
capital accumulation choices will take into account the effect of changing 
their relative capitai stocks on their average tax rate. 

The Euler equation for this economy is given by 

(22) 

To derive the closed form solution for this economy, we conjecture that the 
marginal propensity to consume is constant at the level z. Thus c,,/y, = z, 

and k,+r/yl = 1 -L for all C. Substituting this conjecture into (22) yields, 
after some manipulation, 2 = I - ~~M(Lu - 4,). In this economy, the solution 
for the e~~i~~brium path of capital is given by 

k’ = 1 - zy = @W(a - i$) Ak”. (23) 

Fig. 3 plots the exact equilibrium policy functions for this economy with a 
grid containing 500 points for k and two points for A, with the following 
parameter values: /3 = 0.95, o = 0,33, M = 1, 4 = 0.0, 4 = 1.0, A= 1.2. This 
is the simplest possible example: an economy in which the tax rate is zero 
QM= 1) and d oes not depend on relative firm size (4 = O), On the graph 
there is one policy function conditional on each value of the technology 
shock, and one fixed point corresponding to each value of the technology 
shock. Fig. 3 also plots the approximate equilibrium policy functions for this 
economy, computed with the same capital grid of 500 points, and using the 
norm defined in eq. (22) with d = 0.0. As seen from fig. 3, the approximate 
function is indistinguishabIe from the exact function. To get a closer look at 
the approximation error, fig. 4 graphs the approximation error (exact minus 
approximate) against the capital stock for each of the two policy functions. 
The maximum appro~mation error is less than 3 x 10W4 in absolute value. 
Convergence of the policy functions is quite rapid, requiring 10 iteratians 
beginning with an initial function h, which was the constant function 
k’ = 0.002.8 

‘The grid for capital contains 500 points, and each iteration requires about five seconds on an 
IBM-compatible 386 computer running at 16 MHz. 
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In fig. 5 we set the average tax rate to a more realistic rate of 30% 
(A4 = 0.7), and explore the implications of variation in 4. To focus on 4, we 
set A =x= 1.0. Two cases are considered: 4 = 0.10 (tax rates increase with 
relative firm size) and 4 = -0.10 (tax rates decrease with relative firm size). 
Recall that an economically sensible solution requires 4 < (Y. 

The first panel of fig. 5 plots output and the investment functions for these 
two cases; panel 2 plots output and consumption. In both panels the dotted 
line is output, the solid line corresponds to the case 4 = 0.10, and the dashed 
line corresponds to the case 4 = -0.10. Steady states are indicated by small 
dots. Panel 3 plots the tax rate as a function of relative firm size. For 
4 = 0.10 (the solid line) the tax rate increases with firm size, and for 
4 = -0.10 (the dashed line) the tax rate decreases with firm size. In both 
cases, however, the tax rate is 30% when k = K. 

Panel 4 plots the marginal propensity to consume (i&WC) against the level 
of the capital stock. In each case, the MPC is computed from the approxi- 
mate solution as A4PC = (y - k’)/y. The exact MPC, computed as MPC = 
1 - pM(a - 41, is also plotted. In each case, the approximation error is so 
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small as to be hardly noticeable on the graph. To give an idea of the size of 
the approximation error, the true MPC for the case 4 = -0.10 is 0.8471, 
which is also the mean of the approximate MPC. The standard deviation of 
the approximate MPC in this case is about 4 x 10m4. 

Looking at fig. 5, we see that investment as a function of the capital stock 
is lower for the 4s = 0.10 case, in which taxes increase with relative firm size. 
The equilibrium level of output is correspondingly lower, and the MPC is 
correspondingly higher. The intuition behind this is easily understood: the 
higher the level of #, the more sharply taxes increase with relative firm size. 
This leads individuals to cut back the size of their firms and, since in 
equilibrium everyone is the same, the aggregate capital stock will be lower. 
Further, the allocation of output between consumption and investment will 
be tilted toward higher consumption. Panel 2 shows that consumption in the 
two cases appears roughly equal; in fact consumption is slightly higher in the 
4 = -0.10 case. Despite the fact that the MPC is lower in this case, 
equilibrium output is higher by a sufficient amount to support a higher level 
of consumption. This can be seen in panel 2 (which plots the level of 
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consumption) and in panel 4 (which plots the marginal propensity to con- 
sume out of output). 

