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Abstract10

We studied the firing correlates of neurons in the rodent medial PFC during
performance of a temporal discrimination task. On each trial, the animal
waited for a few seconds in the stem of a T-maze. The firing correlates
within a trial gave us a means to assess firing on the scale of seconds. A
subpopulation of units fired in a sequence consistently across trials during a
circumscribed period during the delay interval. These sequentially activated
“time cells” showed temporal accuracy that decreased as time passed as
measured by both the width of their firing fields as well as the number of
cells that fired at a particular part of the interval. In addition, most units
showed gradual changes in their firing rate across trials. The time constants
of the change in firing were distributed like a power law, with some units
showing gradual changes over tens of minutes. The population of time cells
showed temporal coding of decreasing temporal accuracy over the scale of
a few seconds. Gradual changes across trials could reflect temporal coding
over much longer scales as well.

11

Introduction12

A variety of brain regions have been implicated in interval timing over the scale of13

seconds to minutes, including the striatum (see Buhusi and Meck (2005) for a review) and14

medial prefrontal cortex (mPFC) (Mangels et al., 1998; Onoe et al., 2001; Kim et al., 2009).15

Recent evidence has shown that neural ensembles change gradually over periods of time from16

seconds to minutes in the mPFC (Hyman et al., 2012; Kim et al., 2013); gradual change in17

ensemble state could be used as a timing signal. For instance, Kim et al. (2013) recently18

showed that the ensemble state in the medial prefrontal cortex (mPFC) changed gradually19

during the delay period of a temporal discrimination task. Critically, Kim et al. (2013)20

found that the discriminability of the time during the delay that could be computed from21
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the ensemble similarity decreased with time elapsed. Decreasing accuracy with elapsing22

time is a hallmark of behavioral measures of memory and timing in both human and non-23

human animals (Lewis and Miall, 2009; Lejeune and Wearden, 2006; Wearden and Lejeune,24

2008).25

There are many potential mechanisms that could cause a change in accuracy at the26

ensemble level as time elapses. For instance, a population of neurons whose firing rate27

changes monotonically as a function of the logarithm of the time during the delay would28

have this property; Kim et al. (2013) reported a population of units exhibiting just this29

pattern of results. However, there are other alternatives as well. For instance, several30

labs have reported “time cells” in the hippocampus that fire during circumscribed parts of31

a delay period (Pastalkova et al., 2008; Gill et al., 2011; Kraus et al., 2013; MacDonald32

et al., 2011). Different time cells fire at different times during the interval, enabling a33

population of time cells to generate a signal that could be used in interval timing. If the34

width of time cells’ firing fields increased with their time of peak firing (Howard et al., 2014;35

Kraus et al., 2013), then the population of time cells would be less able to distinguish times36

later in the interval. Similarly, if the density of time fields decreased as a function of time37

(Kraus et al., 2013), this would have the same consequence.38

This paper reports the results of analyses on the data set initially reported in Kim39

et al. (2013). Kim et al. (2013) noted the existence of cells that fired during circumscribed40

periods of time during the delay interval (see for instance their Figure 3F). Here we study41

this phenomenon in more detail to determine if the mPFC contains a significant population42

of sequentially activated time cells and to determine if these cells code time in such a way43

that there is decreasing temporal accuracy as a function of time within the delay. In44

addition, we examined evidence for gradual changes of firing across scales much longer than45

a single trial, up to tens of minutes.46

Methods47

Recordings and behavioral procedure48

The details of the behavioral task are described in Kim et al. (2013). On each pass49

through the maze (Figure 1A), the animal waited for a period of time in front of a T-junction50

(dark shaded area in Figure 1C). To obtain a water reward, the animal had to navigate to51

one goal when a short time interval (< 3.75 s) was presented, and navigate to the opposite52

goal when a long time interval (> 3.75 s) was presented. In this study, we analyzed only53

the data recorded during the delay intervals since in that period there were no behavioral54

demands on the animals. Recordings were made using tetrodes implanted in mPFC of three55

rats (Figure 1B).56

A total of 993 well isolated single units were recorded. Of these, we eliminated 16057

units with mean firing rate < 1 Hz during the waiting intervals. Additionally, in order to58

restrict our attention to units with spike waveforms that were stable over the recording59

session we eliminated 10 units with a difference of more than 10% in amplitude from the60

first to the last 5 min of each session. A total of 723 units contributed to the subsequent61

analyses.62
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used in our previous behavioral study (Kim et al., 2009b). We
found that mPFC neurons convey precise information about
the elapse of time largely based on linearly changing activity on a
logarithmic time scale.

