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Abstract. Encoding temporal information from the recent past as spa-
tially distributed activations is essential in order for the entire recent
past to be simultaneously accessible. Any biological or synthetic agent
that relies on the past to predict/plan the future, would be endowed
with such a spatially distributed temporal memory. Simplistically, we
would expect that resource limitations would demand the memory sys-
tem to store only the most useful information for future prediction. For
natural signals in real world which show scale free temporal fluctua-
tions, the predictive information encoded in memory is maximal if the
past information is scale invariantly coarse grained. Here we examine
the general mechanism to construct a scale invariantly coarse grained
memory system. Remarkably, the generic construction is equivalent to
encoding the linear combinations of Laplace transform of the past in-
formation and their approximated inverses. This reveals a fundamental
construction constraint on memory networks that attempt to maximize
predictive information storage relevant to the natural world.

Keywords: predictively relevant memory, resource conserving memory,
inverse Laplace transformed memory.

1 Introduction

Representing the information from the recent past as transient activity dis-
tributed over a network has been actively researched in biophysical as well as
purely computational domains [8,6]. It is understood that recurrent connections
in the network can keep the information from distant past alive so that it can
be recovered from the current state. The memory capacity of these networks are
generally measured in terms of the accuracy of recovery of the past informa-
tion [6,20,5]. Although the memory capacity strongly depends on the network’s
topology and sparsity [2,14,7,18], it can be significantly increased by exploiting
any prior knowledge of the underlying structure of the encoded signal [3,1].
Our approach to encoding memory stems from a focus on its utility for fu-
ture prediction, rather than on the accuracy of recovering the past. In particular
we are interested in encoding time varying signals from the natural world into
memory so as to optimize future prediction. It is well known that most natu-
ral signals exhibit scale free long range correlations [9,16,19]. By exploiting this
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intrinsic structure underlying natural signals, prior work has shown that the pre-
dictive information contained in a finite sized memory system can be maximized
if the past is encoded in a scale-invariantly coarse grained fashion [13]. Each
node in such a memory system would represent a coarse grained average around
a specific past moment, and the time window of coarse graining linearly scales
with the past timescale. Clearly the accuracy of information recovery in such a
memory system degrades more for more distant past. In effect, the memory sys-
tem sacrifices accuracy in order to represent information from very distant past,
scaling exponentially with the network size [13]. The predictive advantage of
such a memory system comes from washing out non-predictive fluctuations from
the distant past, whose accurate representation would have served very little in
predicting the future. Arguably, in the natural world filled with scale-free time
varying signals, animals would have evolved to adopt such a memory system
conducive for future predictions. This is indeed evident from animal and human
behavioral studies that show that our memory for time involves scale invariant
errors which linearly scale with the target timescale [4,11].

Our focus here is not to further emphasize the predictive advantage offered
by a scale invariantly coarse grained memory system, rather we simply assume
the utility of such a memory system and focus on the generic mechanism to
construct it. One way to mechanistically construct such a memory system is
to gradually encode information over real time as a Laplace transform of the
past and approximately invert it [12]. The central result in this paper is that
any mechanistic construction of such a memory system is simply equivalent to
encoding linear combinations of Laplace transformed past and their approximate
inverses. This result should lay strong constraints on the connectivity structure
of memory networks exhibiting the scale invariance property.

We start with the basic requirement that different nodes in the memory system
represents coarse grained averages about different past moments. Irrespective of
the connectivity, the nodes can be linearly arranged to reflect their monotonic
relationship to the past time. Rather than considering a network with a finite set
of nodes, for analysis benefit, we consider a continuum limit where the information
from the past time is smoothly projected on a spatial axis. The construction can
later be discretized and implemented in a network with finite nodes to represent
past information from timescales that exponentially scale with the network size.

2 Scale Invariant Coarse Graining

Consider a real valued function f(7) observed over time 7. The aim is to encode
this time-varying function into a spatially distributed representation in one di-
mension parametrized by s, such that at any moment 7 the entire past from —oo
to T is represented in a coarse grained fashion as T (7, s)

T(r,s) = /j FOYW(r —7',5) dr'. (1)

This is now a convolution memory model. The kernel W (7 — 7/, s) is the coarse
graining window function with normalized area for all s, f IOO W(r—7',8)dr’ =1.
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Fig.1. Coarse grained averages around different past instants are projected on to
different points on the spatial axis

Different points on the spatial axis uniquely and monotonically represents coarse
grained averages about different instants in the past, as illustrated in figure 1.