3.2. Realistic taxation and realistic depreciation 

Having verified that the Euler equation approach yields highly accurate 
solutions in cases where the model possesses a closed form solution, we turn 
now to investigate of the effects of taxation in the one-sector model with 
realistic depreciation. Fig. 6 plots equilibrium policy functions for the econ- 
omy described above with decpreciation of capital at the rate of 10% per year 
and with a zero tax rate. There are two steady states, one for each value of 
the technology shock; the upper one is at a level of capital of 4.56 and the 
lower one is at a level of 2.93. The stationary distribution of capital is 
contained in this interval. Fig. 7 plots equilibrium policy functions for the 
economy with 10% depreciation, and in which output is taxed at a 30% rate, 
corresponding roughly to the average level of U.S. government tax revenues 
as a fraction of GDP. In this economy, the steady states are at 2.84 and 1.63. 
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The upper steady state in the taxed economy is 60% below that of the 
untaxed economy, and the lower steady state is 80% below the corresponding 
steady state in the untaxed economy. Thus a tax rate of 30% on output leads 
to a greater than proportional decline in the steady state distribution of the 
capital stock in this economy. Computation of the stationary distribution of 
capital is straightforward, and would be necessary for answering questions 
about relative welfare in the taxed and untaxed economies. 

3.3. A last example 

As a last example, consider an economy with 10% depreciation and a tax 
policy which implies that the after-tax gross and net marginal products of 
capital do not decline monotonically with the tax rate. This invalidates 
standard theorems that could otherwise be used to prove that this algorithm 
will produce the competitive equilibrium for this economy.’ Fig. 8 plots the 

‘See Stokey and Lucas (1989, ch. 18) and Coleman (1991). 
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policy functions for this example. Although the policy functions increase 
monotonically in k, the slope of the functions changes sign. In particular, the 
function k’ = h(k, 2) crosses the 45degree line more than once. Fig. 9 plots 
the tax rates as a function of the capital stock, the after-tax 
net marginal product of capital, consumption, and the error in the Euler 
equation. The first panel shows that the tax rates needed to generate this 
example are extreme - subsidies of 200% are needed to generate a rising 
after-tax net marginal product of capital (panel 21, and a corresponding 
region of the policy function in which the policy function k’ = h(k, A) is 
convex. The second panel shows that the after-tax marginal product of capital 
initially falls but then rises. This effect is mirrored in the policy functions in 
fig. 8. The third panel shows the effect of the rising after-tax marginal 
products on consumption. Since it becomes increasingly profitable to invest at 
the higher levels of capital stocks, individuals choose in state 2 to have 
consumption be a declining function of capital when the level of capital is 
high. Panel 4 verifies that we have found an equilibrium, since the error in 
the Euler equation is small [the error is defined as the difference between the 
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left- and right-hand sides of eq. (16) where the approximate solution, h, is 
used to evaluate k’ and k”]. 

The fact that such an extreme tax policy was needed to generate this 
example suggests that most examples of empirical relevance will be much 
more well-behaved, and will satisfy conditions necessary to prove that the 
Euler equation approach delivers the right answer. Nevertheless, it is useful 
to know that this algorithm still converges smoothly and rapidly, and yields a 
function which satisfies the Euler equation even for cases in which proofs 
cannot be supplied. 

4. Uses of the Euler equation methodology 

This section discusses contexts in which the Euler equation methodology 
may be particularly useful. An alternative computational approach currently 
in general use is log-linear approximation of the Euler equations around the 
model’s steady state; this approach which yields log-linear approximations to 
the decision rules. King, Plosser, and Rebel0 (1989) provide a detailed 
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discussion of one way to implement this approach. Other appro~mation 
methods have recently been developed: see the survey by Tayior and Uhlig 
(1990) for an overview.” We focus on comparing the Euler equation ap- 
proach with log-linear approximation because it is currently the most widely- 
used alternative approach for computing suboptimal dynamic equilibria. As 
other methods become more widely used, the considerations discussed in this 
section will still continue to be relevant. 