Materials and Methods
Subjects
Six young male Sprague Dawley rats (�9�11 weeks old, 280�380 g)
were individually housed in the colony room and initially allowed ad

libitum access to food and water with extensive
handling for 1 week. Their body weights were
gradually reduced to 80�85% of their free-
feeding weights by water deprivation and, once
behavioral training began, they were allowed to
have access to water only during two daily be-
havioral sessions. Experiments were per-
formed in the dark phase of 12 h light/dark
cycle, one in the morning and one in the eve-
ning. The experimental protocol was approved
by the Institutional Animal Care and Use
Committee of the Ajou University School of
Medicine.

Behavioral tasks
Two separate groups of animals (3 animals
each) performed two different temporal dis-
crimination tasks on a modified T-maze (63 �
69 cm, elevated 30 cm from the floor; 8-cm-
wide track with 2.7 cm walls around the track
except the central connecting bridge; Fig. 1B).
The experimental procedures were identical
for the two tasks except that different durations
of sample intervals were used. Animals in the
first group (Experiment 1) were required to
discriminate six different durations of time in-
tervals into short or long periods to obtain wa-
ter reward (Kim et al., 2009b). A new trial
began when the animal came back from either
goal location (Fig. 1 B, white circles) to the cen-
tral arm via the lateral alley and broke the cen-
tral photobeam (Fig. 1B, arrow). The
beginning of a time interval was signaled by a
brief auditory tone (3.3 kHz, 200 ms, 90 db)
when the animal broke the central photobeam.

The end of a time interval was signaled by lowering the central bridge that
allowed the animal to navigate to either goal location. Six different dura-
tions of time interval, which were spaced evenly on a logarithmic scale,
were programmed to be presented in equal probability for a total of 300
trials in random order, and the animals performed 164�273 (mean �
SD, 232.7 � 21.5) trials per session. The animal had to navigate to one
designated goal (left, n � 2 animals; right, n � 1 animal) when a short
(3018, 3310, or 3629 ms) interval was presented, and navigate to the
opposite goal when a long (3979, 4363, or 4784 ms) interval was pre-
sented to obtain water reward (30 �l). The presentation of sample inter-
vals, delivery of water, and raising/lowering of the central bridge were
automatically controlled by a personal computer using LabView software
(National Instruments). The animals were trained to perform the task as
previously described (Kim et al., 2009b) over the course of 28 d before
electrode implantation. They were further trained for 14 d after recovery
from the surgery. Thus, the animals were well trained in the task by the
time unit recordings began. Also, before each recording session, the an-
imals went through 20 practice trials that consisted of the shortest (3018
ms) and the longest (4784 ms) intervals only (10 trials each).

Animals in the second group (Experiment 2) were required to discrim-
inate two different durations of time interval into short or long periods in
a given block to obtain water reward on the same maze. The animals had
to discriminate 2 versus 4 s sample intervals in the first block (60�70
trials; mean � SD, 67.5 � 3.0), 4 versus 8 s in the second block (60�70
trials, 67.2 � 3.1), and then 2 versus 4 s again in the third block (55�117
trials, 74.4 � 16.1) without an intersession break. They experienced
15�20 forced-choice trials that consisted of 2 and 4 s intervals before
each recording session. The sequence of sample interval durations within
each block was randomized. The animals were trained to perform this
task for 30 d before and 17 d after electrode implantation, so that they
were overtrained before unit recording. Although the animals quickly
adapted to block changes within a few trials (1�5 error trials before the
first correct choice after block transition), the initial 10 trials of each
block were excluded from the analysis.

