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We propose a principled way to construct an internal representation of
the temporal stimulus history leading up to the present moment. A set of
leaky integrators performs a Laplace transform on the stimulus function,
and a linear operator approximates the inversion of the Laplace transform.
The result is a representation of stimulus history that retains information
about the temporal sequence of stimuli. This procedure naturally repre-
sents more recent stimuli more accurately than less recent stimuli; the
decrement in accuracy is precisely scale invariant. This procedure also
yields time cells that fire at specific latencies following the stimulus with
a scale-invariant temporal spread. Combined with a simple associative
memory, this representation gives rise to a moment-to-moment prediction
that is also scale invariant in time. We propose that this scale-invariant
representation of temporal stimulus history could serve as an underlying
representation accessible to higher-level behavioral and cognitive mech-
anisms. In order to illustrate the potential utility of this scale-invariant
representation in a variety of fields, we sketch applications using mini-
mal performance functions to problems in classical conditioning, interval
timing, scale-invariant learning in autoshaping, and the persistence of the
recency effect in episodic memory across timescales.

1 Introduction

Theories of timing and theories of episodic memory have generally been
decoupled in the cognitive neuroscience literature. Timing experiments
indicate a degraded precision in memory for longer time intervals; this
degradation shows similar characteristics across timescales (Gibbon, 1977).
Similarly, uncued memory tasks indicate that forgetting takes place over
multiple timescales with similar characteristics in all scales (Howard,
Youker, & Venkatadass, 2008; Moreton & Ward, 2010). From a theoreti-
cal perspective, this is a hint suggesting a common mechanism underlying
the memory for time and memory for a stimulus or event across these
apparently diverse domains.
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Behavioral experiments on perception or memorization of time inter-
vals point to a scale-invariant internal representation of time. For instance,
when human subjects are instructed to reproduce the duration of a fixed
interval (Rakitin et al., 1998; Ivry & Hazeltine, 1995), the reproduced du-
ration on average matches the fixed duration, and its variability is simply
proportional to the fixed duration. The coefficient of variation (CV, defined
as the standard deviation divided by the mean) of the reproduced duration
is the same for any other fixed duration. More important, the distribu-
tion of the reproduced duration is scale invariant with respect to the fixed
duration. That is, the response distributions corresponding to different du-
rations overlap when linearly scaled. Such distributions are said to possess
the scalar property. Similarly, in animal conditioning experiments (Roberts,
1981; Smith, 1968) where a conditioned stimulus (CS) is reinforced by an
unconditioned stimulus (US) with a fixed latency, the distribution of the
conditioned response peaks at the appropriate reinforcement latency and
is scale invariant with respect to the reinforcement latency. The fact that
these distributions are scale invariant with appropriately timed peaks sug-
gests the existence of a reliable internal representation of time that is scale
invariant.

Scale invariance is not simply restricted to the timing of response dis-
tributions. It is also observed in the rate of associative learning in animal
conditioning. The number of CS-US pairings required for the animals to
learn the association between the CS and the US is shown to increase when
the reinforcement latency is increased and decrease when the time between
successive learning trials, the intertrial interval, is increased (Gallistel &
Gibbon, 2000). It turns out that the absolute value of the reinforcement
latency and the intertrial interval do not matter. As long as their ratio is
fixed, the number of learning trials required is a constant. That is, there is
no characteristic timescale involved in learning the associations between
stimuli (Balsam & Gallistel, 2009). This suggests that the internal represen-
tations of the reinforcement latency and the intertrial interval should be
scale invariant.

It is well known that memory performance decays with time. It has been
argued that the decay follows a scale-invariant power law function (see
Wixted, 2004, for a review). We focus here on free recall, a popular paradigm
used to probe human episodic memory over laboratory timescales ranging
from a few hundred milliseconds to a few thousand seconds. In free recall,
subjects are given a list of words and are asked to recall them in any or-
der in which they come to mind. In general, the items from the end of the
list are better recalled, pointing to the fact that the more recently learned
items are more easily retrieved. This general phenomenon is referred to as
the recency effect. It has been repeatedly observed that altering the time
delay between the presentation of items or the recall phase (or both), dra-
matically affects the recency function. While the empirical case for scale
invariance in free recall is mixed (Chater & Brown, 2008; Brown, Neath,
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& Chater, 2007, but see Nairne, Neath, Serra, & Byun, 1997), it is clear
that the recency effect has been observed with similar properties over a
range of timescales, from fractions of seconds (Murdock & Okada, 1970) to
dozens of minutes (Glenberg et al., 1980; Howard et al., 2008). Having mul-
tiple memory stores operating at different timescales (Atkinson & Shiffrin,
1968; Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005)
can of course yield recency effects across multiple timescales. But a simpler
account with a single memory mechanism can be envisaged based on a
scale-invariant representation of time. If the stimulus history is represented
in the brain along a scale-invariant internal time axis, we can naturally
obtain a scale-free recency effect (Brown et al., 2007).

Although scale invariance seems to underlie many aspects of cognition
involving time, it should be noted that not all aspects of timing behavior
are scale invariant (see Wearden & Lejeune, 2008, for a review). The crucial
point is that the existence of scale invariance in multiple aspects of behavior
involving time suggests that a single scale-invariant representation of stim-
ulus history could play a causal role in all of these domains. Violations of
scale invariance are easy to reconcile with a scale-invariant representation.
For instance, Wearden and Lejeune (2008, p. 571) note that “additional pro-
cesses could modulate the expression of underlying scalar timing.” These
processes would presumably depend on the specific task demands in a
particular empirical setting. On the other hand, it is extremely difficult to
construct a theoretically satisfying account of scale-invariant behavioral
data from an underlying representation of time that is not scale invariant.
While it is technically possible to construct scale-invariant behavior from
timing information with a scale, this would require that the task-dependent
additional processes introduce a scale that happens to exactly cancel the
scale of the underlying representation of time.

In this letter, we construct a scale-invariant internal representation of
time based on a hypothesis about how the recent stimulus history could be
represented in the brain (Shankar & Howard, 2010). Two key assumptions
go into this construction. First, we posit a population of persistently firing
neurons that behave as a filter bank of leaky integrators. These encode
the Laplace transform of the stimulus history. Second, we posit a specific
connectivity structure involving bands of balanced excitation and inhibition
that transcribes the activity of these leaky integrators into activity in another
population of time cells. This transcription procedure is based on an elegant
approximation to the inverse Laplace transformation (Post, 1930); hence, we
refer to it as timing from inverse Laplace transform (TILT). The time cells
thus constructed have properties similar to the output of a set of tapped
delay lines (Desmond & Moore, 1988) in that they respond to a stimulus
following fixed latencies. We propose that such a representation of timing
information in the activity of time cells could underlie behavioral scale
invariance for timescales ranging from a few hundred milliseconds to a few
thousand seconds.
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To demonstrate the potential utility of this scale-invariant representa-
tion of time and stimulus history, we use a simple Hebbian learning rule
to generate predictions based on the match between the current state of
the representation and previous states. This match generates moment-to-
moment predictions in real time that can account for scale invariance at
the behavioral level. In order to make task-specific behavioral predictions,
we specify minimal performance functions that map the prediction func-
tion onto appropriate behaviorally observable dependent measures. Our
focus in this letter is not to faithfully model the details of these behavioral
tasks, but to qualitatively illustrate how the properties of the prediction
function derived from the scale-invariant representation of time and stim-
ulus history could give rise to scale-invariant behavior in a broad variety of
behavioral domains, including classical conditioning, timing behavior, and
episodic memory. Quantitative features of the behavioral measures, such as
the coefficient of variation of timing responses or the decay rate of memory,
depend strongly on the choice of the performance functions. Since our focus
is not on the specific performance functions and because they have a large
effect on the predicted behavioral results, we do not attempt quantitative
fits to the data.

In this letter, we describe the model and analytically establish scale in-
variance. We then describe several applications to demonstrate the model’s
applicability to classical conditioning, interval timing, and episodic mem-
ory experiments. In particular, we illustrate appropriately timed behavior
in simple classical conditioning and human interval timing experiments,
show that the encoded timing information in the online predictions can be
exploited to account for the lack of a specific scale in learning associations
between stimuli, and describe the recency effect across timescales in free
recall experiments.

2 Description of the Model

Before describing the mathematical details, we first give an overview of the
basic architecture of the model. It is convenient to describe the model in two
stages: the timing mechanism TILT and the associative learning mechanism.

Let f(τ ) be a vector-valued function that denotes the presentation of a
stimulus at any time τ . To describe the timing mechanism, we focus on one
of its components, as shown in Figure 1a. The stimulus function activates
a column of t nodes at each moment. The aim is to reconstruct the history
of the stimulus function as a spatially distributed pattern of activity across
a column of T nodes. We take the column of t nodes to be a filter bank of
leaky integrators. Once each t node is activated, its activity persists over
time with a distinct decay rate. At each moment, the pattern of activity
distributed along the column of t nodes is transcribed by the operator L−1

k to
construct the activity in the column of T nodes. Mathematically, the activity
in the t nodes represents the Laplace transform of the presentation history
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Figure 1: (a) Timing mechanism. The stimulus function activates a t column
of leaky integrators. Each node in the t column has a distinct decay rate s.
The activity in the t column is mapped onto the column of time cells T via
the operator L−1

k . At any moment, the activity distributed across the T col-
umn represents a fuzzy but scale-invariant presentation history of the stimulus.
(b) Associative learning. For each node in the stimulus layer f, there is a col-
umn of nodes in the t and T layers, as represented by appropriate shading. The
T-layer activity at each moment is associated in a Hebbian fashion with the f
layer activity, and these associations are stored in M. The associations stored in
M and the instantaneous T-layer activity induce activity in the f layer. This in-
ternally generated activity in the stimulus layer is interpreted as the prediction
p for the next moment.
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of the stimulus, and the operator L−1
k approximates the inverse Laplace

transformation. The activity distributed along the T nodes can be identified
as an estimate of the presentation history of the stimulus. The estimate of
the stimulus history function is not precise, with errors increasing for times
further in the past. The different nodes of the T column peak in activity at
different latencies following the stimulus presentation. Hence, the T nodes
can be thought of as time cells. Functionally the activity of the T column
resembles the output of a set of tapped delay lines, although with important
differences that we discuss later.

Figure 1b describes an associative learning model that utilizes the rep-
resentation of time constructed by the timing mechanism. We assume that
the stimulus perceived at any moment can be represented as a vector in
a high-dimensional vector space, f(τ ). The dimensionality of this space
is assumed to be small relative to the number of possible distinct stimuli
but large relative to the number of stimuli that are relevant in the exper-
iments we describe in the application section. The nodes of the f layer
constitute the basis vectors of this space. The different f nodes represent
the distinct dimensions of the stimulus space. Any unique stimulus would
be represented by a unique set of activations across these nodes; when that
stimulus is presented, those nodes would be activated accordingly. Any
two distinguishable stimuli will have distinct representations that overlap
to a degree that depends on their similarity. In general, the exact representa-
tion of a stimulus in the f layer would depend on its perceptual properties
and the prior experience with that stimulus. We also assume that corre-
sponding to each f node, there is a column of t nodes and a column of T
nodes, as described in Figure 1a. All the t columns constitute the t-layer,
a two-dimensional sheet of leaky integrators. Similarly, all the T columns
constitute the T-layer, a two-dimensional sheet of time cells.

At any moment, the activity in the T-layer represents the history of the
stimuli encountered in the recent past. The stimulus experienced at any
moment, the momentary f-layer activity, is associated with the momentary
T-layer activity, which is caused by the stimuli experienced in the recent
past. As depicted in Figure 1b, these associations are stored in the oper-
ator M, which can be interpreted as the synaptic weights between the T
nodes (presynaptic) and the f nodes (postsynaptic). As learning progresses,
M gathers the statistics underlying the temporal patterns among various
stimuli. With sufficient learning, the T-layer activity at any moment will
automatically stimulate activity in f-layer. This internally generated f-layer
activity can be understood as the real-time prediction p(τ ) for the stimulus
vector likely to be presented at the next moment (Shankar, Jagadisan, &
Howard, 2009). The degree to which the p generated by the current state
of T overlaps with a particular stimulus vector is primarily a consequence
of the match between the current state of T and the state(s) of T in which
that stimulus vector was encoded. It turns out that after learning, the tem-
poral spread in p(τ ) reflects the scale invariance in the underlying timing
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mechanism. Hence, p can give rise to scale-invariant timing behavior when
fed into an approriate performance function.

The mathematical details of the timing mechanism and associative learn-
ing mechanism follow.

2.1 Timing Mechanism. We parameterize each column of t nodes by
the variable s that represents the decay rate of each leaky integrator. As a
mathematical idealization, we let s range from 0 to ∞, but in reality, we
would expect finite, nonzero lower and upper bounds for s. The stimulus
function f(τ ) activates the t nodes in the following way:

dt(τ, s)
dτ

= −s · t(τ, s) + f(τ ). (2.1)

This can be integrated to obtain

t(τ, s) =
∫ τ

−∞
f(τ ′) es(τ ′−τ ) dτ ′. (2.2)

The t nodes are leaky integrators because they integrate the activity of
an f node over time with an exponentially decaying weight factor. For con-
tinuous and bounded f(τ ′), the function t(τ, s) will be finite and infinitely
differentiable with respect to s. Figure 2 illustrates the properties of the
function t(τ, s) for a sample stimulus. Observe from equation 2.2 that t(τ, s)
is exactly the Laplace transform of the function f(τ ′) for τ ′ < τ , when s is
identified as the Laplace domain variable restricted to purely real values.
That is, at each moment, the entire presentation history of an f node up
to that moment is encoded across the column of t nodes as its Laplace
transform.

The nodes in the T column in Figure 1a are labeled by the parameter
∗
τ ,

which ranges from 0 to −∞. The T nodes are in one-to-one correspondence
with the t nodes, with the mapping s → −k/

∗
τ . At each moment, the operator

L−1
k constructs the activity in the T layer from the activity in the t layer in

the following way.

T(τ,
∗
τ ) = (−1)k

k!
sk+1t(k)(τ, s) where s = −k/

∗
τ (2.3)

T ≡ L−1
k

[
t
]
.