Two considerations are paramount in the choice of a computational 
technique: speed and accuracy. Log-linear approximation is very fast: in the 
examples studied in section 3, it runs several times faster than the Euler 
equation approach.” The Euler equation approach is, however, more accu- 

“Mvlore recently, Judd (1990) has developed a method which produces polynomial approxima- 
tions to the equilibrium policy functions. 

“Log-linear approximations to the decision rules for the economies studied in this paper can 
be computed in about fifteen to thirty seconds on an IBM-compatible 286 or 386 machine 
running at 16 MHz. The Euler equation approach requires about two to four minutes to produce 
the decision rules for the economies studied in this paper, depending on the parameterization 
(especially of the discount factor and the depreciation rate) and on the initial functions chosen. 
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rate. It provides an exact solution to a discrete version of the original 
problem, and converges to the exact solution to the continuous problem as 
the grid becomes arbitrarily fine. These features suggest the following consid- 
erations as important for the choice of one technique versus the other. 

A unique steady state: The log-linear approximation method computes lin- 
early approximate decision rules around the fixed point of the deterministic 
analog to the original economy. If the economy under study possesses more 
than one fixed point, this methodology is generally inappropriate except for 
studying local dynamics near a particular steady state. The Euler equation 
approach, on the other hand, produces the entire policy function and 
therefore will uncover multiple steady states if these exist. 

Further, many problems that one might wish to study will involve perma- 
nent policy shifts that will permanently change the steady state or fixed point 
of the certainty-equivalent economy. Because the log-linear approximation 
methods are designed to study local dynamics around one steady state, they 
cannot generally be used to study movement from one steady state to 
another. The Euler equation methodology can easily handle shifts in steady 
states. 

Transitional dynamics: In the one-sector growth model studied above, the 
decision rules for output, investment, and consumption were very close to 
log-linear in the range containing the stationary distribution, if the technol- 
ogy shocks A are not unrealistically volatile. But these decision rules are very 
nonlinear in the region characterized by low levels of the capital stock. To 
see this, fig. 10 plots the logarithm of the policy functions plotted in fig. 7: the 
case of realistic depreciation and a 30% tax rate. In the vicinity of the steady 
state, the logs of the policy functions look reasonably linear. The log-linearly 
approximate decision rules (conditional on the value of the technology shock) 
are roughly the straight lines drawn tangent to the true decision rule at the 
steady state point. The log-linearly approximate decision rules have a higher 
slope than the true decision rules for low levels of the capital stock, and the 
difference in slopes is greater, the lower the initial capital stock. Thus the 
log-linear approximation methodology will underpredict the speed at which 
the economy transits to the steady state. If we wished to use this model to 
characterize the dynamics of a poor economy accumulating capital and 
growing toward its stochastic steady state, the linear approximation method 
would involve a nontrivial amount of error. Suppose, for example, that we 
imagine a developing economy beginning with a low level of capital, say, 
k, = 0.05 [log(k,) = -3.01. All other parameters are as specified in the 
construction of figs. 7 and 10. Let us compare the speed of adjustment under 
log-linear approximation with the speed of adjustment under Euler equation 
approximation. We will say that the economy has reached the steady state 
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when the economy reaches the lower bound of the stationary distribution, 
k z 1.5. For this economy to move halfway to the steady state, the log-linear 
approximation method predicts that this economy will take about 8.5 years, 
compared with the correct answer of only about 4.5 years as computed by 
Euler equation approximation. To reach the steady state, about 16 years are 
required (as computed under the Euler equation approach) - a much shorter 
time than the 22 years predicted by log-linear approximation. 