Figure 1. Recording sites, behavioral task, and behavioral performance in Experiment 1. A, Activity of single neurons was
recorded from the dorsal ACC, prelimbic cortex (PLC), and infralimbic cortex (ILC), as indicated by shading. The diagram is a coronal
section view of the brain (2.7 mm anterior to bregma). Modified with permission from Elsevier (Paxinos and Watson, 1998). B,
Temporal bisection task. One of six different time intervals was presented to the animal in each trial, and the animal had to navigate
to either goal location (white circles) depending on the duration of the sample interval (short vs long). The arrows indicate
photobeam sensors. Scale bar, 10 cm. C, The graphs show the fraction of long-target choices (Plong) as a function of sample interval
duration. The solid lines were determined by logistic regression and the shading indicates 95% confidence interval. Error bars, SEM.

Figure 2. Unit classification. Recorded units (n � 1693; 993 in Experiment 1 and 700 in
Experiment 2) were classified into two groups based on mean discharge rate and spike width.
Those neurons with mean firing rate �8.83 Hz and spike width �0.276 ms were classified as
putative pyramidal cells (PC; n � 1372, 81.0%), and the rest were classified as putative in-
terneurons (IntN; n � 321, 19.0%). The curves are Gaussian fits. Examples of averaged spike
waveform for a putative pyramidal cell and a putative interneuron are shown on the right.
Calibration: 0.5 ms, 0.1 mV.
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Figure 1. A. The maze contained a drawbridge that required animals to wait at a particular
location on each trial. If the delay was short, the animal was rewarded for turning one direction
at the T; a long delay required a turn in the other direction. B. Schematic of recording locations
(shaded regions). The diagram is a coronal section view of the brain (2.7 mm anterior to bregma).A,
B reproduced from Kim et al. (2013). C. Temporal bisection task. The animal had to wait for
one of six different delay intervals in a limited space (dark gray shaded area), and then navigate
through either left or right path (dark gray and light gray dashed lines respectively), depending on
the duration of the presented time interval. D. The across- and within-trial analysis. The schematic
in the middle displays a snapshot of the timeline, represented with a full black line with dots at each
end. Dark gray shaded areas are the delay intervals, and light gray shaded areas are the time when
the animal was moving through the rest of the maze. The black line is a cartoon example of the
firing rate from one cell. All the analysis was done on the neural activity recorded during the delay
intervals. In the across-trial analysis (top plot) each delay interval is represented with the mean
firing rate, while in the within-trial analysis (bottom plot) neural activity was averaged across all
delay intervals.
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Analysis across time scales63

We examined the firing during delay intervals across two very different time scales64

(Figure 1D). First, we considered the firing of neurons as a function of time within the65

delay period. For this analysis we considered only the longest delay interval (almost 5 s).66

Second, we examined changes in firing from one delay period to the next. Because each67

delay period was separated by on average 20 s (20± 14 s) as the animal traversed back to68

the waiting location, this analysis allowed us to compare changes in firing over much longer69

time scales. We analyzed the first 164 trials in each recording session, meaning that we70

could assess changes in firing up to tens of minutes (164× 20 s is more than 50 minutes).71

Classification of time cells72

Kim et al. (2013) reported a population of units that started firing prior to the initia-73

tion of the delay and decreased their firing as the delay proceeded and another population of74

units that increased their firing monotonically during the delay interval. Both groups could75

be responding to some event that preceded the delay interval or they could be predicting an76

event that follows the delay interval. In these analyses we restricted our attention to units77

that both started and stopped firing within the delay interval on trials in which the animal78

completed the task successfully. We first processed the data by smoothing the spike train79

recorded on each trial with a Gaussian-shaped window with 200 ms standard deviation. We80

then averaged the smoothed activity across correct trials. To be classified as a time cell,81

units had to satisfy several criteria. First, units had to exhibit an average firing frequency of82

at least 4 Hz over the delay interval and fire at least one spike in at least 15 different trials.83