Here k is a positive integer, and t(k)(τ, s) is the kth derivative of t(τ, s) with
respect to s. That is, L−1

k computes the kth derivative along each t column
and maps it onto each T column. We discuss ways to implement L−1

k in the
next section.
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Figure 2: A stimulus is presented twice: for a duration of 2 seconds, followed
by a gap of 4 seconds, followed by a subsequent presentation for a duration of
4 seconds. The curve on top represents the stimulus function as a sequence of
square pulses of appropriate duration and the three curves below it represent the
activity of the t nodes with decay rates s = 0.5 (dotted), 1 (solid), and 2 (dashed).
Note that the activity of the t node with larger s (dashed line) saturates quickly,
while the activity of the smaller s node (dotted line) takes longer to saturate. Also
note that the decay of the smaller s node is sufficiently slow that its activity due
to the first stimulus presentation persists at the time of the second presentation;
the second presentation adds to the preexisting activity.

At any instant τ , the momentary activity distributed across a column
of T nodes turns out to be a good approximation to the stimulus history
function for all τ ′ < τ :

T(τ,
∗
τ ) ( f(τ ′) where τ ′ = τ + ∗

τ . (2.4)

This happens because L−1
k approximates the inverse Laplace transforma-

tion. In fact, it has been proven (Post, 1930) that in the limit k → ∞, T(τ,
∗
τ )

will exactly match f(τ ′) in equation 2.4. In other words, L−1
k is exactly the

inverse Laplace transformation when k goes to infinity. We can now inter-
pret

∗
τ as an internal representation of past time and the activity distributed

along each T column as an approximate representation of the history of the
corresponding dimension of the stimulus vector. We refer to this procedure
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Figure 3: A stimulus is presented twice in the recent past. Taking the present
moment to be τ = 0, the momentary activity distributed across the T column
nodes is plotted. Note that there are two bumps corresponding to two pre-
sentations, and the representation of the earlier presentation is more spread
out.

of reconstructing the timing information of the stimulus history as timing
from inverse Laplace transform (TILT).

To facilitate analytic calculations, we take the parameters s and
∗
τ to be

continuous on an infinite domain. In reality, we would expect their domains
to be discrete with finite, nonzero lower and upper bounds. The error that
would be introduced due to discretization of s is derived in appendix B. In
order to span the timescales relevant to cognition, we propose that

∗
τ ranges

from few hundred milliseconds to few thousand seconds.
Figure 3 describes how the activity of the T nodes in a column at any in-

stant represents the stimulus history of the corresponding f node. Consider
a stimulus presented twice in the recent past: 7 seconds ago and 25 seconds
ago. Taking the present moment to be τ = 0, Figure 3 shows the momen-
tary activity spread across the T nodes. The pattern of activity across the
different

∗
τ nodes shows two peaks, roughly at

∗
τ = −7 and

∗
τ = −25, corre-

sponding to the two stimulus presentations. For this illustration, we have
used k = 12, and as a consequence, T(0,

∗
τ ) does not perfectly match the

stimulus function. The match would be more accurate for larger k. The dif-
ferent

∗
τ nodes are activated at different latencies following the stimulus

presentation. This property allows the column of T nodes to separately rep-
resent multiple presentations of the stimulus in the recent past, as shown in
Figure 3. To further illustrate this, let us consider the activity of the T nodes
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Figure 4: A stimulus is presented twice, and the activity of two nodes in the t
and T columns is shown as a function of time. Note that the activity of the T
nodes peaks at the appropriate delay after each stimulus presentation.

as a function of real time τ . Figure 4 shows an f node activated at two
distinct times and the activity of two nodes from the corresponding t and
T columns as a function of real time τ . Note that the t nodes peak at the
stimulus offset, while the T nodes peak at specific latencies following the
stimulus offset. The

∗
τ = −3 node peaks 3 seconds following each stimulus

presentation, and the
∗
τ = −6 peaks 6 seconds after each stimulus presen-

tation. For this reason, the nodes in the T layer can be thought of as time
cells. Note that the real-time spread in the activity of the

∗
τ = −6 node is

larger than the spread of the
∗
τ = −3 node. In the next section, we show

that the temporal spread in the activity of a node with a specific
∗
τ value is

proportional to
∗
τ . For this illustration, we have used k = 12. For larger k,

the temporal spread in the T nodes activity is smaller.
To summarize, the L−1

k operator takes the Laplace transformed stimu-
lus function on the s axis, inverts it, and projects it back to the internal
time

∗
τ axis. Because k is finite, the inversion of the Laplace transform is

only approximate, and the resulting function has a “temporal smear” when
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compared to the original stimulus function. Moreover, when k is fixed, that
is, when the L−1

k operator takes the same order derivative everywhere on
the s axis, this smear is scale invariant.

2.2 Implementation of L−1
k . We now describe how the operator L−1

k can
be implemented. Computing the exact inverse Laplace transform would
involve evaluating contour integrals on the complex plane. Implementing
such computations in the brain would require extremely complicated neural
machinery. The primary problem is that to invert the Laplace transform
t(τ, s) in the standard way, we need complex values of s that are not stored
in the t nodes. A second problem is that to evaluate the inverse Laplace
transform at each

∗
τ , a global integral over the entire s-space would need

to be performed. In contrast, computing the approximate inverse Laplace
transformation in the form of L−1

k for finite k requires only the real values
of s and a global integral over all s need not be performed. The problem
in implementing L−1

k boils down to computing the kth derivative of the
function t(τ, s) with respect to s, which is a local operation. This operation
can be implemented in a straightforward way.

First, note that although s is treated as a continuous variable for mathe-
matical convenience, we have to acknowledge the discreteness of the s-axis
at the cellular scale. Let us discretize and label the t nodes centered around
s = so.

...., s−3 , s−2 , s−1 , so , s1 , s2 , s3 , ...

The nodes are arranged to monotonically increase in s. Let the successive
nodes be separated by ", that is, si − si−1 = ". In general, " need not be
constant along the s-axis, although we will treat it as a constant for conve-
nience. As illustrated in appendix B, we can evaluate the kth derivative of
a function at the point so as a linear combination of the functional values
at the k neighboring points. Hence, the activity of the T node

∗
τ o = −k/so

can be constructed simply from a linear combination of the activity of k
neighboring nodes around so in the t column. From equations B.11 and B.12
in appendix B, note that there is a factor "−k in the coefficients involved in
constructing the kth derivative. For small values of ", this would be unac-
ceptably large. Fortunately, only the relative activation of the T nodes has
significance, and the exact magnitude of their activity is inconsequential, so
we can ignore any overall constant in the connection weights between the
t and T columns. For simplicity, let us just analyze the situation when k is
even. From equation 2.3 and the coefficients required to construct the kth
derivative (see equation B.11), the activity of the

∗
τ o node can be written as

T(τ,
∗
τ o) = sk+1

o

k/2∑

r=−k/2

(−1)(k/2−r)

(k/2 − r)! (k/2 + r)!
t(τ, so + r"). (2.5)



A Scale-Invariant Internal Representation of Time 145

Figure 5: Neural implementation of L−1
k . The left-most panel describes the con-

nectivity between column of t nodes and the column of T nodes. The nodes in
these two columns are mapped in a one-to-one fashion. The activity of any cell
in the T column depends on the activity of k neighbors in the t column. The
right panel gives a pictorial representation of the connectivity function between
a T node and its k near neighbors in the t column. The contributions from the
neighbors alternate between excitation and inhibition as we move away from
the center in either direction, and the magnitude of the contribution falls off
with the distance to the neighbor. With k = 2, we see an off-center on-surround
connectivity. With k = 4, we see a Mexican hat–like connectivity, and k = 12
shows more elaborate bands of connectivity.

In the left-most panel of Figure 5, we sketch the connections from the t
column nodes to the

∗
τ o node of the T column. The activity in the

∗
τ o node

is constructed not just from the so node, but from k near neighbors of the
so node. For three different values of k, we plot these connection weights.
The connection weights are positive and negative in an alternating fashion,
with magnitude falling off with distance from so. For even k, the contribu-
tions from either side of so are symmetric. Interestingly, these connection
weights take the form of binomial coefficients in the expansion of (1 − x)k.
A crucial property of these coefficients is that they sum up to 0, implement-
ing balanced inhibition and excitation in the inputs to each T node. If " is
not constant, the connection coefficients would be different from those in
equation 2.5; in particular, they would be asymmetric around so.

In general, there are good reasons to think " should vary across the
s-axis. First, note that for small values of s, we need an appropriately small
" in order to accommodate at least k/2 neighbors between 0 and s:

(
k
2

)
" < s ⇒ |" ∗

τ | < 2. (2.6)

Taking " to be a constant will immediately impose an upper bound
∗
τmax on

the range of
∗
τ , while taking " to vary inversely with | ∗

τ | so that |" ∗
τ | remains

constant does not impose any upper or lower bound on the range of
∗
τ .

Second, if we take the one-to-one relationship between the t nodes and
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the T nodes seriously, then the distribution of " along the s-axis implicitly
specifies the distribution of

∗
τ values:

" ≡ δs = δ(−k/
∗
τ ) = k

∗
τ−2 δ

∗
τ . (2.7)

Here δ
∗
τ is the separation between the T nodes along the

∗
τ axis. If g(

∗
τ ) is the

number density of T nodes along the
∗
τ axis, then it will be inversely related

to δ
∗
τ . Hence,

g(
∗
τ ) ∼ 1/"| ∗

τ |2. (2.8)

That is, the function controlling the distribution of " as a function of s also
controls the distribution of

∗
τ . Let us consider three simple possibilities: the

choice of a constant " leads to g(
∗
τ ) ∼ | ∗

τ |−2; the choice of " ∼ | ∗
τ |−1 leads to

g(
∗
τ ) ∼ | ∗

τ |−1; or the choice of " ∼ | ∗
τ |−2 leads to g(

∗
τ ) ∼ 1.

Note that specifying the distribution of " also specifies the number of
nodes required in a T column to represent the relevant timescales. The cal-
culation is particularly straightforward for the case when " ∼ | ∗

τ |−1. In this
case, the separation between neighboring T nodes δ

∗
τ = α

∗
τ (see equation

2.7), where α is some constant that controls the resolution of the representa-
tion in the

∗
τ -axis. If the

∗
τ -axis is bounded between

∗
τmin and

∗
τmax, describing

the lower and upper limit of timescales to be represented, then the nodes
can be arranged in the following way:

∗
τmin ,

∗
τmin(1 + α) ,

∗
τmin(1 + α)2, . . . ,

∗
τmin(1 + α)n−1 = ∗

τmax.

The number of nodes needed to represent the relevant timescale
∗
τmin to

∗
τmax is given by

n = 1 + log(
∗
τmax/

∗
τmin)

log(1 + α)
. (2.9)

The constant α denotes the separation between neighboring nodes around
| ∗
τ | = 1. Choosing α = 0.1, | ∗

τmin| = 0.5 and | ∗
τmax| = 5000, we obtain n < 100.

That is, fewer than 100 nodes are required in a T column to represent the
timescales ranging from 500 milliseconds to 5000 seconds. This estimate is
very much dependent on our choice of g(

∗
τ ). With g(

∗
τ ) ∼ 1, the required

number of nodes would be much larger. If we choose g(
∗
τ ) ∼ | ∗

τ |−2, which
follows from choosing " to be constant along the s-axis, then the number
of nodes required would be considerably less than that given by equation
2.9.

While the discretization of the s-axis provides a simple implementation of
L−1

k , it is not error free. As shown in appendix B, the difference between the
discretized kth derivative and the functionally continuous kth derivative is
of the order O(k"2). When k is large, L−1

k is closer to the exact inverse Laplace
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transform, and the T nodes will store a more accurate representation of the
stimulus history. The downside of having a large k is twofold. First, the
complexity of the connectivity function (see Figure 5) reduces the physical
plausibility. Second, " has to be sufficiently small to keep the error in
computing the kth derivative small. When " is small, a large number of
nodes is required to span the s-axis, thus increasing the neural resource
requirements.

It is important to point out that the alternating excitatory and inhibitory
connections between the t and T nodes is simply a description of a functional
relationship. One could imagine different ways to neurally implement this
functional connectivity. For k = 2, we can imagine a simple mechanism
wherein the t nodes excite the T nodes in a one-to-one fashion and the T
nodes laterally inhibit their immediate neighbors in a column. We might
have to invoke more complicated mechanisms for higher values of k. Since
the t nodes cannot simultaneously be both excitatory and inhibitory, we can
imagine an intermediate set of nodes (interneurons) activated by the t nodes,
such that the t nodes simply provide the excitatory input to the T nodes
while the interneurons provide the inhibitory input to the T nodes. The exact
mechanism that leads to such alternating excitatory-inhibitory connectivity
has to be constrained based on neurophysiological considerations.

2.3 Comparison to Time Cells Constructed from Tapped Delay Lines.
It can be shown (see appendix A) that the evolving pattern of activity in
the different

∗
τ nodes in each T column satisfies the following differential

equation:

( ∗
τ

k

) ∂2T

∂
∗
τ∂τ

− ∂T

∂
∗
τ

+
(

k + 1
k

)
∂T
∂τ

= 0. (2.10)

This equation, along with the boundary condition T(τ, 0) = f(τ ), is suf-
ficient to completely determine the evolving pattern of activity in the T
nodes. Note that equation 2.10 does not make reference to t or to L−1

k . This
leaves open the possibility of constructing the representation T through
alternative means.

The nodes of T behave like time cells, increasing their activity a charac-
teristic time after the occurrence of the stimulus that caused the activation.
Tapped delay lines are an alternative means to construct time cells. In tapped
delay lines, a chain of connected nodes provides input to one another. Each
node responds and triggers the next node in the chain after a characteristic
delay following the input it receives. As a consequence, an input at one end
of the chain gradually traverses through each node to the other end. As the
input traverses through the chain, the delays get accumulated, and conse-
quently each node in the chain responds at different latencies following the
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Figure 6: (a) The time cells in the T column are constructed from the activity
of the leaky integrators in the t column through the alternating excitatory-
inhibitory connections of the L−1

k operator. (b) Alternatively, ignore the t col-
umn and simply consider the stimulus to directly activate the top node in the
T column. If the T column nodes are chained together in an appropriately con-
structed tapped delay line, then the activity could “trickle down” the T column
according to equation 2.10.

input. The nodes in a tapped delay line would exhibit similar properties as
time cells.