Asset pricing: Although the decision rules for quantities in the one-sector 
growth model are approximately linear in the stochastic steady state, there is 
no reason to expect that equilibrium prices will also be linear. In particular, 
asset prices depend on individuals’ attitudes toward risk. Since linear approx- 
imation methods produce decision rules characterized by certainty equiva- 
lence, asset prices computed under this approach can differ markedly from 
asset prices computed using the Euler equation approach which correctly 
accounts for the effects of risk aversion on stock prices. Although the 
decision rule for consumption is very close to linear inside the stationary 
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distribution, variations in the marginai utility of consumption may not be 
small. Since it is the marginal utility schedule that is critical for asset pricing, 
it does not necessarily follow from the linearity of the consumption schedule 
that linear approximations provide accurate approximations for the purpose 
of asset pricing. 

Large shocks: The one-sector stochastic growth model has been shown to be 
remarkably well-approximated by log-linear approximation methods when 
the underlying shocks are the small productivity disturbances typica of real 
business cycle models. When the underlying shocks to the model are large, 
however, this approximation method may not deliver accurate solutions. 
Dotsey and Mao (1990) study a one-sector economy subject to tax shocks, in 
which the tax shocks are roughly consistent with movements in U.S. tax rates 
since WWII. They use the methods of this paper to compute ‘exact’ so1ution.s 
for their modeI, and they find that this method is quite accurate [using the 
evafuation criteria discussed in Taylor and Uhlig (1990)]. For this model, 
however, log-linear approximation involved a substantia1 degree of approxi- 
mation error. 

‘Corners’ in the policy function: Many economic problems involve inequality 
restrictions that show up as ‘corners’ in the policy functions. For example, 
one sensible restriction to place on an economy is that investment is irre- 
versible as, for exampIe, in Sargent (1979). The time-to-build structures of 
Kydland and Prescott (1982) and Backus, Kehoe, and Kydland (1990) also 
assume that investments (‘starts’) are irreversible. In a single-good, one- 
country setting, subject to productivity shocks of empirically reasonabIe 
volatility, these nonnegativity constraints are unlikely to bind very frequently 
in the steady state. In a multi-country setting with the possibility of interna- 
tional capital flows, however, the nonnegativity constraint on net investment 
is very likely to bind in the absence of costs of adjustment or other barriers to 
capital flows. This arises because the neoclassical model possesses a strong 
‘acceIerator’ mechanism, under which there is a strong incentive to send 
capital to the most productive Iocation. 

In a two-country version of the one-sector growth model, Baxter and 
Crucini (1990) found that some impediment to international capital flows was 
necessary to maintain realistic investment-output relationships in each coun- 
try. They solved this problem by introducing small convex costs of adjustment 
in capital. Introducing adjustment costs makes it unlikely that the economy 
will frequently hit the corners associated with nonnegativity of gross invest- 
ment. However, since the adjustment cost technology penalizes large changes 
in the capital stock, the resulting investment function will display greater 
curvature than the model without adjustment costs. This suggests that log-lin- 
ear approximation may become less accurate as frictions are introduced. 
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Other examples of ‘corners’ induced by the basic economic structure of a 
model include short-sales constraints on asset holdings in multi-agent 
economies, and nonnegativity of cash holdings in cash-in-advance economies, 
as in Hodrick, Kocherlakota, and Lucas (3991) and Baxter, Fisher, King, and 
Rouwenhorst (1990). These corners are only important if they bind within the 
stationary distributions of the endogenous variables. But linear approxima- 
tion methods implicitly assume that these constraints do not bind, and may 
therefore involve large approximation errors in situations where the con- 
straints actuaily do bind. Because the Euler equation approach is ‘exact’, it 
uncovers corners in the policy function as a matter of routine, so Iong as the 
relevant first-order conditions are written in the manner of the Kuhn-Tucker 
theorem. 