Second, to identify units that showed variability in firing during the delay we required there84

be at least one time point in the delay interval where the unit’s averaged firing rate was no85

more than 40% of its peak firing rate in the interval. Finally, we required that the unit’s86

firing rate 400 ms before and after the averaged delay interval did not exceed the peak firing87

rate observed during the interval. The last criterion was set to avoid including cells which88

firing rate had a general tendency of growth or decay, even outside the delay interval.89

Quantifying the time scale of across-trial fluctuations90

To quantify long range gradual changes in neural activity we constructed a measure of91

the duration of each units’ autocorrelation across trials. For each unit we took the average92

firing rates in the delay intervals of the first 164 trials in the recording session. We then93

computed the autocorrelation function of this time series. We defined the “time constant”94

of the unit as the time at which the autocorrelation function of the actual data fell within95

the first standard deviation of the autocorrelations of a surrogate data set constructed from96

1000 independent shuffles of the firing rates. This measure can produce time constants as97

small as zero trials for a unit that is not autocorrelated. Under most circumstances, the98

method cannot yield time constants longer than 82 trials. In reporting time constants, we99

multiply the number of trials by the average time of a trial (20 s) to give an intuitive sense100

of the scale of the autocorrelation.101
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Estimating distributions using maximum likelihood102

Analyses of the within-trial activation generated distributions of the time point at103

which units were maximally active. Across-trial analyses generated distributions of the104

time constants across units. In order to characterize the form of these distributions, we fit105

various models to the distribution. Given a value x, we computed the likelihood P (x|θ) of106

that value x given a model parameterized by θ. For each model and each parameterization,107

we estimated the joint probability of all of the values by taking the sum of the logarithm108

of the likelihoods. Given that models we considered were either zero parameters (uniform109

distribution) or one-parameter (exponential and power law distribution) we found the max-110

imum likelihood estimate of the parameter by simply sweeping through all possible values of111

the parameter. Models with different numbers of parameters were compared using standard112

methods (AIC and BIC). To estimate a confidence interval on the parameter around the113

best-fitting value θo, we estimated the values θ− and θ+ such that114 ∫ θo
θ−
P (x, θ′)dθ′∫ θo

−∞ P (x, θ′)dθ′
=

∫ θ+
θo

P (x, θ′)dθ′∫∞
θo
P (x, θ′)dθ′

= 0.95,

where x is the entire set of values in the experimental data. The range between θ− and θ+115

thus contains 95% of the probability mass of the distribution.116

Results117

Temporal coding on the order of seconds118

From the within-trial analysis we identified a subpopulation of sequentially acti-119

vated units that fired at a consistent, circumscribed time during delay trials (Figure 2).120

These mPFC units appear to have firing correlates that resemble time cells observed121

in the hippocampus (Kraus et al., 2013; Gill et al., 2011; MacDonald et al., 2011;122

Pastalkova et al., 2008; Modi et al., 2014). A total of 122/723 units were classified as123

time cells.124

First, we note informally that the population of time cells decreased in its temporal125

accuracy as time during the interval proceeds. Figure 3A shows the ensemble similarity126

(cosine of the normalized firing rate vectors) of the population of time cells between all127

pairs of time points during the delay period. This finding replicates the conclusions of Kim128

et al. (2013) but restricting attention to the population of time cells. Further analyses129

revealed two causes for the decrease in temporal accuracy. These can be read off from130

Figure 3B, which shows the temporal profile of all 122 units classified as time cells, sorted131

by their median spike time.132

The width of firing fields increased with the passage of time. First, note that the width133

of the central ridge in Figure 3B increases as one moves from the left of the plot to the right134

of the plot. This suggests that the units that have elevated firing rate earlier in the delay135

interval tend to have narrower time fields than the units that fire later in the delay interval.136