Hence, as described in Figure 6b, we could alternatively view the T
column as a tapped delay line where the input at any moment f(τ ) is given
to the

∗
τ = 0 node and the activity gradually progresses to the other

∗
τ nodes

in a way that enables it to obey equation 2.10. That is, the T column activity
can be constructed without the leaky integrators in the t column if the
successive

∗
τ nodes of the T column are appropriately chained such that

equation 2.10 could be implemented.
The procedure of constructing the time cells from the leaky integrators

through the operator L−1
k yields some qualitatively different features from

those that would result if it were constructed using tapped delay lines.
Whereas the range of

∗
τ values that can be achieved with TILT depends on

the distribution of time constants of the leaky integrators, the range of
∗
τ

values that could be achieved with a tapped delay line scheme depends
on the range of characteristic latencies the cells exhibit, combined with the
architecture of the network. The units in a tapped delay line architecture
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would respond to an impulse of input after some characteristic delay. The
upper limit on the value of

∗
τ that can be achieved using TILT is determined

by the largest time constant. The upper limit on
∗
τ that can be generated

using tapped delay lines is determined by the longest characteristic delay
multiplied by the number of links in the chain. If the largest characteristic
delay is much shorter than the largest value of

∗
τ to be represented, this

places strong constraints on a tapped delay line architecture. Under these
circumstances, a tapped delay line scheme would require that the spacing
of

∗
τ values be constant. That is, for a tapped delay line scheme in which

the largest characteristic delay is short, g(
∗
τ ) = 1. As discussed above, this

would require a relatively large amount of resources. Of course, this would
not be a problem if it were possible to construct units with characteristic
delays on the order of the largest value of

∗
τ .

In addition to differences due to capacity constraints, the two approaches
to constructing time cells differ in the connectivity between cells. When us-
ing tapped delay lines, if the largest characteristic delay is much shorter
than the largest value of

∗
τ , there is strong dependence between the units

representing smaller values of
∗
τ and larger values of

∗
τ . As a consequence,

disrupting one of the nodes in the chain would tend to disrupt the time
cells responding at all subsequent latencies. If there are many links in the
chain required to reach the largest value of

∗
τ , then the system would be

very sensitive to failures at small values of
∗
τ . In contrast, in TILT, there

is no direct causal connection between the activity of the T nodes repre-
senting different values of

∗
τ . The sequential firing as a function of

∗
τ is a

consequence of a common dependence on the state of t rather than a causal
connection between the T nodes with small values of

∗
τ and large values of

∗
τ . However, disruption of a t node would disrupt the k near neighbors in
T. This disruption is similar regardless of the value s that is disrupted and
is not particularly sensitive to values of s corresponding to small values
of

∗
τ .

2.4 Associative Learning. Up to this point, we have focused on the
properties of a single dimension of the stimulus space, corresponding to
a single column of t and a single column of T. Here we describe a simple
associative memory that enables T to serve as a cue for behavior. This
treatment differs from the development up to this point because it requires
us to consider all dimensions of the stimulus space and the entire t layer
and the T layer. This is so because we will have to sum over the entire T
layer to construct a prediction in the stimulus space.

Consider Figure 1b. There are many f nodes, grouped together as the f
layer. Each f node provides input to a t column; the t columns are grouped
together as the t layer. Each f node also corresponds to a T column; the
T columns are grouped together as the T layer. Each node in the f layer
corresponds to a dimension of the stimulus space. Each distinguishable
stimulus will have a unique representation in the f layer. That is, each
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stimulus corresponds to a unique pattern of activation across the nodes of
the f layer. The exact representation of a stimulus in the f layer will depend
on its perceptual properties. Perceptually similar stimuli, like a picture of
an apple and a picture of a peach, would have highly overlapping repre-
sentations, while perceptually dissimilar stimuli, like a picture of an apple
and the sound of a bird chirping, would have less overlapping representa-
tions. In general, with more f nodes, more distinguishable stimuli can be
represented. Because our interest in this letter is in describing properties
of timing and not stimulus discrimination or stimulus generalization, we
will consider an idealization where an experimentally relevant stimulus is
represented by a unique node in the f layer. In the simple experiments we
are considering here (e.g., delay conditioning between a tone and a shock),
this seems to be a perfectly reasonable assumption.

At any instant, the T-layer activity holds the approximate timing infor-
mation about the presentation history of all stimuli presented up to that
instant. A simple way to use this information to learn the temporal rela-
tionships between stimuli is to introduce associative learning between the
T and f layers. We define the operator M to hold the synaptic weights con-
necting the T-layer nodes to the f-layer nodes (see Figure 1b). The weights
change at each instant in a Hebbian fashion. It is convenient to represent M
as an outer product association between the f and T layers. We shall use the
bra-ket notation for this purpose, where |·〉 represents a tensor, 〈·| represents
its transpose, 〈·|·〉 represents the inner-product of two equi-ranked tensors,
and |·〉〈·| denotes the outer product of two tensors:

M(τ ) =
∫ τ

−∞
|f(τ ′)〉〈T(τ ′)| dτ ′. (2.11)

At any moment τ , |f(τ )〉 is of rank 1 and 〈T(τ )| of rank 2 because the T
layer consists of the dimensions corresponding to the stimulus space and
∗
τ . Hence, M is a tensor of rank 3. In an indicial notation, the components
of M at any time τ can be written as M j

∗
τ

i (τ ), where i indexes the stimulus
dimension in f layer and j indexes the stimulus dimension in the T layer.

The simple Hebbian learning rule we use here states that every time a
stimulus is presented, the synaptic weight between any given T node and
the associated f node is increased by an amount equal to the instantaneous
activity of that T node. With learning, the activity in the T layer can induce
activity in the f layer through the associations learned in M. We shall refer
to this internally generated activity in the stimulus layer as p, the prediction
for the imminent future. Coarsely, this can be interpreted as “what comes
to mind next.” In the bra-ket notation, this is represented as

|p(τ )〉 = M(τ )|T(τ )〉. (2.12)
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To explicate this in the indicial notation, let us denote the activity of the
∗
τ

node in the jth column of the T layer by T j(τ,
∗
τ ) at any time τ . The activity

induced by T j(τ,
∗
τ ) in the ith node in the f layer through the synaptic

weights M will be

P j
∗
τ

i (τ ) = M j
∗
τ

i (τ ) T j(τ,
∗
τ ). (2.13)

The overall activity induced in the ith node of the f layer by the T layer
is simply taken to be the sum of the individual contributions from each T
node:

pi =
∑

j

∫
P j

∗
τ

i (τ ) g(
∗
τ ) d

∗
τ . (2.14)

Since we treat
∗
τ as a continuous variable, the contributions from different

∗
τ nodes are added up by integrating them along with the number density
of nodes g(

∗
τ ). The function g(

∗
τ ) simply denotes the number of nodes in

the T column that fall within a unit interval on the
∗
τ -axis. Taken together,

the components pi form the prediction vector p defined in equation 2.12.
To illustrate how M enables associative learning, let A be a stimulus that

has been encountered only once at time τA, and let A activate just one node
in the f layer. The T-layer activity at that moment, |T(τA)〉, will be stored in
M as the synaptic weights connecting the T layer to the A node in the f layer
according to equation 2.11. At a later time τo, the T-layer activity would have
changed to |T(τo)〉, which would depend on the duration between τA and
τo, as well as the stimuli presented between these times. To the extent |T(τo)〉
overlaps with |T(τA)〉, the A node in the f layer will be internally activated
at the moment τo. In this simple situation where A occurred only once, the A
component of the prediction p is simply the inner product between |T(τA)〉
and |T(τo)〉:

pA = 〈T(τA)|T(τo)〉 =
∑

j

∫
T j(τA,

∗
τ ) T j(τo,

∗
τ ) g(

∗
τ ) d

∗
τ . (2.15)

We propose that in simple behavioral tasks, p drives the behavior
through appropriate behavioral mechanisms. Note that p strongly depends
on g(

∗
τ ). In all the behavioral applications in this letter, we will choose g(

∗
τ ) =

1. But the obtained behavioral results can equivalently be obtained from any
other choice of g(

∗
τ ) if we were to modify the definition of L−1

k (see equation
2.3) appropriately. To see this, note from equation 2.15 that it is the prod-
uct of g(

∗
τ ) with T(τ,

∗
τ ), which is relevant in computing the prediction p.

By appropriately absorbing the functional form of g(
∗
τ ) into T(τ,

∗
τ ) by mod-

ifying the definition of L−1
k , we can obtain the same prediction as that
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obtained with g(
∗
τ ) = 1 and T(τ,

∗
τ ) defined as equation 2.3. Although the

functional form of T(τ,
∗
τ ) and g(

∗
τ ) are not separately identifiable math-

ematically in constructing the behavioral predictions, note that g(
∗
τ ) is a

physical quantity. If we could measure the responsiveness of every neuron
in the brain during performance of an appropriate task, then the form of
g(

∗
τ ) could be directly measured.

3 Emergence of Scale Invariance

As shown by equation 2.4, T(τ,
∗
τ ) approximately represents the stimulus

presentation history as activity distributed across the different
∗
τ nodes. We

now demonstrate the scale invariance of this representation. Consider a
delta function stimulus that activates a single dimension of the stimulus
space at time τ = 0. The activity of the corresponding t and T columns at
any instant τ following the presentation is given by equations 2.2 and 2.3.
The function t(τ, s) and its kth derivative are calculated to be

f(τ ) = δ(τ − 0) ⇒ t(τ, s) = e−sτ ⇒ t(k)(τ, s) = (−τ )ke−sτ .

(3.1)

Then we use equation 2.3 to evaluate T(τ,
∗
τ ) and express it in two forms:

T(τ,
∗
τ ) = 1

τ

(k)k+1

k!

(−τ
∗
τ

)k+1

ek
(

τ
∗
τ

)

(3.2)

=− 1
∗
τ

(k)k+1

k!

(−τ
∗
τ

)k

ek
(

τ
∗
τ

)

. (3.3)

Note that τ is positive because we are interested only in the time following
the stimulus presentation, while

∗
τ is negative. This makes the ratio (τ/

∗
τ )

negative. Equations 3.2 and 3.3 are plotted simultaneously with respect to
∗
τ

and τ in Figure 7. Restricting the attention to one horizontal line in the figure
gives the activity of a specific

∗
τ node as a function of time, while restricting

the attention to a vertical line gives the instantaneous activity of the entire
T column. The scalar property is apparent from the functional form where
τ and

∗
τ occur as a ratio. Hence, no specific scale is being represented by the

T-layer activity. To quantify the underlying scale invariance, observe the
following analytical properties.1

1All integrals here can be calculated using the form
∫ ∞

0 yme−kydy = &(m+1)

km+1 . For integer
values of m, &(m + 1) = m!
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Figure 7: A stimulus is presented at τ = 0. The activity of an entire T column is
plotted as a function of time. Restricting the focus on the horizontal line reveals
the activity of a single node in the T column as a function of time, while re-
stricting the focus on the vertical line reveals the entire T column activity at any
given moment. The activity is normalized about each horizontal line according
to the scale shown below the graph. (See the online supplement for a color ver-
sion of this figure, available at http://www.mitpressjournals.org/doi/suppl/
10.1162/NECO_a_00212.)

Let us first look along the vertical line in Figure 7 and consider the
distribution of activity over

∗
τ at a particular instant τ . The area under the

distribution T(τ,
∗
τ ) is independent of τ :

∫
T(τ,

∗
τ ) d

∗
τ = 1. (3.4)

The area is 1 because the stimulus was chosen to be a delta function. For
any other stimulus function, the area would match that under the stimulus
function plotted over time. The peak of the distribution is at

d

d
∗
τ

T(τ,
∗
τ ) = 0 ⇒ ∗

τ = −τ [k/(k + 1)]. (3.5)

When k > 1, the mean of the distribution is at

∗
τmean =

∫
∗
τ T(τ,

∗
τ ) d

∗
τ = −τ [k/(k − 1)]. (3.6)



154 K. Shankar and M. Howard

When k > 2, the variance of this distribution is

∫
(

∗
τ − ∗

τmean)2 T(τ,
∗
τ ) d

∗
τ = τ 2[k2/(k − 2)(k − 1)2]. (3.7)

The function T(τ,
∗
τ ) should not be misunderstood to be a stochastic variable

just because its mean and variance are calculated; it is a deterministic func-
tion. The coefficient of variation (CV), defined as the ratio of the standard
deviation to the mean of the distribution, is then

CV = (k − 2)−1/2. (3.8)

Note that the CV calculated over
∗
τ is a constant for all values of τ . This is a

manifestation of the scale invariance of the distribution. Though the above
expression is not valid when k is either 1 or 2, the CV can be shown to be
independent of τ . As we shift the vertical line in Figure 7 rightward and
look at the T activity at a later time, the distribution becomes wider but the
CV remains the same.

Now let us look along the horizontal line in Figure 7 and consider the
activity of a specific

∗
τ node as a distribution over real time τ . The area under

this distribution is also a constant for all values of k and
∗
τ :

∫
T(τ,

∗
τ ) dτ = 1. (3.9)

Again, the area turns out to be 1 because the stimulus was chosen to be a
delta function. The peak of this distribution is at

d
dτ

T(τ,
∗
τ ) = 0 ⇒ τ = − ∗

τ , (3.10)

and the mean of the distribution is at

τmean =
∫

τ T(τ,
∗
τ ) dτ = − ∗

τ [(k + 1)/k]. (3.11)

The variance of this distribution is
∫

(τ − τmean)2 T(τ,
∗
τ ) dτ = ∗

τ 2[(k + 1)/k2]. (3.12)

The coefficient of variation can then be calculated as

CV = (k + 1)−1/2. (3.13)
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Note that the CV calculated over the values of τ is a constant for all values
of

∗
τ , manifesting scale invariance. As we shift the horizontal line in Figure 7

downward, the nodes with a larger (negative)
∗
τ respond later with a larger

temporal spread, but the CV remains constant.
The scalar property underlying the function T(τ,

∗
τ ) is also reflected in

the temporal distribution of the prediction activity p generated in the f
layer. This is because p is constructed from the inner product of the T-layer
activities from different instants, as explained in equations 2.12 and 2.15.
To see this, consider a stimulus start followed by a stimulus stop after a
time τo. For simplicity, let the start and stop be represented by two distinct f
nodes. At the moment when stop is active in the f layer, the T-layer activity
T(τo,

∗
τ ) is given by equation 3.2 (with τo replacing τ ). This will be stored in

M according to equation 2.11. If the start stimulus is later repeated, the T
activity following it after a time τ will again be T(τ,

∗
τ ) in equation 3.2. This

will induce an activity in the stop node of the f layer according to equations
2.12 and 2.15. This will be the stop component of the prediction p, denoted
by pstop(τ ). Since the only relevant predictive stimulus in this scenario is
start, we only need to consider the column corresponding to start when
summing over the columns in equation 2.15:

pstop =
∫

T(τo,
∗
τ ) T(τ,

∗
τ ) g(

∗
τ ) d

∗
τ , (3.14)

pstop =
∫

1
∗
τ 2

(k)2k+2

(k!)2

(
τoτ
∗
τ 2

)k

ek
(

τo
∗
τ

)

ek
(

τ
∗
τ

)

g(
∗
τ ) d

∗
τ . (3.15)

Note that τ and τo are positive while
∗
τ is negative. We define x ≡ −τo/

∗
τ and

y ≡ τ/τo. The integral over
∗
τ can be converted to an integral over x, since

d
∗
τ/

∗
τ 2 = dx/τo:

pstop =
∫

1
τo

(k)2k+2

(k!)2 x2kyke−kx(1+y) g(
∗
τ ) dx. (3.16)

For the simple case when g(
∗
τ ) = 1, the integral can be calculated as

pstop = 1
τo

(k)2k+2

(k!)2

yk(2k)!
(k(1 + y))2k+1

= 1
τo

(2k)!k
(k!)2

yk

(1 + y)2k+1 . (3.17)

Note that the only dependence of time τ is through dependence on y. This
immediately leads to scale invariance. It turns out that the area under the
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distribution is a constant for all values of τo. For the delta function stimulus
considered here,

∫
pstop(τ ) dτ = 1. (3.18)

The peak of the distribution is at

d
dy

(
yk

(1 + y)2k+1

)

= 0 -⇒ y = k
k + 1

-⇒ τ = τo[k/(k + 1)]. (3.19)

For k > 1, the mean of the distribution is at

τmean =
∫

τ pstop(τ ) dτ = τo[(k + 1)/(k − 1)]. (3.20)

For k > 2, the variance of the distribution is

∫
(τ − τmean)2 pstop(τ ) dτ = (τo)

2[2k(k + 1)/(k − 2)(k − 1)2]. (3.21)

Again, it should be noted that pstop(τ ) is not a stochastic variable even
though we calculate its mean and variance; it is a deterministic function.
The coefficient of variation is a constant for all values of τo:

CV = [2k/(k + 1)(k − 2)]1/2. (3.22)

Although the above expression is not valid when k is 1 or 2, the CV can
be shown to be independent of τo. The timing information contained in the
pstop(τ ) distribution can be utilized by task-dependent behavioral mecha-
nisms to generate well-timed response distributions. The CV of the pstop
distribution given by equation 3.22 should not be confused with the CV of
the behavioral response distributions, which in general will depend on a
variety of factors, including the task demands.