Larger state spaces: As the dimension of the state space grows, or as one 
adds decision variables to the problem (such as adding the labor-leisure 
choice to the problem studied in this paper), the computational complexity of 
the problem necessarily grows as well. Under the linear approximation 
method, the computational time increases appro~mately linearly with the 
number of state variables. Under the Euler equation approach, the grid for 
the state variables grows roughly exponentially in the number of state 
variables. Letting NA denote the number of grid points for the technology 
shock in the one-sector model and letting NI( denote the number of grid 
points for the capital stock, there were iVA X NK points in the state space. If 
we contemplate adding variable tabor supply to this model, with NN points 
for labor effort, there are now NA X iVK X NN points in the state space. Each 
of these points need not be evaluated at each iteration and for each current 
state vector: we discussed in section 2.3 ways in which the basic economic 
structure of the problem can be used to improve on a naive search proce- 
dure. Nevertheless, the Euler equation approach shares with discrete dy- 
namic programming the ‘curse of dimensionality’. 

As the size of the state space grows, it is not efficient to write one’s own 
equation-solving routine, which has implicitly been done in our solution 
method for the one-sector model, as discussed in section 3. Recall that we 
computed the matrix ZW I A) defined by eq. (19) and for each value of 
(k, A) located the value of k’ such that Af(k) + (1 - $8~ = 2%~’ 1 A). Be- 
cause of the structure of the problem, there was a simple and very efficient 
method for searching 2 for the equilibrium value of k’. In problems with 
more than one endogenous state variable, this search procedure will be more 
difficult. It is sensible, therefore, to use packaged routines for solving sets of 
nonlinear equations to perform these calculations. Because these equation- 
solving routines will return values which do not lie on the grid for the state 
variables, an interpolation scheme must be used to evaluate the policy 
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function for points which do not lie on the grid. In the context of the 
one-sector model, for example, suppose that we are at iteration j of the 
solution procedure, and are considering a value for k’ which does not lie on 
the grid. We must evaluate k” = h,_ ,(k’, A). Since k’ does not lie on the grid, 
we compute a value for k’ by interpolating between neighboring points which 
are on the grid, using the function hi. Coleman’s (1990,1991) implementation 
of the Euler equation approach proceeds in exactly this way. 

Combining the Euler equation method and log-linear approximation: While 
the Euler equation method is “exact,’ the linear approximation method is 
nevertheless much faster than the Euler equation method. This suggests that 
the two methods are most profitably used together. For example, we sug- 
gested above (i) that using linearly-approximate decision rules as the starting 
function for the Euler equation method could provide important time savings 
and (ii) that an important diagnostic use of the Euler equation approach is to 
check on the extent of nonlinearity in the equilibrium decision rules. Thus 
one might want to begin a computationa attack on a problem by using the 
Euler equation method over a fairly small grid, and using the log-linear 
approximate decision rules as starting points. This will help determine 
whether there is important curvature in the decision rules, and whether there 
are ‘corners’ in the decision rules inside the stationary distribution. Based on 
these diagnostics, the researcher would then employ log-linear approximation 
methods if the nonlinearities and/or corners are unimportant, and would 
employ the Euler equation method if this has been shown to be necessary. 

5. Conclusions 

This paper has developed a new method for obtaining equilibrium policy 
functions by means of iteration on stochastic Euler equations. The chief 
advantage of this method is that it can be used to compute accurate 
numerical solutions for problems in which competitive equilibrium is not 
Pareto optimal. The method is ComputationaIly fast for Iow-dimensiona 
problems. With this new technology in hand, we can quantitatively evaluate a 
much wider range of theoretical economies; this class includes any model 
whose equilibrium is characterized by a set of stochastic Euler equations and 
which possesses a kind of turnpike property. Thus, the stochastic neoclassical 
growth model with distortionary taxation which was the focal point of this 
paper could be generalized to allow variable labor, other kinds of tax policies, 
productive externalities, and additional sources of randomness such as pref- 
erence shocks or labor-augmenting technical change. 

But the applications are not limited to neoclassical capital theory. Other 
fruitful applications include the study of economies whose equilibria are 
suboptimal because of (i) monopolistic market structure, (ii) absence of 
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complete markets, perhaps due to private information, (iii) money introduced 
in a way that leads to socially suboptimal decisions, or (iv) an overlapping- 
generations demographic structure. The development of numerical methods 
for studying suboptimal dynamic economies represents a first step toward 
quantitative analysis of policy in an equilibrium setting. 
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