This impression was confirmed by analyses of the across-units relationship between the time137

of the peak firing rate and widths of the time fields across units. The width was defined as138

the time that the activity in the averaged delay interval is above the 40% of its peak firing139
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Figure 2. Examples of mPFC time cells that fired consistently across trials during a time window
within the delay interval. Each of the four columns (A-D) displays activity of a single cell. The
cells are ordered such that width of the time field and the peak time increase progressively from the
first to the fourth cell. The top row shows raster plots and the bottom row shows the averaged trial
activity. Dark gray and light gray lines mark the start and the end of delay intervals respectively.
Gray dotted and dash-dotted lines mark the start and the end of the time fields respectively. Black
dashed lines mark the time of the peak firing rate. The activity of the unit in D did not decrease to
the threshold level after reaching the peak so only start of the time fields is marked.
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rate in the interval. We found weak but significant correlation between the width and the140

peak time (Pearson’s correlation 0.34, p < .001).141

Later times are represented by fewer cells than earlier times. Second, the population142

of cells covers the entire delay interval, but not evenly. The number of cells with peak143

firing later in the interval is smaller than the number of cells with peak firing earlier in the144

interval. This can be seen from the fact that the central ridge does not follow a straight145

line, as would have been expected of a uniform distribution of peak times, but flattens as146

the interval proceeds. To quantify this, we examined the distribution of the peak times.147

We found the distribution was much more likely assuming a power law distribution than148

a uniform distribution (∆AIC=30, ∆BIC=33) and much more likely with a power law149

distribution than an exponential distribution (∆LL = 7), meaning that the likelihood of150

the data given the best-fitting power law distribution was about 1000 times greater than151

the likelihood of the data given the best-fitting exponential distribution. The best fitting152

value for the exponent of the power law was −.41. The 95% confidence interval did not153

overlap with zero (-.37 to -.44). This does not provide strong evidence that the “true”154

distribution is in fact power law rather than some other function with a long tail, but it155

does compellingly reject the uniform distribution, meaning that more units had time fields156

early in the delay than later in the delay.157

mPFC time cells and ramping cells convey comparable amount of temporal informa-158

tion. We quantified how well the mPFC neuronal ensemble kept track of the elapse of time.159

The longest time interval (4784 ms) was divided into 10 equal-duration bins and the order160

of the middle eight bins was decoded based on neural activity within each bin using linear161

discriminant analysis (Kim et al., 2013). We compared the results on different populations162

of cells: all 722 cells (Figure 4A), all 122 time cells (Figure 4B) and 122 ramping cells163

(selected randomly from a total of 228 cells that exhibit ramping firing rate, Figure 4C).164

The number of selected ramping cells that were also time cells was 66. The mean error in165

the prediction of elapsed time was similar for all three populations. This suggests that pop-166

ulations of time cells and ramping cells can convey roughly the same amount of information167

about the elapse of time.168

Neither of these findings were an artifact of trial averaging. To confirm that the169

properties seen in Figure 3 were not simply an averaging artifact, we repeated the analyses,170

but rather than taking the average smoothed firing rate as input, we took the average of171

the product of the smoothed firing rate on adjacent trials. In these alternate analyses, only172

temporally-specific firing that is consistent from one trial to the next contributes to the173

description of each unit’s time field. The findings were qualitatively similar to those from174

Figure 3. Again there was a significant correlation between time of peak firing and the175

width of the time field (Pearson’s correlation 0.41, p < .001). As before, the distribution176

of time fields was better fit by a power law distribution than by a uniform distribution177

(∆AIC=20, ∆BIC=17) and better fit by a power law than by an exponential distribution178

(∆LL=8). The best fitting value for the exponent of the power law was −.39, close to the179

value (-.41) found for the actual data. As in the actual data, the 95% confidence interval180

did not overlap with zero (-.34 to -.43).181
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Figure 3. mPFC Time fields show decreasing temporal accuracy for events further in the past. A.
Ensemble similarity given through a cosine of the angle between normalized firing rate population
vectors. The angle is computed at all pairs of time points during the delay period. The bins along
the diagonal are necessarily one (warmest color). The similarity spreads out indicating that the
representation changes more slowly later in the delay period than it does earlier in the delay period.
B. Each row on the heatplot displays the firing rate (normalized to 1) for one time cell. White
corresponds to high firing rate, while black corresponds to low firing rate. Vertical black lines mark
the start and the end of the delay interval. The cells are sorted with respect to the median of the
spike time in the delay interval. There are two features related to temporal accuracy that can be
seen from examination of this figure. First, time fields later in the delay are more broad than time
fields earlier in the delay. This can be seen as the widening of the central ridge as the peak moves to
the right. In addition the peak times of the time cells were not evenly distributed across the delay,
with later time periods represented by fewer cells than early time periods. This can be seen in the
curvature of the central ridge; a uniform distribution of time fields would manifest as a straight line.