A simplifying assumption used in the above calculations is that g(
∗
τ ) = 1.

More generally, when g(
∗
τ ) is a power law function of

∗
τ , the integral over

x in equation 3.16 can be evaluated by factoring out a power of τo, and the
resulting distribution pstop(τ ) will be purely a function of y. So we conclude
that any power law form for g(

∗
τ ), including of course g(

∗
τ ) = 1, will lead to

scale-invariant pstop(τ ), but the mean, standard deviation, CV, area under
the distribution, and the position of the peak will be different from the
values calculated above.
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4 Effect of Noise

The essence of this model lies in the transcription of the real-time stimulus
layer activity into a fuzzy representation of stimulus history in the T layer.
It is important to have a qualitative understanding of the effect of noise
in this transcription process. Note that every step in this transcription is a
linear operation, so the effect of noise in each stage can be analyzed in a
straightforward way. One crucial advantage of working with a linear system
is that the noise and signal can be decoupled and independently analyzed.
Let us now consider noise in each component of the system separately and
analyze its effect on the T-layer activity.

We first show that any noise in the f layer will be transmitted into the T
layer without getting amplified. Then we consider noise in the individual
nodes of the t layer and show that its effect is amplified in the T layer but
suppressed in generating the prediction p. Finally, we discuss the effect of
noise in the connection weights of the L−1

k operator.

4.1 Noise in the f and t Layers. If the noise in the t layer is purely
a consequence of the noise in the f layer, then it goes into the T layer
unamplified. To see this, we start with the most general noise form in the t
layer and note that any noise in the f layer has to pass through the t layer
before being transmitted to the T layer. Since each node in the t layer has a
fixed exponential decay rate, the most general form of t-layer activity that
includes noise can be obtained by rewriting equation 2.2 in the following
way:

t(τ, s) =
∫ τ

−∞

[
f(τ ′) + N(τ ′, s)

]
es(τ ′−τ ) dτ ′. (4.1)

Here N(τ ′, s) is an arbitrary noise function. If the noise in the t layer is simply
a consequence of noise in the f layer, then N(τ ′, s) will be independent of s.
This is because the noise in the f layer will be equally transmitted to all the
rows of the t layer. In such a situation, the noise across any t column will
be completely correlated. It is straightforward to understand the effect of
such correlated noise in the T-layer activity. Since L−1

k is a linear operator
that transforms the activity from the t column into activity in the T column,
the signal and noise will be independently coded into the T column. The
signal-to-noise ratio in the T column will be exactly the same as that in the
f-layer input. In other words, correlated noise in f neither gets amplified
nor suppressed as it is transmitted to T.

4.2 Uncorrelated Noise in the t Layer. We now consider random un-
correlated noise in individual t nodes and compare its effect on the T nodes
to the effect that would result from an appropriate control signal. The ap-
propriate control signal in this case is the effect of a stimulus that gives rise



158 K. Shankar and M. Howard

to the same amplitude of activation in the t node as the noise we are con-
sidering. It turns out that such noise is highly amplified relative to a control
signal while being transmitted to the T layer, but significantly suppressed
relative to a control signal in generating p.

4.2.1 Effect of Uncorrelated Noise in the t Layer on the T Layer. Uncorrelated
noise injected into the t layer could be caused by sources that randomly acti-
vate the t nodes. Computationally understanding the effect of uncorrelated
noise amounts to considering the effect of the s-dependence of the function
N(τ ′, s) in equation 4.3 on T and the prediction it generates. The effect of
taking the kth derivative of the function N(τ ′, s) with respect to s could
drastically amplify the noise. To analyze this, let us consider the worst-case
scenario, where N(τ ′, s) is sharply peaked at s = so and τ ′ = 0, making its
kth derivative diverge:

N(τ ′, s) = δ(s − so) δ(τ ′ − 0). (4.2)

Following this noise pulse at time 0, the activity of the so node will expo-
nentially decay from 1. The effect of this noise pulse on the T layer will be
maximal at the moment the pulse is delivered. At that moment, the activity
from the so node of the t column will be transferred to the nodes in the T
column that are neighbors of

∗
τ o = −k/so. Let us index the neighbors of

∗
τ o by

m varying from −k/2 to +k/2. The activity of these nodes due to the noise
pulse in the so node can be inferred from equation 2.5 to be

Tnoise = (so + m")k+1 (−1)(k/2−m)

(k/2 + m)!(k/2 − m)!
. (4.3)

In order to compare the effect of this noise pulse to an effect generated by
a real signal, we should consider an f-layer activity that would generate a
comparable activity in the so node of the t column. The appropriate control
signal is a delta function stimulus of strength ek presented at a time τ = ∗

τ o
in the past. This control signal will induce an activity of magnitude 1 in the
so node at τ = 0, exactly as the noise pulse. But unlike the noise pulse that
activates just the so node, the control signal also activates the t nodes in the
neighborhood of so. Labeling the neighboring nodes by m, their activity at
τ = 0 will be em("

∗
τ o). In response to this control signal, the activity of the T

column nodes in the neighborhood of
∗
τ o due to the signal is

Tsignal = (so + m")k+1em("
∗
τ o)

+k/2∑

r=−k/2

(−1)(k/2−r)

(k/2 − r)!(k/2 + r)!
er("

∗
τ o)

= (so + m")k+1

k!
e(m−k/2)("

∗
τ o)

[
1 − e("

∗
τ o)

]k
. (4.4)
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The representation of the noise pulse in the T layer given by equation 4.3
can be readily compared to the representation of the control signal given by
equation 4.4. When ("

∗
τ o) is small, the term [1 − e("

∗
τ o)] can be approximated

by ("
∗
τ o). The ratio of noise to control signal in the T layer is approximately

given by

∣∣∣∣∣
Tnoise

Tsignal

∣∣∣∣∣ ( k!
(k/2!)2 ("

∗
τ o)

−k. (4.5)

For very small values of ("
∗
τ o), the effect of noise is very large. This comes

as no surprise because we have, in effect, differentiated a singular function.
In general, choosing a smooth N(τ ′, s) will lead to a smooth representation
in the T layer, and its size will be directly related to the size of the kth
derivative of N(τ ′, s).

4.2.2 Effect of Uncorrelated Noise in the t Layer on the Prediction. Al-
though a singular noise pulse in the t layer induces a large effect in the
T layer, it turns out to have a much more modest effect on the prediction p.
This is because p is constructed not just from the activity of the

∗
τ o node,

but also from the activity of its neighbors. Since the connection weights from
the so node to the neighbors of

∗
τ o node are alternatively positive and nega-

tive, the activity of the neighbors of
∗
τ o node due to the noise pulse is positive

and negative in an alternating fashion, as can be seen from equation 4.3.
Since the positive and negative connection weights are well balanced, the
cumulative effect of the noise on the neighbors of the

∗
τ o node in generating

the prediction will be very small.
To illustrate this, we consider a suitable set of connection weights in

M, such that when the nodes in the T column around
∗
τ o are activated, a

prediction will be generated. A simple and reasonable choice is to consider
the connection weights in M to be that induced by the T-layer activity of the
control signal at τ = 0. When the noise pulse is injected in the so node, the
activity induced in the k neighbors of the

∗
τ o node will generate a prediction

Pnoise due to the presence of nonzero weights in M:

Pnoise = [1 − e"
∗
τ o]k

(k!)2

k/2∑

m=−k/2

(so + m")2(k+1)

× (−1)(k/2−m)k!
(k/2 + m)! (k/2 − m)!

e(m−k/2)("
∗
τ o). (4.6)

As a comparison, let us consider the prediction induced by the control
signal. As opposed to the noise, the activity induced by the control signal
is not confined to just the k neighbors of the

∗
τ o node in the T column.
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But for a fair comparison, we restrict our focus to the prediction generated
exclusively by the activity of the

∗
τ o node and its k neighbors:

Psignal = [1 − e"
∗
τ o]2k

(k!)2

k/2∑

m=−k/2

(so + m")2(k+1)e2(m−k/2)("
∗
τ o). (4.7)

Note that the net prediction from all the active T nodes will be significantly
higher than equation 4.7 because of contributions from nodes beyond m =
−k/2 to +k/2.

In the limit when |" ∗
τ o| is very small, explicit summation can be perfor-

med retaining just the lowest power of |" ∗
τ o|. It turns out that2

Pnoise = ("
∗
τ o)

2k

(k!)2 s2(k+1)
o ck + O(|" ∗

τ o|2k+1),

Psignal =
("

∗
τ o)

2k

(k!)2 s2(k+1)
o (k + 1) + O(|" ∗

τ o|2k+1).

Here ck is just the coefficient of ("
∗
τ o)

2k in the Taylor expansion of the right-
hand side of equation 4.6. The magnitude of ck can be shown to be less than
1 for all k > 2 and c2 = 2.5. Overall, for k > 2, we can constrain the noise
level in comparison with the control signal level in the following way:

∣∣∣∣∣
Pnoise

Psignal

∣∣∣∣∣ <
1

k + 1
. (4.8)

This implies the noise level in the prediction p is suppressed for higher
values of k.

To summarize, when uncorrelated noise is introduced in the t layer,
it could induce large effects in the T layer, but this noise is drastically
suppressed while generating the prediction p. This implies that the system
is very resistant to noise at the level of behavioral predictions. The result
that a pulse of uncorrelated noise in the input is actually suppressed in
its effects on the prediction is reassuring, but there are a couple of points
that should be noted. While the noise pulse in our derivation is restricted
to a single value of so, the signal affects all values of s. At first glance, this
might appear to be an unfair comparison. But note that as additional noise
pulses are included in the k neighbors of so, the magnitude of their sum in

2It is easy to see that the lowest power of |" ∗
τ o| in Psignal is 2k. But to see that its lowest

power in Pnoise is 2k, note the following property of binomial coefficients
∑r=k

r=0(−1)r(k
r
)
rq =

0 for all q < k.
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T will tend to go down; the derivation above maximizes the value of the
kth derivative of the noise.

4.3 Noise in the Connection Weights of L−1
k . A precise analysis of the

effect of noise in the connection weights requires a specific form for time-
dependent and time-independent noise in the L−1

k weights. The form of the
noise should follow from a specific mapping between the abstract L−1

k and
a physical implementation. A variety of such mappings seems plausible
at this time. Rather than committing to one or the other of these and then
analyzing its properties in detail, we make some general observations.

Any noise in the connection weights of L−1
k will affect the T-layer activity

and the prediction p. The excitatory-inhibitory connections between the t
and T layers (see equation 2.5) are finely tuned with the property that the
sum of all the connection strengths between any T node and k neighboring
t nodes is precisely 0. Any fluctuation in this balance will proportionally
produce an activity in the T layer because of the linearity of equation 2.5.
Depending on the fluctuation, the function T(τ,

∗
τ ) might not peak at a

time τ = − ∗
τ (as in equation 3.10) following the stimulus presentation, and

its scale invariance might be broken. However, if the connection strengths
remain constant over time, the presentation of a stimulus will always lead
to the same representation in the T layer. Consequently, the prediction p
generated will consistently peak at an appropriate delay even though scale
invariance could be broken. But if the connection weights fluctuate over
time, the peak of the p distribution could fluctuate, and this fluctuation will
be proportional to the fluctuations in the connection weights.

5 Application to Behavioral Experiments

In this section, we demonstrate how the scale-invariant timing informa-
tion in p could be used to support behavioral effects in apparently diverse
settings ranging from classical conditioning to episodic memory. The ex-
perimental tasks and dependent variables in each of the demonstrations
are very different. In each case, we use a minimal behavioral model to
construct dependent measures using the information provided by the p
distribution. In effect, p supplies timing information that is utilized by an-
other stage of processing in a way appropriate to solve each problem. Our
goal is to suggest that scale invariance observed in diverse cognitive do-
mains could reflect a common source of timing information provided by
the scale-invariant representation of the recent history we have described
here.

First, we sketch out how p can generate well-timed responses at multiple
timescales and how the temporal spread in p can be mapped on to the
temporal spread in behavioral responses in a variety of domains. In all of
these demonstrations, we fix k = 4, implying that p has exactly the same
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properties in all of the demonstrations. We compare the model to a fear-
conditioning experiment on goldfish (Drew, Couvillon, Zupan, Cooke, &
Balsam, 2005) and to an interval-timing experiment on humans (Rakitin
et al., 1998). Next, we sketch out how the scale-invariant timing information
contained in p could cause the lack of scale in the learning rate observed
in autoshaping experiments (Gallistel & Gibbon, 2000). Finally, we show
that since p is constructed from temporal information at many scales, it
leads to a recency effect in episodic memory that persists across multiple
timescales (Howard et al., 2008). The model’s ability to describe the major
empirical factors affecting the recency effect is illustrated by comparing its
predictions to the results of several free recall experiments.