We require that coarse graining about any past instant linearly scales with
the past timescale. So, for any pair of points s; and s, there exists a scaling
constant oz such that W(r — 7/, 51) = a1aW(aq2(7 — 7'), s2). For the window
function to satisfy this scale-invariance property, there should exist a monotonic
mapping s(«) from a scaling variable « to the spatial axis so that

W(r —7,s(a)) = aW(a(r — 1), s(1)). (2)

Without loss of generality we shall pick s(a) = o because it can be retransformed
to any other monotonic s(a)) mapping after the analysis. Hence with 0 < s < oo,

W(r—171',5)=sW(s(t —7'),1). (3)

3 Space-Time Local Mechanism

Equation 1 expresses the encoded memory as an integral over the entire past.
However, the encoding mechanism can only have access to the instantaneous
functional value of f and its derivatives. The spatial pattern should self suffi-
ciently evolve in real time to encode eq. 1. This is a basic requirement to mecha-
nistically construct T(7, s) in real time using any network architecture. Since the
spatial axis is organized monotonically to correspond to different past moments,
only the local neighborhood of any point would affect its time evolution. So we
postulate that the most general encoding mechanism that can yield eq. 1 is a
space-time local mechanism given by some differential equation for T(r,s). To
analyze this, let us first express the general space-time derivative of T (7, s) by
repeatedly differentiating eq. 1 w.r.t 7 and s.

n—1

Tl () = 32 71O We 0.9)

/ F(r w["J (T —7,5) dr. (4)
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Here n and m are positive integers. For brevity, we denote the order of time
derivative within a square bracket in the superscript and the order of space
derivative within a parenthesis in the subscript.

Since f(7) is an arbitrary input, T(7,s) should satisfy a time-independent
differential equation which can depend on instantaneous time derivatives of f(7).
The first term in the r.h.s of eq. 4 is time-local, while the second term involves
an integral over the entire past. In order for the second term to be time-local, it
must be expressible in terms of lower derivatives of T(7, s). Since the equation

must hold for any f(7), WEZl)(T — 7/, s) should satisfy a linear equation.
chm W (r =7, 5)=0. (5)

The aim here is not to derive the time-local differential equation satisfied by
T(7,s), but just to impose its existence, which is achieved by imposing eq. 5
for some set of functions C,,,(s). To impose this condition, let us first evaluate
WEWL)( — 7/, 5) by exploiting the functional form of the window function given
by eq. 3. Defining z = s(7 — 7’) and the function G(z) = W(z,1), eq. 3 can be
repeatedly differentiated to obtain

m n4+l—m-+r
[n] / - S _ I\ ]
W(m)( —7'8) = E (n—|—1)!771!77“!0”_74)!2 (r—m)"G (2),

r=ro

where 7, = max[0, m —n — 1] and the superscript on G(z) represents the order
of the derivative w.r.t z. Now eq. 5 takes the form

S Com(s)s™+1- ’"Z (n Dl it (2 = (6)

rro

The above equation is not necessarily solvable for an arbitrary choice of
Crm(s). However, when it is is solvable, the separability of the variables s and z
implies that the above equation will be separable into a set of linear differential
equations for G(z) with coefficients given by integer powers of z. The general
solution for G(z) is then given by

2= Y gt (7)
ik

where i and k are non negative integers. The coefficients a;; and b;, and the func-
tions Clm,(s) cannot be independently chosen as they are constrained through
eq. 6. Once a set of Cy,,,(s) is chosen consistently with the coefficients a;; and
b;, the differential equation satisfied by T(7,s) can be obtained by iteratively
substituting Wm)(T — 7/, 8) (in the second term of the r.h.s of eq. 4) in terms of
its lower derivatives and replacing the integral in terms of derivatives of T(7, s).

Here we shall neither focus on the choice of Cp,,(s) nor on the differential
equation for T(7, s) it yields. We shall only focus on the set of possible window
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functions that can be constructed by a space-time local mechanism. Hence it
suffices to note from the above derivation that the general form of such a window
function is given by eq. 7. Since by definition the window function at each s coarse
grains the input about some past moment, we expect it to be non-oscillatory
and hence restrict our focus to real values of b;. Further, the requirement of the
window function to have normalized area at all s restricts b; to be positive.

4 'Two Step Process

Let us consider the simplest window function, where only one of the coefficients
in the set of a;; and b; in eq. 7 are non-zero, namely b; = b and a;; = b(k“)/l{!.
We shall denote the corresponding window function as Wiy 3y to highlight its
dependence on specific k and b. The most general window function is then simply
a linear combination of various Wy, 5y for different values of k and b. From eq. 7,
Wigpy takes the form

(bs)k+1
k!

It turns out that the differential equation satisfied by T (7, s) that generates this
window function is simply first order in both space and time given by

Wiy (1= 7'15) = (7 — 7Yk bs(r="), (8)

k+1
T() (7, 5) + bsTS) (7, 5) — (%)Tﬁj) (r,8) =0, (9)
with a boundary condition T(7,00) = f(7). This equation can hence be evolved
in real time by only relying on the instantaneous input f(7) at each moment 7.

For more complex window functions that are linear combinations of Wy, y for
various k and b, the order of the space and time derivatives of T(7, s) involved
in the differential equation are not necessarily bounded when the parameters k
and b involved in the linear combinations of Wy ;) are bounded. So, it is not
straight forward to derive the mechanistic construction as a differential equation
for T(7,s). Hence the question now is, what is the mechanism to construct a
memory system with any window function?