Time fields could not be accounted for by observed behavioral correlates. It is possible182

that units that fire during circumscribed periods of time do so not because of time per se,183

but because of some behavioral state that happens to occur at the same time during each184

trial. For instance, perhaps the animal adopts a strategy of walking very slowly from one185

side of the maze to the other at a constant velocity; the animal’s location at the time that186

the interval ends serves as a proxy for time since the interval began.187

To determine whether the time cell findings were solely due to behavioral correlates,188

we repeated the analyses considering only the units that did not show a significant behavioral189

correlate. The behavioral parameters we had available were position along the x axis,190

position along the y axis and movement speed. We divided each longest delay interval into191

50 bins and computed the mean firing rate for each bin for all the intervals. Firing rate192

of 48 out of 122 time cells was significantly correlated with at least one of the behavioral193

parameters (Pearson’s correlation coefficient with p < .01). Instead of doing the analysis194

on all 122 time cells we used only 74 behaviorally uncorrelated cells. The findings were195

qualitatively similar to the results found for all 122 units classified as time cells. Even with196

relatively low number of cells the time of peak firing and the width of the time field were197

still correlated (Pearson’s correlation 0.27, p = .018). The distribution of time fields was198

better fit by a power law distribution than by a uniform distribution (∆AIC=7, ∆BIC=5)199
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Figure 4. Population of mPFC time cells carried similar amount of temporal information as a
same-size population of ramping cells. Decoded bin number versus actual bin number. Open gray
circles denote the trial-by-trial decoding results for each bin. Filled black circles and error bars
denote their means and SEM across trials. A. Temporal decoding based on all 723 reported units.
Mean error: 0.71 bins. B. Temporal decoding based on all 122 time cells Mean error: 0.59 bins. C.
Temporal decoding based on the randomly chosen 122 ramping cells. Mean error: 0.70 bins.

and slightly better fit by a power law than by an exponential distribution (∆LL=1.5). The200

best fitting value for the exponent of the power law was −.29.201

Temporal variability in firing across minutes202

In addition to the reliable changes in the firing of time cells on the scale of seconds203

within the delay interval, we also observed gradual changes in the firing properties of many204

units that changed slowly across trials. Figure 5 shows representative examples. Note that205

some units increased their firing transiently; others decreased or increased over the entire206

session. Almost all of the units showed some evidence of autocorrelation across trials. Out207

of 723 units, 561 showed a time constant of at least one trial. Somewhat reminiscent of208

the distribution of peak times of the time cells, many more units had short time constants209

than a long time constants. The distribution of time constants across units was described210

well by a power law distribution (Figure 6). The power law fit was much more likely than211

uniform (∆AIC> 1000, ∆BIC> 1000) and exponential fit (∆LL = 119). The exponent of212

the best fitting power law distribution was −1.76 with the 95% confidence interval defined213

with exponents −1.65 and −1.88.214

Across-trial variability was observed in a population that overlapped with within-trial215

temporal coding. Some units exhibited both within and across-trial gradual changes of the216

firing rate. The distribution of across-trial time constants for cells classified as time cells217

did not differ reliably from the distribution of across-trial time constants of all units (K-S218

test statistic 0.0579).219

Across-trial variability could not be attributed to behavioral correlates. We tested220

whether the gradual changes in the neural activity are caused by any of the available221

behavioral correlates. As in the earlier analysis on the time cells, behavioral correlates were222

position along the x axis, position along the y axis and movement. Two pieces of evidence223

argue against the hypothesis that the long time constants we observed were attributable to224

behavioral correlates.225
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Figure 5. Examples of units that gradually changed their firing rate across trials. Each raster plot
is aligned on the start of the waiting period of each trial (gray line). The end of the interval is
marked by a large black dot. The plot on the right shows firing rate during the delay period as a
function of trial number. The start of each trial was separated by approximately 20 s. The time
constants of the six units were A: 280 s; B: 340 s; C: 380 s; D: 440 s; E: 740 s; F: 940 s.