5.1 Timing in Fear Conditioning. In Pavlovian conditioning, a condi-
tioned stimulus (CS) is paired via some temporal relationship with an un-
conditioned stimulus (US) during learning. At test, the CS is re-presented
and a conditioned response (CR) is observed, reflecting learning about the
pairing between the CS and the US. Human and animal subjects can learn
a variety of temporal relationships between stimuli and respond in a way
that reflects learning those relationships (Gallistel & Gibbon, 2000; Balsam
& Gallistel, 2009). In order to illustrate the utility of the prediction p in
generating timed responses, let us consider an experiment on goldfish by
Drew et al. (2005).

During the learning phase, the US (shock) followed the CS (light) after
a fixed latency. One group of fish had a latency period of 5 seconds, and
another group had a latency period of 15 seconds. On the left side of Figure
8, the time distribution of the CR is plotted with respect to the delay since
the onset of CS during the test phase. Note that the peak CR approximately
matches the reinforcement delay, even at the earliest learning trials, and it
becomes stronger as the number of learning trials increases.

This pattern of results is qualitatively consistent with the predictions of
the model. For simplicity, we assume that the onset of the CS is represented
by a separate f node and focus on the corresponding T column. If we take
the CS onset to be a delta function as in the previous section, the T-layer
activity following the CS onset is given by equation 3.2. Let the US occur
consistently after a delay τo following the CS onset. The T-layer activity
T(τo,

∗
τ ) that peaked at the appropriate

∗
τ will be recorded in M as the

synaptic weights connecting the T layer and the US node in the f layer.
Hence at the test phase, when the CS is repeated, the component of the
prediction corresponding to the US, pus, automatically inherits the timing
properties with the peak at an appropriate delay. The functional form of
pus is simply that of pstop in equation 3.17. Moreover, during every learning
trial, the synaptic weights in M are updated by the exact same amount.
Consequently, pus grows larger with learning trials.
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Figure 8: Timing in goldfish. During training, the US (shock) was presented 5 s
(top panel) and 15 s (bottom panel) after the onset of the CS (light). The rate of
CR is plotted in the left panel as a function of the time after presentation of the
CS in the absence of the US. The different curves represent different numbers
of learning trials. Notice that the response gets stronger with learning trials.
The right panel shows the probability of CR generated from simulations of the
model. In these simulations, for simplicity, only the onset of CS is encoded into
t. The parameters used in this simulation are θ = 0.1 and φ = 1 (see text for
details). (Reproduced from Drew et al., 2005.)

The quantity pus by itself has several properties that render it inappro-
priate for treating it as a direct measure of response. First, it starts out
at 0, where, in general, there is some spontaneous probability of response
even prior to learning. Second, with M calculated using the simple Hebbian
learning rule, pus grows without bound as a function of trial. Here we will
use a minimal model to map pus onto the probability of a CR, which is what
can be behaviorally observed. We calculate the probability of fear response
at each moment within each trial as

Probability of response = pus + θ

pus + θ + φ
. (5.1)

Here, θ and φ are free parameters that control the background rate of re-
sponding and the scale over which the probability of response saturates.
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In the absence of the CS, pus is 0, and the baseline response probability is
θ/(θ + φ). We shall take the probability of CR to be simply equation 5.1 with
the baseline response probability subtracted from it. Overall, equation 5.1
can be interpreted as the relative activation of the US component with re-
spect to the other components of p. A heuristic interpretation of θ is that it is a
measure of the activation of the US component by T columns that do not cor-
respond to the CS. Similarly, a heuristic interpretation of φ is that it is a mea-
sure of the activation of p nodes other than the one corresponding to the US.

In this experiment, the time interval between successive learning trials,
the intertrial interval, is on an average 90 seconds for both the 5 seconds
reinforcement latency condition and the 15 seconds reinforcement latency
condition. Although equation 5.1 does not explicitly consider the effect
of the intertrial interval, its effect can be assumed to be represented in
the parameters θ and φ. The experiment corresponding to the left panel
of Figure 8 is simulated, and the probability of a conditioned response
is plotted in the right panel. The parameter controlling the accuracy of
the temporal representation, k, is fixed across all of the applications in
this letter. In these simulations, θ and φ are free parameters. As long as
φ is much bigger than θ , the simulation results make a good qualitative
match to the experimental data. It should be noted that although the pus is
scale invariant, the probability of response defined by equation 5.1 is not
precisely scale invariant because of the nonlinearity introduced through
the parameters θ and φ. In fact, the data are not exactly scale invariant
either; the response distributions of 5 and 15 seconds do not precisely
overlap when linearly scaled. Drew et al. (2005) point out that this could be
due to intergroup differences in acquisition rate. As noted above, the fact
that the intertrial interval is fixed across the experiments would also lead us
to expect deviations from scale invariance. Changing the intertrial interval
across experiments would be expected to result in changes to θ and φ.

In addition to using a simplified behavioral model as in equation 5.1,
another simplifying assumption used in these simulations is that only the
onset of the CS contributes to the prediction of the US. If this assumption
were exactly true, it would imply identical CRs for both delay conditioning
and trace conditioning as long as the total time interval between the CS
onset and US is held constant. To more accurately model the various clas-
sical conditioning CS-US pairing paradigms, we should consider not just
the CS onset, but also the whole CS duration and the CS offset, and asso-
ciate each of them with the US. This would of course generate well-timed
responses and potentially also distinguish the results from various experi-
mental paradigms, but would require a more detailed behavior model (as
opposed to equation 5.1) and more free parameters such as the relative
saliencies of the CS-onset, CS-duration, and CS-offset.

5.2 Human Interval Timing. It is well known that when human subjects
are asked to reproduce a temporal interval, the errors produced across trials
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are scale invariant (Rakitin et al., 1998). This property suggests that the scale-
invariant internal representation of time described here could be the source
of the judgment in human interval timing. Our goal is not to provide a
detailed model of all aspects of interval timing, but simply to illustrate a
consistency with the qualitative properties of interval timing data.

At first glance, one property of human interval timing data seems to
rule out the representation of internal time developed here. The CVs of
the response distributions are typically small enough that it would seem
to require unreasonably large values of k to generate a prediction p with
a similarly small CV. For instance, Rakitin et al. (1998) observed CVs less
than 0.2. To generate a time distribution of p with a CV so small, we would
require a value of k greater than 50. This would require computing the
50th derivative of t(τ, s), which would require exquisitely balanced con-
nections over 50 near neighbors to accomplish. However, the CV of p(τ )

computed over τ does not directly determine the CV of the response dis-
tributions that would be observed. This is because the response in the task
cannot be considered a simple readout of the prediction signal, but the
output of a potentially complex decision. Here, we sketch a simple model
of human interval timing and compare it to the response distributions
observed by Rakitin et al. (1998) in their experiment 3. The goal of this
excercise is not to construct a detailed model of performance in this task.
Rather, it is to demonstrate that a simple response such as a variable thresh-
old acting on the function p(τ ) can give rise to scale-invariant behavioral
response distributions with small CVs. This demonstration relies on the
scale invariance of the p function and not specifically on its mathematical
form.

On each training trial in experiment 3 (Rakitin et al., 1998), a stimulus
was presented on a computer screen for a duration τo, after which the
stimulus changed color and then disappeared. The subjects were instructed
to remember the duration without explicitly counting. To ensure that the
subjects did not count, random distracting digits were presented on top of
the stimulus during training trials. After a block of 10 training trials, a block
of 80 test trials began, during which the subjects’ memory for the interval
was evaluated. During test trials, the stimulus was again presented with the
distracting digits on the screen. Subjects were instructed to press a button
repeatedly for a brief period centered around the target duration τo. The
target disappeared after the subject stopped pressing the button or after
3τo had elapsed, whichever came first. On approximately 25% of the test
trials, the stimulus changed color once τo elapsed. These trials reinforced
the memory for the target duration and provided the subjects feedback
about their estimate of τo, helping them correct for any systematic errors
and more accurately center their responses around the target duration.
The left panel of Figure 9 shows the normalized response distributions for
three target durations of 8, 12, and 21 seconds. When linearly rescaled, the
distributions overlap reasonably well, demonstrating the scalar property.
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Figure 9: (Left) The data from experiment 3 of Rakitin et al. (1998). Human
subjects were instructed to reproduce time intervals of 8, 12, and 21 seconds.
The response distributions peak near the appropriate times and obey the scalar
property. The coefficient of variation (CV) of the response distributions is about
0.2. (Right) The response distribution generated by the model according to
equation 5.2, with k = 4 and ) = 0.98. This simple behavioral model is precisely
scale invariant.

The three distributions peak near the appropriate interval (some a bit early,
some a bit late), and all three show a pronounced asymmetry.

Clearly these response distributions are much sharper (CV ( 0.2) than
the response distributions from the fear-conditioning experiment (see
Figure 8). Recall that the modeled response distributions in Figure 8 are
given by equation 5.1, where pus is simply pstop in equation 3.17 with k = 4.
Because the fear response of the goldfish is very different from the button-
press response of human subjects, it is unreasonable to expect the same
behavioral performance function (see equation 5.1) to be valid here. We
now show that a different (but simple) performance function that reads in
pstop with k = 4 can yield CVs that match the empirical values found in
human interval timing.

In each test trial, the subjects showed a characteristic low-high-low re-
sponse pattern, as though they start and stop responding based on some
decision threshold (Rakitin et al., 1998). Since the subjects perform the task
many times, it is reasonable to assume that the subjects are aware of the
maximum value attained by pstop in any trial. So let us consider normalized-
pstop denoted by P̄stop that reaches a maximum value of 1 within any trial
as the quantity accessed by a threshold based decision mechanism. Let the
subjects respond uniformly when P̄stop is above a threshold that varies from
trial to trial:

P̄stop ≥ )[1 + v], (5.2)
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where ) is the threshold and v is a random variable denoting the variability
of the threshold across trials. Because the P̄stop is scale invariant, the time
within a trial at which it crosses any value of the threshold will be lin-
early scaled to the target interval. Since we assume a constant responding
when P̄stop crosses the threshold, the response times will also be linearly
scaled to the target interval. Integrating over any probability distribution
for thresholds retains the property of scale invariance. Hence, the threshold
can be any random variable, but the responses will be scale invariant. Al-
though the shape of the response distribution will depend on the threshold
distribution, the property of scale invariance does not.

Here we have chosen the distribution of v across trials to be gaussian
with zero mean and a standard deviation σ . Moreover since P̄stop varies
between 0 and 1 in each trial, we have to restrict the value of v between
−1 and ()−1 − 1). For each testing trial, a random value of v is chosen, and
the response interval is computed based on equation 5.2. The right panel of
Figure 9 shows the response distribution averaged over many testing trials
with ) = 0.98 and the standard deviation σ = 0.20. The CV of the generated
response distribution is comparable to that of the data and is significantly
smaller than the CV of pstop with k = 4. This illustrates that even with a
small value of k, a suitable task-dependent performance function can be
constructed from pstop to yield scale invariance and a small value of CV.

There are two crucial features of the response distributions that should
be noted. First, note that the model yields slightly asymmetric response
distributions that are qualitatively consistent with the data. Both the data
and the model response distributions are positively skewed. Second, note
that the positions of the peaks of the response distributions from the model
are consistently earlier than the target durations (at 80% of the target dura-
tion), consistent with equation 3.19. Even though we can attain a small CV
with a small value of k, the position of the peak of the distribution cannot
be pushed closer to the target duration without increasing k or choosing a
more elaborate function to control behavior using pstop. It is also possible
that the location of the peak is a consequence of learning that takes place
due to feedback during the testing trials. The learning rule we are using here
(see equation 2.11) may be too simplistic to account for this experiment. It
seems natural that the information gained about the errors in the prediction
during the feedback trials would be used by the subjects to reposition the
peak accurately, while this information is completely ignored by the learn-
ing rule. If we knew with certainty that the peak of the distribution was
well timed on the initial learning trials, this would constrain k to be high.
Conversely, if we knew that the peak was early during the initial learning
trials, this would similarly constrain k to be small. Unfortunately, the data
from experiment 3 of Rakitin et al. (1998) report only the response distri-
butions averaged over blocks of 80 test trials. In contrast, in experiment 1
of Treisman (1963), where blocks of only eight test trials were averaged, a
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significant lengthening of the reproduced time interval was observed in the
later blocks. That is, the estimate of a time interval gradually grows with
practice on that interval. We could potentially shift the early peak generated
by the model gradually toward the accurate spot by replacing the simple
Hebbian learning rule with an error-driven learning rule.

The temporal information used in the simulations above is deterministic.
On every trial, the activity of the f, t, and T layers follows the exact same
pattern, and so does the prediction pstop. The variability in the response dis-
tribution is achieved purely through the threshold variability in the decision
process (see equation 5.2), and not through any intrinsic variability in the
timing mechanism. Of course, there should also be some variability in the
timing mechanism that partly contributes to behavioral variability across
trials, and so it is more reasonable to consider p(τ ) as a measure of central
tendency at a moment τ within a trial. However, some types of noise in
the timing mechanism can violate scale invariance in the variability across
trials. By choosing the timing mechanism to be deterministic and the deci-
sion threshold to be noisy, we do not need tailored noise to generate scale
invariance in variability across trials. This is because the decision threshold
is imposed on the prediction p, which has a scale-invariant smear. As long
as the decision mechanism simply acts on the normalized prediction, any
kind of noise in the decision threshold will automatically lead to scale in-
variance in the variability across trials. More specifically, for any choice of
random variable v in equation 5.2, no matter how complex, the variability
across trials will also be scale invariant.