First, the measured behavioral correlates were autocorrelated over much shorter time226

scales than the neural data. Neural changes were quantified through a time constant derived227

from the autocorrelation function of firing rate. Therefore, we computed an analogous228

measure for the behavioral data. Distributions of the time constants were, for each of229

the three behavioral correlates significantly different than the distribution coming from the230

neural data (K-S test, p < 0.001). Behavioral time constants were on average about five231

times shorter than neural time constants.232

Second, if behavior was causing the autocorrelation observed in the units, because233

behavior is the same for all units recorded in the same session, we would expect to see234

units from the same session to have time constants that are correlated with one another. In235

contrast, if behavior was not a major factor in causing across-trial changes in firing, then236

units from the same session would have the same statistics as units recorded from different237

sessions. This hypothesized correlation in time constants should manifest as a change in the238

distribution across sessions of mean time constants for units within a same session. To test239
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Figure 6. The distribution of time constants across units approximates a power law distribution.
For each unit, a time constant of across-trial firing was estimated from its autocorrelation (see text
for details). The time constant measured in number of trials was then multiplied by the average
time between trials (20 s) in order to provide a sense of the scale of the fluctuations. The black dots
show the probability density function of the data on log-log paper. The gray line gives the maximum
likelihood power law fit. The exponent of the power law is -1.76.

this hypothesis, we computed F statistics from the time constants of all 722 units, treating240

the session identity as a categorical variable. Since the time constants are not normally241

distributed, to evaluate whether there is significant correlation between the time constants242

and the sessions identities we shuffled the unit identity with respect to recording sessions243

for 1000 time and computed F statistics for each shuffle. Rank of the observed data within244

the shuffled data was 627, suggesting that units that were recorded in a same session were245

not more likely to have a particular time constant.246

Discussion247

This study shows that mPFC contains sequentially activated time cells, similar to248

those previously reported in the hippocampus. The time fields of these units spanned the249

entire 5 s delay interval, but with temporal accuracy that decreased as the delay elapsed.250

The width of the time fields increased with temporal distance from the onset of the delay251

period and distribution of the firing rate peaks strongly deviated from the uniform such252

that more units represented time periods early in the delay rather than later in the delay.253

Additionally, neurons in mPFC exhibited gradual changes in firing across trials spanning up254

to at least tens of minutes. The number of units that exhibited a particular time constant255
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decreased as a power law function of the duration. Taken together, these results suggest256

that mPFC could be used for timing over a variety of time scales from a few hundred257

milliseconds up to tens of minutes.258

Could these findings be recording artifacts259

The results in this paper are consistent with, but do not uniquely specify, the hypoth-260

esis that firing of mPFC neurons maintain a temporal memory over a variety of time scales.261

One alternate possibility is that the temporally modulated firing reflect some other factor262

that also changes over time. Temporally-correlated behavior is one candidate; recording263

artifacts are another.264

The behavioral measures that were measured in this experiment (x-position, y-265

position and running speed) were not sufficient to account for either the within-trial or266

the across-trial temporal modulation. However, this does not exclude the possibility that267

there are other behavioral factors that were not measured. For instance, it is possible that268

some animal’s might have engaged in some subtle behavioral strategy within each trial, such269

as shifting weight or some pattern of whisking, that was not measured. Over the course270

of the session, we would expect the animals to get progressively less thirsty, or for body271

temperature to change due to exertion. However, we saw across-trial changes across a range272

of time scales, and cells that both increased and decreased their firing. As a result it is not273

likely that a single behavioral correlate could cause the gradual change across time scales.274

There are a number of factors that could result in artifactual changes in spike-sorting275

over time on the scale of time within a trial and also across trials. For instance, when a276

neuron fires repeated action potentials over hundreds of milliseconds, the waveform might277

change. Alternatively, tetrodes might shift gradually over the recording session. We reduced278

the possibility that the results are influenced by recording artifacts by eliminating 10 units279

which average spike waveforms significantly changed during the recording, but there is no280

way to know with certainty that the results are not attributable to some recording artifact.281

However, similar findings have been observed with calcium imaging in the hippocampus,282

which would not be subject to the same set of recording artifacts. Modi et al. (2014) found283

time cells that fire during a circumscribed part of the delay period of a trace conditioning284

experiment. Ziv et al. (2013) showed that the hippocampal representation of place on a285

simple linear track changed gradually across days.286

Relationship to temporally-modulated firing in the hippocampus287

This paper reports that mPFC contained sequentially activated time cells with de-288

creasing temporal accuracy and cells that changed their firing gradually over long periods289

of time. Both of these phenomena have previously reported in the hippocampus. For290

instance, several studies have found evidence for hippocampal cells that fire during cir-291

cumscribed periods of time within a delay interval (Gill et al., 2011; Kraus et al., 2013;292

MacDonald et al., 2011; MacDonald et al., 2013; Modi et al., 2014; Naya and Suzuki, 2011;293

Pastalkova et al., 2008). Some of these studies have found evidence for decreasing temporal294

accuracy as a function of delay, due to spread in time field width (Howard et al., 2014;295

Kraus et al., 2013) or due to a non-uniform distribution of time field locations (Kraus296

et al., 2013). In addition, gradual changes in firing across minutes have been ob-297

served in the human (Howard et al., 2012) and rat hippocampus (Mankin et al., 2012;298
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Manns et al., 2007). However, these studies have characterized gradual change at the299

population level; it is not yet clear whether the hippocampus also shows a power law dis-300

tribution of time constants like we observed in the mPFC and, if so, whether the exponent301

corresponds.302

It is also not clear in either the mPFC or the hippocampus whether the gradually-303

changing firing carries meaningful information about past events or not. This could be304

established (and recording artifacts definitively ruled out) if an experiment were to demon-305

strate control over gradually changing firing. For instance, the unit in Figure 5E decreases306

its firing around trial 80 and then decays gradually over about 50 trials, extending a few307

hundred seconds. Even if we were able to identify some unusual event that occurred around308

trial 90, this would not demonstrate causal control over the cell’s firing. In order to do309

so, we would have to present the hypothetical stimulus multiple times, separated by a few310

hundred seconds and show that the stimulus consistently causes the same profile of firing.311

Examining recordings from monkeys, Bernacchia et al. (2011) showed that gradual changes312

in the firing of neurons in a variety of regions, including prefrontal cortex, reflected the313

history of reward, so it is at least possible in principle for the brain to maintain information314

about some past events over long periods of time.315

Concluding remarks316

Previous work has shown that neural ensembles in the rodent mPFC code for time317

with decreasing temporal accuracy (Kim et al., 2013) and change gradually over long periods318

of time (Hyman et al., 2012). This paper extends these findings in two ways. First, a319

subpopulation of units in the mPFC fired like sequentially activated time cells, firing for320

circumscribed periods of time during the delay of an interval discrimination task. These321

time cells exhibited decreasing temporal accuracy in two ways. First, time cells that fired322

later in the delay interval had wider temporal receptive fields than time cells that fired323

earlier in the delay. Second, the distribution of time fields was not uniform. More cells324

had time fields earlier in the delay period than later in the delay period. In addition to325

these findings regarding firing correlates while timing delays on the order of seconds, we also326

observed gradual changes in firing rate over time scales up to a thousand seconds (Hyman327

et al., 2012). The gradual change across the population was attributable to units that328

showed autocorrelation at different time scales. Most units showed at least some significant329

autocorrelation across trials, which were separated by on average 20 s. A few units showed330

autocorrelations across the entire session, lasting tens of minutes. The distribution of time331

constants across units was well-described by a power law distribution. Taken together,332

these findings are consistent with the hypothesis that the mPFC is part of a system that333

represents time with decreasing accuracy over a range of time scales from a few hundred334

milliseconds up to thousands of seconds.335
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