5.3 Scale Invariance in Learning Rate. Scale invariance in classical con-
ditioning is observed not only in the timing of response distributions, but
also in the rate of response acquisition (the learning rate). In the earlier
illustration with the data of Drew et al. (2005) (see Figure 8), note that it
takes more learning trials in the 15 seconds condition to generate equally
strong responses as in the 5 seconds condition. At first glance it appears
that the learning rate is slower for longer CS-US latencies. But it turns out
that we would not expect this to be the situation if the intertrial interval in
the 15 seconds reinforcement condition is also appropriately scaled up. In
general, the number of learning trials needed to elicit a basic-level response
turns out to be independent of the scale of the reinforcement latency when
the intertrial interval is appropriately adjusted to the same scale (Gallistel
& Gibbon, 2000). It has been pointed out (Balsam & Gallistel, 2009) that
the learning rate is simply proportional to the informativeness of the en-
coded predictive relationship of the CS to the US. This point of view can
be precisely formalized in the model by computing the informativeness of
the temporal distribution of the prediction p generated by the model. We
now show that the scale invariance of p will lead to scale invariance in its
informativeness and consequently lead to a scale-invariant learning rate.
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Figure 10: (Left) The number of trials required for pigeons to acquire CR in
autoshaping experiment (Gallistel & Gibbon, 2000). The required number of
reinforced learning trials depends on only the ratio of the intertrial interval to the
delay of reinforcement. The information contained in the temporal distribution
of the prediction p generated by the model is computed from equation 5.12.
(Right) H−1

com is plotted with a factor of 6, so as to be readily comparable with the
left panel. In both panels, the solid curve corresponds to the intertrial interval I
fixed at 48 sec, and the flat dashed line corresponds to the ratio I/T fixed at 5.

Let us consider an experiment where pigeons are trained in an appetitive
conditioning paradigm (Gallistel & Gibbon, 2000). In each learning trial, the
CS (light) is paired with the US (food) following a reinforcement delay T .
Let the average intertrial interval be I. After a certain number of learning
trials, the pigeons start pecking a key in response to the CS. This key peck
seems to be in anticipation of the US (food) because it does not happen
when the CS is not reinforced by the US, so the key peck can be thought
of as a CR. The number of learning trials needed for the pigeons to acquire
a CR shows a striking property: it depends only on the ratio I/T , and not
on I and T separately (see Figure 10). We now evaluate the prediction p
generated when the model is trained on this experimental paradigm and
compute its informativeness by calculating the entropy of its distribution.

Let us place the start of a trial, the onset of CS, at time τ = 0. The US then
occurs at τ = T , and the trial lasts until τ = I, after which the next trial
immediately begins. Following the first learning trial, the presentation of
CS induces a prediction for the US as a function of τ , which can be deduced
from equation 3.17 to be

pcs.us(τ ) ∼ 1
T

yk

(1 + y)2k+1 , where y = τ/T . (5.3)
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Since on an average the US is repeated at an interval I, it will be associated
with its prior presentation. Since (I − T + τ ) is the time since the prior
presentation of the US, the prediction of the US due to its prior presentation
as a function of time within the trial is

pus.us(τ ) ∼ 1
I

zk

(1 + z)2k+1 , where z = (I − T + τ )/I. (5.4)

By defining the ratio I/T to be R, we have z = 1 + R−1(y − 1) and

pus.us(τ ) ∼ 1
I

(1 + R−1(y − 1))k

(2 + R−1(y − 1))2k+1 . (5.5)

Note that in equations 5.3 and 5.5, only the nearest presentations of the CS
and the US are considered. Ideally, we would expect all the prior presenta-
tions of the CS and the US to be involved in the prediction, but since their
contributions will be very tiny, we will ignore them in these equations.

For the sake of completeness, we also consider the possibility that the US
could be associated with some experimental context cues other than the CS.
As a consequence, the experimental context cues will generate a prediction
for US, pec.us(τ ). A fair assumption is that this will not depend on the time
within a trial and will be inversely proportional to the trial length I. For
longer trial lengths, the experimental context cues will be more strongly
associated with themselves than the US and will contribute less toward
predicting the US:

pec.us(τ ) ∼ 1/I. (5.6)

The overall prediction for US as a function of time within a trial is then

pcs.us(τ ) + pus.us(τ ) + pec.us(τ )

= 1
T

[

C1
yk

(1 + y)2k+1 + C2R
−1 (1 + R−1(y − 1))k

(2 + R−1(y − 1))2k+1 + C3R
−1

]

≡ G(y,R)

T
. (5.7)

Here C1, C2, and C3 are parameters indicating the relative saliencies of the
three contributing terms to the prediction of the US.

To construct a probability distribution for the overall prediction for US
within a trial, we normalize expression 5.7, such that its integral over the
trial length is unity, that is,

P(τ ) = 1
N

G(y,R)

T
, (5.8)
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where

N =
∫ I

0

G(y,R)

T
dτ =

∫ R

0
G(y,R)dy. (5.9)

Clearly, N depends on just R and not explicitly on I and T . The entropy of
the distribution P(τ ) is

HP =
∫ I

0
−P(τ ) ln P(τ ) dτ. (5.10)

To estimate the amount of information communicated about the tim-
ing of the US, we calculate how different the distribution P(τ ) is from a
uniform distribution. This is formally done by computing the Kullback-
Leibler divergence between P(τ ) and the uniform distribution, which sim-
ply turns out to be the difference in entropy of the two distributions. That
is, Hcom = Huniform − HP:

Hcom = ln I +
∫ I

0
P(τ ) ln P(τ ) dτ. (5.11)

This can be calculated as

Hcom = ln I +
∫ I

0

G
NT

[ln G − ln N − ln T ] dτ

= ln I +
∫ I

0

G
NT

[ln G − ln N − ln I + lnR] dτ

=
∫ I

0

G
NT

[ln G − ln N + lnR] dτ

=
∫ R

0

G
N

[ln G − ln N + lnR] dy

= lnR − ln N + 1
N

∫ R

0
G ln G dy. (5.12)

Since G is a function of y and R and N depends only on R, we see that Hcom
will depend only on R and not explicitly on I and T .

Following the arguments of Balsam and Gallistel, let us take the learning
rate to be directly proportional to the informativeness of p. We expect the
number of trials required for the pigeons to acquire CR to be inversely
related to Hcom. This can be heuristically justified by considering Hcom
to be the information acquired in each trial. When the total accumulated
information over n trials, nHcom, crosses a threshold, the pigeons acquire the
CR. In the right panel of Figure 10, H−1

com is plotted with a factor of 6 so that it
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can be explicitly compared with the trials required for CR acquisition in the
experiment plotted on the right side. In plotting Figure 10 from equation
5.12, we make certain simplifications. Comparing the functional forms, we
note that pus.us(τ ) is much flatter than pcs.us(τ ). Moreover, the fact that I is
not a constant across trials in the experiment makes pus.us(τ ) even flatter.
The contribution of pus.us(τ ) is functionally very similar to pec.us(τ ). Hence
for simplicity, we take C2 to be 0 in plotting Figure 10 and assume that
C3 contains contributions from both pus.us(τ ) and pec.us(τ ). We have chosen
C1 = 1 and C3 = 0.0002. We have chosen C1 to be much higher than C3
to ensure that the saliency of CS is much higher than the saliency of the
experimental context cues.

Note that it is not essential to assume a simple proportionality between
informativeness (Hcom) and the learning rate to account for a scale-invariant
learning rate. All we need is that the informativeness of the p distribution
be the only determinant of the learning rate in order to account for its
scale invariance. In fact, any model that generates scale-invariant prediction
values that change over time within each trial can account for the scale-
invariant learning rate.

5.4 Recency Effect in Episodic Recall. In the free recall task, subjects are
presented with a list of words one at a time and then asked to recall all the
words they can remember in the order the words come to mind. Perhaps
because there is no cue for memory other than the subject’s memory for
the episode itself, free recall is considered a particularly sensitive assay
of episodic memory. The recency effect in free recall is dominated by the
tendency to initiate recall with items from the end of the list. Recall of
subsequent items undoubtedly utilizes previously recalled words as cues
(Kahana, 1996; Howard & Kahana, 2002b), but we shall focus only on the
first recalled item here. We propose that the state of T at the end of the
list is the only cue used to generate the first recalled item. While scale
invariance has not been unambiguously demonstrated in the recency effect
in free recall, recency has been observed over all laboratory timescales, from
fractions of a second to hours (Glenberg et al., 1980; Howard et al., 2008;
Murdock & Okada, 1970). A memory mechanism based on a scale-invariant
representation of time will naturally lead to this finding.

We now show that the scale-invariant stimulus history represented in
the T layer of the model can be used as a cue to initiate free recall. The
recency effect in free recall shows three robust temporal features:

1. A delay at the end of the list, during which subjects perform a de-
manding distractor task to prevent rehearsal, decreases the sharpness
of the recency effect (Glanzer & Cunitz, 1966; Postman & Phillips,
1965; Glenberg et al., 1980).

2. Increasing the time gap between study items, again filled with a dis-
tractor task to prevent rehearsal, increases the sharpness of the recency
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effect (Bjork & Whitten, 1974; Glenberg et al., 1980; Howard & Kahana,
1999).

3. The recency effect persists across multiple timescales (Glenberg et al.,
1980; Howard et al., 2008; Moreton & Ward, 2010).

To demonstrate the model’s ability to account for these features, we
consider the T-layer activity after studying a list of words and derive an
analytic expression for the prediction vector p at the end of the study list.
For analytic simplicity, we take each word in the list to be represented by a
separate f node. However, in reality, different words would have overlap-
ping representations in the f layer, leading to semantic effects in the recall
stage (Howard & Kahana, 2002b; Howard, Addis, Jing, & Kahana, 2007),
which we shall not address here (but see Howard, Shankar, & Jagadisan,
2011, for a template of how to construct semantic representations). By relat-
ing the p-component of each word to its probability of recall, we can obtain
an analytic expression for the recency effect in the initiation of free recall.
We will see that the scale invariance of p naturally leads to the features of
the recency effect already noted.

We denote the list items by fn, where n is the position of the item from
the end of the list. Let the nth item be presented at time τn, and let the time
interval between successive items be a constant δτ . The T-layer activity at
the end of the list is |T(τo)〉; prior to the presentation of the item fn, it is
|T(τn)〉. This can be pictorially represented as

... ↓ fn+m ... fn+1 ↓ fn .... f1 ↓ End

|T(τn+m)〉 ←−−−−−→
mδτ

|T(τn)〉 ←−−−−−→
nδτ

|T(τo)〉.

Note that only the predecessors of fn will leave an image in |T(τn)〉, which
is associated to fn in M (see equation 2.11).

At the end of the list, during the recall stage, the T-layer activity generates
a prediction p based on the stored associations. To estimate how well the
item fn is predicted or recalled, we have to compute the inner product
〈T(τn)|T(τo)〉 in accordance with equation 2.15. Again, note that |T(τo)〉 will
contain activity in all the T columns corresponding to all the items in the
list, while |T(τn)〉 will contain activity in only columns corresponding to
the items that were presented prior to fn. Their inner product will hence
involve only those columns corresponding to items presented prior to fn. To
compute the inner product, we denote the T column activity associated with
the item fn+m to be Tm(τo,

∗
τ ) and Tm(τn,

∗
τ ) at times τo and τn, respectively.

At the end of the list, the component of the prediction p corresponding to
the item fn, pn ≡ 〈p|fn〉 is given by

pn = 〈T(τn)|T(τo)〉 ≡
∞∑

m=1

Am
n (5.13)
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where

Am
n =

∫
Tm(τo,

∗
τ ) Tm(τn,

∗
τ ) g(

∗
τ ) d

∗
τ (5.14)

is the inner product of the T-layer activities at times τo and τn, restricted to
the column corresponding to the item fn+m. In effect, Am

n denotes the con-
tribution of the image of fn+m in T toward predicting fn. From equation 3.3,
we can write

Tm(τn,
∗
τ )= − 1

∗
τ

(k)k+1

k!

(−mδτ
∗
τ

)k

ek
(

mδτ
∗
τ

)

,

Tm(τo,
∗
τ )= − 1

∗
τ

(k)k+1

k!

(−(n + m)δτ
∗
τ

)k

ek
(

(n+m)δτ
∗
τ

)

. (5.15)

Substituting into equation 5.14, we obtain

Am
n = k2k+2

k!2
(1 + n/m)k(mδτ )2k

∫ (
1
∗
τ

)2k+2

ek(2+n/m)
(

mδτ
∗
τ

)

g(
∗
τ ) d

∗
τ . (5.16)

With g(
∗
τ ) = 1, the above integral can be calculated as

Am
n = k2k+2

k!2
(1 + n/m)k(mδτ )2k

[
(2k)!

(
k(2 + n/m)mδτ

)2k+1

]

= k(2k)!
k!2

[
(1 + n/m)k

(2 + n/m)2k+1

]

(mδτ )−1 (5.17)

= k(2k)!
k!2

[
(n/m)(1 + n/m)k

(2 + n/m)2k+1

]

(nδτ )−1. (5.18)

Some important properties of the above functional form are explicated in
Figure 11.

To compute pn for any given n, we have to sum over the contributions
from all its predecessors, that is, sum the coefficients Am

n over all m. Note
from equation 5.17 that for m 2 n, Am

n ∼ m−1, and the summation over
m diverges. To obtain a qualitative functional form of pn, consider the
following approximation, where we reduce the summation of Am

n over m to
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Figure 11: The contribution of the image of item fn+m in T in predicting item
fn when the state of T at the end of list is used to cue free recall. The function
n × Am

n is plotted with respect to m/n for k = 4. From equation 5.18, note that
Am

n → 0 when either m 2 n or n 2 m. The value of Am
n peaks when m and n are

comparable numbers. The exact position of the peak depends on k. For k = 4,
Am

n peaks exactly at m/n = 1 for any value of n, as can be seen from this plot. For
k = 2, the peak is at m/n = 0.62. One might naively expect that the image of fn+1
in |T〉—the representation of the item preceding fn—would contribute greatly
to cueing the item fn because of their temporal proximity. If this expectation
were true, the function Am

n would be maximum at m = 1. However, this is not
the case. When the item fn is presented, the image of the immediately preceding
item fn+1 in |T〉 is relatively sharp. As time passes, however, the image of fn+1
in |T〉 becomes more diffuse (see Figure 3). As a consequence, when n is large,
the image of fn+1 in the current state of |T〉 does not resemble its image in the
state of |T〉 when the item fn was presented. Because the representation of items
further in the past changes more slowly, these components in the current state
of |T〉 contribute more to cueing the item fn. It turns out that the image of fn+m
in |T〉 leads in contributing to the recall of fn when the ratio m/n is fixed. This is
a consequence of scale invariance intrinsic to the model.

an integral:

pn ∼
∞∑

m=1

(1 + n/m)k

m(2 + n/m)2k+1 −→
∫ ∞

0
dm

(1 + n/m)k

m(2 + n/m)2k+1

=
∫ ∞

0

dz
z

(1 + z−1)k

(2 + z−1)2k+1 . (5.19)
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In the last step, we relabeled m/n as z. As expected, this integral diverges.
Note that the integrand is well behaved near z = 0, and the divergence is
purely due to integration to infinity (or due to summing over infinite m). In
reality, any experiment has a starting point, and there is also an upper limit
to | ∗

τ |, so it is reasonable to stop the summation at some finite value mo. By
imposing such a cutoff, equation 5.19 can be rewritten as

pn ∼
∫ mo/n

0

dz
z

(1 + z−1)k

(2 + z−1)2k+1 . (5.20)

Let mo be much greater than the length of the list of items used in the
experiment, so that we need to focus only on the regime mo/n 2 1. Note
that when z 2 1, the integrand in equation 5.20 can be well approximated
as 2−(2k+1)z−1. Integrating equation 5.20 yields

pn (
[

k(2k)!
22k+1(k!)2δτ

]
log (mo/n). (5.21)

The constant in front of log (mo/n) simply comes from tracking the coeffi-
cients in front of Am

n (see equation 5.18). Thus, imposing a cutoff at mo leads
to the logarithmic decay of pn.

Let us now ask the question: What is the probability that the item fn
will be recalled before the other items? To construct the probability of first
recall (PFR), we need to define a retrieval rule that takes in the different
components of p and yields a probability of recall for each item. In general,
the different components of p would compete among each other to generate
recall. A successful approach to induce competition is to feed in the different
components of p into leaky accumulators that mutually inhibit each other
(Sederberg, Howard, & Kahana, 2008; Polyn, Norman, & Kahana, 2009). For
the sake of analytic tractability of equations, we shall work with a simpler
retrieval rule used in Howard and Kahana (2002a). Motivated by the finding
that the probability of generalization between stimuli decays exponentially
with the psychological distance between them (Shepard, 1987), we use the
following form for the probability of first recall:

PFR(n) = exp(cpn)∑
+ exp(cp+)

. (5.22)

The summation in the denominator is restricted to the items in the list, so
as to restrict the recall process to purely the list items. By fixing δτ to be a
constant and plugging in the form of pn from equation 5.21, we obtain

PFR(n) = n−a
∑

+ +−a , (5.23)
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where a is some positive constant that can be inferred from equations 5.21
and 5.22 based on the values of k, δτ , and c. Since c is an arbitrary parameter,
the value of a does not provide any meaningful constraint on the value of k.
So, in effect, a is the only arbitrary parameter. A useful feature that emerges
out of this retrieval rule is that the cutoff mo automatically drops out of the
equation for PFR.

The recency effect is a straightforward consequence of the functional
form of the PFR: the smaller the value of n, the larger the PFR is. In order
to demonstrate the three features of the recency effect mentioned at the be-
ginning of this section, we need to generalize equation 5.23 to incorporate
a continuous stream of distracting stimuli in between the list items and
a delay at the end of the list. Generally in free recall tasks, the distract-
ing stimuli between the list items are simple arithmetic problems that aid
in keeping the participants from rehearsing the list items. For analytical
tractability, we assume that the distractor is a sequence of delta function
stimuli (similar to the list items) separated by δτ . Let the number of dis-
tractor stimuli between two list items be D − 1. Then the total time elapsed
between the presentation of two successive list items is D × δτ . Surely there
exists a degree of freedom in simultaneously choosing D and δτ , because
the only experimentally constrained quantity is the total time D × δτ . For
the purpose of qualitative analysis, we fix δτ = 1 for all the demonstrations
here. The delay at the end of the list is also filled with distracting stimuli.
We denote the number of distractors in this delay period by d. Now the
positions of the list items in the sequence of stimuli are (d + D × n), where
n is item number from the end of list. We can now rewrite equation 5.23 as

PFR(n) = (d + D · n)−a
∑

+(d + D · +)−a . (5.24)

In order to compare this expression to the experimental data, we simply set
d and D to appropriately correspond to the experimental values, so that the
only free parameter is a. In the following illustrations, we fix a = 2, for it
gives a good fit to all the experiments.

Property 1: A delay at the end of the list decreases the sharpness of recency.
To demonstrate this property, we fix D = 1 and plot the PFR for three
different values of d: 0, 8, and 16. The top right panel of Figure 12 shows
this plot with 16 list items. The top left panel shows an experiment (S.
Polyn & Kahana, personal communication, 2011), where subjects recall lists
of 16 items following a delay of 0, 8, or 16 seconds. The functional form of
equation 5.24 makes it clear why increasing d should decrease the sharpness
of recency: as d increases, the effect of n on PFR is decreased.

Property 2: Increasing the gap between the items increases the sharpness of
recency. To demonstrate this property, we fix d = 16 and plot the PFR
for four different values of D: 2, 4, 8, and 16. The bottom right panel of
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Figure 12: Recency effect depends on the time interval between stimulus pre-
sentations and the delay to the recall phase. PFRs from two experiments (Polyn
& Kahana, Private communication, at top; Howard & Kahana, 1999, at bottom)
with different values of presentation rate and end of list delay are plotted on the
left side. On the right side, the corresponding experiments are modeled using
equation 5.24 with a = 2. See text for further details.

Figure 12 shows this plot with 12 list items. The bottom left panel shows an
experiment (Howard & Kahana, 1999) where subjects recall lists of 12 items
with different interitem durations—roughly 2, 4, 8, or 16 seconds. Again,
the functional form of equation 5.24 makes it clear why increasing D while
holding d fixed should increase the sharpness of recency: increasing D am-
plifies the effect of n on PFR. In order to be consistent with the experiment,
the values of n and + in equation 5.24 goes from 0 to 11 rather than 1 to 12.

Property 3: The recency effect persists across multiple time scales. Scale in-
variance enables the model to generate recency effects across multiple
timescales. To elaborate this property, we consider an experiment (Howard
et al., 2008) where participants were initially given a list of 10 words and
30 seconds to freely recall the words. Following this, the subjects were given
a second list of 10 words to recall. Forty-eight such lists were presented
back to back interleaved with 30 second recall periods over the course of
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Figure 13: (Left) The recency effect persists across multiple timescales. PFRs
of within-list recalls and across-list recalls from Howard et al. (2008).
(Right) The experiment is modeled using equation 5.24 with a = 2. See text
for further details.

the experimental session. The average time between the lists was roughly
49 seconds. The first word recalled within each list was recorded; the PFR
is plotted in the top left panel of Figure 13. The PFR from the recall of the
lists demonstrates an immediate recency effect. At the end of the experi-
ment, after completion of all 48 lists, there is a break of about 250 seconds,
following which the subjects were asked to recall the words from all lists in
the order they came to mind. The list from which the first recall occurs is
recorded, and the PFR is plotted as a function of list number in the bottom
left panel of Figure 13. The overall duration of the experiment is about 1
hour, and we see that the final recall phase clearly shows a recency effect.
We refer to this finding as a long-term recency effect.

It turns out that equation 5.24 can account for both the immediate and
long-term recency effects. To account for the immediate recency effect, we
simply restrict the summation over + in the denominator from 1 to 10
(size of each list). This is plotted in the top right panel of Figure 13. To
account for the long-term recency effect, ideally we will have to sum over
the contributions from all items within each list and compare the relative
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activations of different lists. However, for a qualitative demonstration, we
consider a representative element from each list and assume that every
item within the list is equally recallable. Moreover, we treat the average
distance between the representative items from two successive lists in a
manner similar to the distractors D in equation 5.24. To account for the
long-term recency effect, we choose d = 250, and D = 49, in accordance
with the experiment. The summation over + in the denominator of equation
5.24 goes from 1 to 48 (number of lists). This function is plotted in the
bottom-right panel of Figure 13. It is clear that the model shows a recency
effect over this longer timescale.

The scale-invariant behavior of the prediction p generated by the model
can thus be adopted to generate a recency effect in memory that satisfies
the three basic properties described above.

6 Summary and Discussion

Understanding how the brain represents and utilizes the stimulus history
leading up to a given moment may be a key to understanding problems
in a variety of cognitive domains. We have described a three-layer neural
network model (f, t, and T; see Figure 1) that integrates the stimulus history
into the leaky integrator layer t, in the form of a Laplace transform, and then
approximately inverts the transformation (through L−1

k ) at each moment
to reconstruct the stimulus history in the timing layer T. The inversion
performed by L−1

k can be realized through alternating bands of balanced
excitatory and inhibitory connections from k local neighbors in the t layer
onto the T layer (see Figure 5). The resulting representation of stimulus
history in the T layer is scale invariant and can be naturally interpreted as
a stimulus-specific representation of time.

Once we theoretically accept such an internal representation of time and
stimulus history, it is rather simple to induce scale invariance at the behav-
ioral level. We have demonstrated this using simple Hebbian association
between the f and T layers. We have shown that the behavioral-level pre-
dictions generated are resistant to noise in the f and t layers. The model
can generate the scalar variability in the response distributions of inter-
val timing experiments. In particular, we showed model descriptions of
the response distributions from a fear conditioning experiment on goldfish
(Drew et al., 2005) and the response distributions of a human interval tim-
ing experiment (Rakitin et al., 1998). The model can also explain the fact
that there is no characteristic scale or a time window for associative learn-
ing to take place (Balsam & Gallistel, 2009). We have demonstrated that
the timing information encoded in the model can account for the scale-free
learning rate observed in autoshaping experiments on pigeons (Gallistel
& Gibbon, 2000). Finally, the model’s ability to form associations between
stimuli from multiple timescales renders it suitable to address the recency
effect in episodic memory.
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6.1 Time Cells. Because their responses peak at specific latencies fol-
lowing the presentation of stimuli, the nodes in the T layer can be thought of
as time cells. Recent findings indicate the possibility of the presence of such
cells in the hippocampus of rats. In an experiment (MacDonald, Lepage,
Eden, & Eichenbaum, 2011), rats were presented with one of two sample
stimuli followed by a delay. The identity of the stimulus predicted which of
the two choice stimuli available after the delay was associated with reward.
During the delay between the sample stimulus and the choice stimuli, the
animal stayed in a small enclosure. During the delay period, different cells
were found to respond at different intervals of time. Moreover, the cells
that responded early in the delay interval had a smaller temporal spread in
their activity than the cells that responded later in the delay interval. This
observation is consistent with the property of the time cells in the model.
The model makes a more specific prediction that the temporal spread in the
activity of the time cells should exhibit scale invariance, which has not been
explicitly verified with the available data. Moreover, the activity of cells in
the delay period was found to depend on the identity of the sample stimu-
lus, a finding that is also consistent with the model. If we knew that these
particular cells were encoding T rather than receiving a transformed version
of T, we could use neurophysiological observations to constrain the num-
ber of density functions g(

∗
τ ) from the distribution of peak responses across

cells and obtain the value of k from the temporal spread in their activity.
Note that the nodes in T are sequentially activated. The activity of a T

cell responding at a shorter latency does not directly influence the activity
of the larger latency cells; rather, both are caused by activity in t. There
are many models that assume that cells that are activated in series cause
one another to fire (Hasselmo, 2009; Itskov, Curto, Pastalkova, & Buzsaki,
2011; Jensen & Lisman, 1996; Tieu, Keidel, McGann, Faulkner, & Brown,
1999). A subset of these has been applied to problems in timing behav-
ior. For example, in the model of Tieu et al. (1999), late-spiking neurons
that can fire spikes after a lengthy depolarization are connected in chains.
One could also adaptively modulate the spiking threshold in neurons with
Mexican hat–like connectivity with neighbors to generate sequential activ-
ity (Itskov et al., 2011) in densely connected cells, similar to that observed
in hippocampal neurons (Pastalkova, Itskov, Amarasingham, & Buzsaki,
2008; MacDonald et al., 2011). TILT, on the other hand, illustrates that the
observation of sequentially activated cells does not necessarily imply that
they are connected in series. In principle, it should be possible to distin-
guish chained firing models from TILT by observing correlations between
the activity of different time cells across trials.

6.2 Leaky Integrators. Though the brain contains cells with properties
like those hypothesized for the T layer, this does not imply that they result
from the mechanism we have hypothesized here. Our mechanism requires a
set of leaky integrators with a variety of time constants. In order to represent
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timescales up to τmax, the leaky integrators in the t layer should have time
constants up to τmax/k. With k = 4, to represent timescales up to hundreds of
minutes, we would need to have time constants that go up to at least dozens
of minutes. Slice electrophysiology work has shown populations of integra-
tor cells in various parts of the medial temporal lobe that can maintain a
stable firing rate for very long periods of time, up to at least tens of minutes
(Egorov, Hamam, Fransén, Hasselmo, & Alonso, 2002; Fransén, Tahvildari,
Egorov, Hasselmo, & Alonso, 2006). When provided an appropriate input,
these integrator cells take on a new firing rate and again sustain it for tens
of minutes. These properties reflect processes intrinsic to the cell, as they
are observed under complete synaptic blockade. Integrator cells have been
reported thus far in the entorhinal cortex (Egorov et al., 2002), the amygdala
(Egorov, Unsicker, & von Bohlen und Halbach, 2006), the perirhinal cortex
(Brown, 2008), and in interneurons in the hippocampus (Sheffield, Best,
Mensh, Kath, & Spurston, 2011). Homologous cells that integrate inhibitory
signals have been observed in the prefrontal cortex (Winograd, Destexhe, &
Sanchez-Vives, 2008). It has been suggested that a range of time constants
could be constructed from populations of integrator cells coupled with ap-
propriate network properties (Howard, Fotedar, Datey, & Hasselmo, 2005),
but this is not the only way leaky integrators could be constructed (see Guy
& Tank, 2004, for a review comparing the intrinsic cellular mechanisms and
network-level dynamics as underlying mechanisms for persistent activity).

TILT not only relies on the persistent activity of the integrator cells, but
also on the exponential decay of their activity. Some interneurons in the
hippocampus show a gradual decay in their firing rate for over 10 minutes
(Sheffield et al., 2011). Neurons in prefrontal, parietal, and cingulate cortices
have been found to satisfy exponential decay with time constants ranging
from hundreds of milliseconds to tens of seconds (Bernacchia, Seo, Lee,
& Wang, 2011). Interestingly, in that study, the number of neurons with
longer time constants falls off as a power law function. If we knew that
this population encoded t, this would constrain the number density along
the s-axis. This would in turn constrain g(

∗
τ ) if s and

∗
τ are in one-to-one

correspondence. Bernacchia et al. (2011) reported an exponent of −2 for the
distribution of time constants; this would correspond to g(

∗
τ ) = | ∗

τ |−2.

6.3 Timing Models. Over the past few decades, researchers have de-
veloped many models of timing (Gibbon, Malapani, Dale, & Gallistel, 1997;
Miall, 1996; Mauk & Buonomano, 2004; Ivry & Schlerf, 2008). A popular ap-
proach has been to propose an internal clock whose ticks are accumulated by
a counter to represent perceived time. Different models use different mech-
anisms for the clock. Some use a pacemaker that emits pulses at regular
intervals (Gibbon, 1977; Church, 1984; Killeen & Fetterman, 1988; Gallistel
& Gibbon, 2000). Some use a population of neural oscillators of different fre-
quencies (Church & Broadbent, 1990; Treisman, Faulkner, Naish, & Brogan,
1990; Miall, 1990). Some use a distributed idea of detecting the coincidental
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activity of different neural populations to represent the ticks of the inter-
nal clock (Matell & Meck, 2004; Buhusi & Meck, 2005). In these models, the
scale-invariance property is essentially tailored in by assuming the clocks to
be intrinsically noisy. For example, Gibbon (1977) assumes a multiplicative
noise variable underlying the pacemaker. Similarly Church and Broadbent
(1990) take the noise in the different oscillators to be proportional to the
respective frequencies.

Nonclock models of timing generally require a distributed population
of specialized neural units that respond differently to different external
stimuli. Some models in this category use tapped delay lines (Moore &
Choi, 1997) or chained connectivity between late spiking neurons (Tieu et
al., 1999), where the delays accumulated while traversing through each link
of the chain add up, thereby making the different links of the chain respond
to the external stimulus at different latencies. The existence of time cells is
consistent with such models. The scale invariance in such a representation
of time can be introduced by injecting low-frequency noise with appropriate
properties into the chain (Tieu et al., 1999).

The spectral timing model (Grossberg & Schmajuk, 1989; Grossberg &
Merrill, 1992) and the multi-timescale model (Staddon, Chelaru, & Higa,
2002) are more sophisticated examples of nonclock models. TILT can be most
aptly placed in a category with these models. The spectral timing model
proposes a population of neural units that span a spectrum of reaction
rates in the relevant temporal range. A reinforcement learning procedure
adaptively selects the appropriate units leading to well-timed behavior. The
different decay rates of the t nodes in TILT are analogous to the spectrum
of reaction rates in the spectral timing model. In this way, TILT shares the
same fundamental spirit as the spectral timing model.

TILT shares an even closer resemblance with the multi-timescale (MTS)
model. Following the activation by an external stimulus, the cascade of
leaky integrators used in the MTS model decays exponentially, which is
functionally identical to the t nodes in TILT. A distinguishing feature in MTS
is that the external stimulus differentially activates different units. The acti-
vation of a unit following a stimulus is suppressed to an extent determined
by the preexisting activities of other units. In the framework of TILT, this fea-
ture would be analogous to having a more complicated C operator in Figure
1 that activates the t nodes nonuniformly. By suitably choosing the rate con-
stants of the different units in the population, both the spectral timing model
and the MTS model yield an approximate Weber law behavior. Neverthe-
less, it has been hard to analytically pinpoint the features of these models
that lead to explicit scale invariance in the internal representation of time.

6.4 Episodic Memory Models. Serial position effects in free recall
played a major role in the development of models based on the distinction
between short-term memory and long-term memory (Atkinson & Shiffrin,
1968; Raaijmakers & Shiffrin, 1980; Davelaar et al., 2005). It is quite evident
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that the short-term store cannot account for recency effects across multi-
ple timescales. Some models (Davelaar et al., 2005; Atkinson & Shiffrin,
1968) have adopted multiple memory stores at different scales to account
for the recency effects observed at those different scales. Two recent mod-
els account for the recency effect with a single memory mechanism across
scales, the scale-invariant memory and perceptual learning model, SIMPLE
(Brown et al., 2007; Neath & Brown, 2006), and the temporal context model,
TCM (Howard & Kahana, 2002a; Sederberg et al., 2008).

The SIMPLE model assumes that a memory trace for any item is repre-
sented along an internal time axis and that the time line is logarithmically
compressed such that recently studied items are more discriminable. In
some sense, SIMPLE assumes the existence of something like the T layer
of TILT (see equation 5.21). It might be possible to adopt the internal rep-
resentation of time and stimulus history proposed by TILT to give a more
mechanistic interpretation of SIMPLE.

The connection between TCM and TILT is particularly strong, primarily
because TILT is constructed based on TCM (Shankar & Howard, 2010). The
gradually decaying activity of the t layer, the Hebbian association operator
M, and the prediction vector p are all directly adopted from TCM (Shankar
et al., 2009). The key difference between TCM and TILT is that the t layer
of TCM consisted of nodes with just one decay rate, as opposed to a whole
range of decay rates in TILT. As a consequence, the recency effect described
by TCM shows an exponential decay as opposed to a power law decay
in TILT and SIMPLE. This makes it impossible for TCM to predict scale-
invariant recency effects (Howard, 2004).

Another robust effect observed in free recall experiments is that succes-
sively recalled items generally tend to have been studied in close temporal
proximity, the contiguity effect (Kahana, 1996). Regardless of the scale we
choose to define this “temporal proximity,” the contiguity effect always
seems to exist (Howard & Kahana, 1999; Howard et al., 2008; Moreton &
Ward, 2010; Unsworth, 2008). TCM accounts for the contiguity effect using
the idea of reinstatement of context, whereby the information recovered by
recalled items cues for the subsequent recall attempts. Analogously, if the
entire state of t-layer activity at the time of study of an item is reconstructed
following the recall of that item, TILT should be able to account for the
contiguity effect and its persistence across timescales.

Appendix A: Deriving the Differential Equation for T

We start with the equation

t(τ, s) =
∫ τ

−∞
f(τ ′)es(τ ′−τ )dτ ′ = e−sτ

∫ τ

−∞
f(τ ′)esτ ′

dτ ′ (A.1)

∂

∂τ
t(τ, s) = −s.t(τ, s) + f(τ ). (A.2)
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Differentiating k times with respect to s yields

∂k

∂sk

∂

∂τ
t(τ, s) = −kt(k−1)(τ, s) − st(k)(τ, s). (A.3)

We now express T(τ,
∗
τ ) in terms of s instead of

∗
τ . Equation 2.3 becomes

T(τ, s) = (−1)k

k!
sk+1t(k)(τ, s), (A.4)

∂T(τ, s)
∂τ

= (−1)k

k!
sk+1 ∂

∂τ
t(k)(τ, s) = (−1)k

k!
sk+1 ∂k

∂sk

∂

∂τ
t(τ, s), (A.5)

∂T(τ, s)
∂τ

= −sT(τ, s) − k
(−1)k

k!
sk+1t(k−1)(τ, s), (A.6)

1
sk+1

[
∂T(τ, s)

∂τ
+ sT(τ, s)

]
= −k

(−1)k

k!
t(k−1)(τ, s). (A.7)

Differentiating with respect to s,

∂

∂s

[
1

sk+1

[
∂T(τ, s)

∂τ
+ sT(τ, s)

]]
= −k

(−1)k

k!
t(k)(τ, s), (A.8)

1
sk+1

∂

∂s

[
∂

∂τ
T(τ, s) + sT(τ, s)

]
− k + 1

sk+2

[
∂

∂τ
T(τ, s) + sT(τ, s)

]

= − k
sk+1 T(τ, s), (A.9)

∂2

∂s∂τ
T(τ, s) + s

∂

∂s
T(τ, s) − k + 1

s
∂

∂τ
T(τ, s) = 0. (A.10)

We now rewrite the equation in terms of
∗
τ . Since s = −k/

∗
τ , note that

∂/∂s = (
∗
τ 2/k)∂/∂

∗
τ . Equation A.10 becomes

∗
τ 2

k
∂2

∂
∗
τ∂τ

T(τ,
∗
τ ) − ∗

τ
∂

∂
∗
τ

T(τ,
∗
τ ) +

(
k + 1

k

)
∗
τ

∂

∂τ
T(τ,

∗
τ ) = 0. (A.11)

This is a second-order differential equation involving two variables
(τ,

∗
τ ). By prescribing the function on two boundaries, namely,

∗
τ = 0

and τ = 0, equation A.11 can be numerically solved. First note that by
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differentiating t(τ, s) explicitly k times with respect to s, we obtain

T(τ, s) = (−1)k

k!
sk+1

∫ τ

−∞
(τ ′ − τ )kf(τ ′)es(τ ′−τ )dτ ′

= 1
k!

∫ ∞

0
ykf(τ + y/s)e−ydy,

{
y = s(τ − τ ′)

}
. (A.12)

In the limit s → ∞ (
∗
τ → 0), the above integral A.12 is simply f(τ ). Thus,

we obtain one of our boundary conditions to be

T(τ,
∗
τ = 0) = f(τ ). (A.13)

If the stimulus was never presented prior to τ = 0, then we can assume that
T(τ = 0,

∗
τ ) = 0, which will be the other boundary condition for solving the

differential equation A.11.

Appendix B: Evaluating the Discretized kth Derivative

Let us calculate the derivatives of a function F(s) at so on a discretized s-axis.
Consider discrete steps of width "/2 around the point of interest so. The
first derivative of the function about so is given by

F(1)(so) = F(so + "/2) − F(so − "/2)

"
. (B.1)

If we have the kth derivative of the function at the neighboring points, the
(k + 1)th derivative at the point so is given by

F(k+1)(so) = F(k)(so + "/2) − F(k)(so − "/2)

"
. (B.2)

Formulas B.1 and B.2 will be accurate in the limit " goes to 0. With a non-
zero ", this formula will yield an error ofO(k"2) in the calculation of the kth
derivative. Let us denote the true derivatives in the continuum by F (k)(so).
We now show that

F(k)(so) − F (k)(so) = O(k"2).



A Scale-Invariant Internal Representation of Time 187

Taylor expansion gives

"F(1)(so)

=
(

F(so)+("/2)F (1)(so) + 1
2
("/2)2F (2)(so) + 1

3!
("/2)3F (3)(so) + . . .

)

−
(

F(so) − ("/2)F (1)(so) + 1
2
("/2)2F (2)(so) − 1

3!
("/2)3F (3)(so) + . . .

)

F(1)(so) = F (1)(so) + "2

223!
F (3)(so) + "4

245!
F (5)(so) + . . . (B.3)

More generally, it turns out that

F(k)(so) = F (k)(so) + k
"2

223!
F (k+2)(so) + "4 f (so, k) + . . . (B.4)

Here we are not interested in the functional form of f (so, k). Equation B.4
can be shown using mathematical induction. We know that the above hy-
pothesis is true for k = 1. Assuming that it is true for an arbitrary k, we
show that the hypothesis holds true for k + 1. Since so is not a special point,
the induction hypothesis, equation B.4, immediately leads to

F(k)(so + "/2)

= F (k)(so + "/2) + k
"2

223!
F (k+2)(so + "/2) + "4 f (so + "/2, k) + . . .

F(k)(so − "/2)

= F (k)(so − "/2) + k
"2

223!
F (k+2)(so − "/2) + "4 f (so − "/2, k) + . . .

We now Taylor-expand the above equations and retain terms up to order
"4:

F(k)(so + "/2) =
(
F (k)(so) + ("/2)F (k+1)(so) + 1

2
("/2)2F (k+2)(so)

+ 1
3!

("/2)3F (k+3)(so) + 1
4!

("/2)4F (k+4)(so) + . . .

)

+ k
"2

223!

(
F (k+2)(so) + ("/2)F (k+3)(so)

+ 1
2
("/2)2F (k+4)(so) + . . .

)

+"4 (
f (so, k) + "/2 f ′(so, k) + . . .

)
+ . . . (B.5)
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F(k)(so + "/2) =
(
F (k)(so) − ("/2)F (k+1)(so) + 1

2
("/2)2F (k+2)(so)

− 1
3!

("/2)3F (k+3)(so) + 1
4!

("/2)4F (k+4)(so) + . . .

)

+ k
"2

223!

(
F (k+2)(so) − ("/2)F (k+3)(so)

+ 1
2
("/2)2F (k+4)(so) + . . .

)

+"4 (
f (so, k) − "/2 f ′(so, k) + . . .

)
+ . . . (B.6)

Subtracting the above two equations and applying equation B.2 yields

"F(k+1)(so) = "F (k+1)(so) + (k + 1)
"3

223!
F (k+3)(so) + O("5). (B.7)

This shows that equation B.4 is true for all k. The error in estimation of the
kth derivative of a function is O(k"2):

F(k)(so) − F (k)(so) = k
"2

223!
F (k+2)(so) + O("4) = O(k"2). (B.8)

By successively reexpressing the kth derivative in terms of lower deriva-
tives of the function, we can ultimately express the kth derivative of the
function purely in terms of the functional values in a region around so. That
is, F(k)(so) can be expressed as a linear combination of the functional values
around so. For convenience, we define the functions

E0 = F(so),

En = F(so + n"/2) + F(so − n"/2),

On = F(so + n"/2) − F(so − n"/2). (B.9)

The derivatives of these functions have the property that

"E′
0 = O1,

"E′
n = On+1 − On−1,

"O′
n = En+1 − En−1,

"O′
1 = E2 − 2E0. (B.10)
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Figure 14: (a) To compute the coefficient of En or On in F(k)(so), choose the
(n, k) node in the graph. In this example, k = 8 and n = 4. Start from (0, 0)

and traverse the nodes diagonally in the downward direction. Traversing the
leftward diagonal accumulates a factor of +1 (solid lines), while traversing the
rightward diagonal generally accumulates a factor of −1 (dashed lines). But
when the rightward diagonal link hits the boundary at n = 0, it accumulates
a factor of −2 (thick dashed lines). These rules basically summarize equation
B.10. There can be many distinct routes to reach (n, k) from (0, 0), and each path
will carry a weight in accordance with the rules. The sum of the weights of
the distinct paths is essentially the coefficient of En or On in equations B.11 and
B.12. (b) Add columns of nodes on the other side of n = 0 so as to complete a
rectangle. Change the rules such that every leftward diagonal link holds a factor
of +1 and every rightward diagonal link holds a factor of −1. Acknowledging
the equivalence between panels a and b is very useful. In panel b, every path
always has a weight of either +1 or −1, depending on whether (k − n) is even or
odd, respectively. For a given (n, k), the number of distinct paths connecting it
to (0, 0) is a simple combinatorics exercise that leads to equations B.11 and B.12.

Starting with E0 and successively taking k derivatives yields the kth deriva-
tive as a linear combination of various En’s and On’s. It turns out that when
k is even,

F(k)(so) =
r=k/2∑

r=0

(−1)r"−k k!
r!(k − r)!

Ek−2r, (B.11)

and when k is odd,

F(k)(so) =
r=(k−1)/2∑

r=0

(−1)r"−k k!
r!(k − r)!

Ok−2r. (B.12)

A graphical method of computing the coefficients in front of the En’s and
the On’s in equations B.11 and B.12 are described in Figure 14.
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