Interestingly, there exists an alternative derivation of eq. 9 where the time
derivative and space derivative can be sequentially employed in a two step process
[12]. The first step is equivalent to encoding the Laplace transform of the input
f(7) as F(7,s). The second step is equivalent to approximately inverting the
Laplace transformed input to construct T(7,s).

Lapl F I Lapl T
f(r) Laplace F(1,s) Inverse Laplace T(t,s)

FU(7,s) = —bsF (1, s) + f(7), (10)
T(r,s) = %skHF(k) (1,9). (11)
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Taking f(7) to be a function of bounded variation and F(—o0, s) = 0, eq. 10
can be integrated to see that F(r,s) = [T __ (e =) dr' Thus F(r,s) is
the Laplace transform of the past input computed over real time. Eq. 11 is an
approximation to inverse Laplace transform operation [10]. So T (7, s) essentially
attempts to reconstruct the past input, such that at any s, T (7, s) = f(r—k/bs).
This reconstruction grows more accurate as k — 0o, and the input from each past
moment is reliably represented at specific spatial location. For finite k& however,
the reconstruction is fuzzy and each spatial location represents a coarse grained
average of inputs from past moments, as characterized by the window function
Wik,py- For further details, refer to [12].

Since any window function is a linear combination of various Wy, for dif-
ferent values of k and b, its construction is essentially equivalent to linear com-
binations of the two step process given by equations 10 and 11.

4
g
| | Combinations of Wy 5y ks
=)
1 Wi100,2) £
2 0.32W{65,1‘3} + 0.27W{75,148} %
+0.32W 75 1.26) + 0.09W(100,1.62) E
3 Wis 0.16} =z
4 0.5W{35’1} + 0.5W{70’1} 4,
=25 -2 -1.5 -1 -0.5
Past time

Fig. 2. For different combinations of Wy 3, the window functions are plotted as a
function of past time at the spatial point s = 50

The choice of the combinations of Wy ;) has strong implications on the shape
of the resulting window function. At any given s, Wy ;) is a unimodal function
with a peak at 7 — 7' = k/bs (see eq. 8). Arbitrary combinations of Wy 5
could result in a spatial location representing the coarse grained average about
disjoint past moments, leading to undesirable shapes of the window function.
Hence the values of k and b should be carefully tuned. Figure 2 shows the window
functions constructed from four combinations of b and k. The combinations are
chosen such that at the point s = 50, the window function coarse grains around
a past time of 7/ — 7 ~ —1. The scale invariance property guarantees that its
shape remains identical at any other value of s with a linear shift in the coarse
graining timescale. Comparing combinations 1 and 3, note that the window
function is narrower for larger k(=100) than for a smaller k(=8). Combination
2 has been chosen to illustrate a plateau shaped window function whose sides
can be made arbitrarily vertical by fine tuning the combinations. Combination
4 (dotted curve in fig. 2) illustrates that combining different values of k for the
same b will generally lead to a multimodal window function which would be an
undesirable feature.
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5 Discretized Spatial Axis

A memory system represented on a continuous spatial axis is not practical, so
the spatial axis should be discretized to finite points (nodes). The two step pro-
cess given by equations 10 and 11 is optimal for discretization particularly when
the nodes are picked from a geometric progression in the values of s [13]. Eq. 10
implies that the activity of each node evolves independently of the others to
construct F(7, s) with real time input f(7). This is achieved with each node re-
currently connected on to itself with an appropriate decay constant of bs. Eq. 11
involves taking the spatial derivative of order k£ which can be approximated
by the discretized derivative requiring linear combinations of activities from k
neighbors on either sides of any node. For further details on implementation of
the two step process on discretized spatial axis, refer to [13].

—_

Discretized Window Function

(=)

Past time

Fig. 3. Window function w{8,1} at two points s1 = 6.72 and s> = 2.59 computed on
a discretized spatial axis with ¢ = 0.1. The dotted curves correspond to the window
functions computed on the continuous spatial axis (¢ — 0).

By choosing the nodes along the s-axis from a geometric progression, the
error from the discretized spatial derivative will be uniformly spread over all
timescales, hence such a discretization is ideal to preserve scale-invariance. Let
us choose the s-values of successive nodes to have a ratio (1 + ¢), where ¢ < 1.
Figure 3 shows the window function Wy ;) with k = 8 and b = 1 constructed
from the discretized axis with ¢ = 0.1. The window functions at two spatial
points s; = 6.72 and s, = 2.59 are plotted to illustrate that scale invariance is
preserved after discretization. As a comparison, the dotted curves are plotted
to show the corresponding window function constructed in the continuous s-
axis (limit ¢ — 0). The window function computed on the discretized axis is
artificially scaled up so that the solid and dotted curves in figure 3 are visually
discernible. Note that the discretized window function peaks farther in the past
time and is wider than the window function on the continuous spatial axis. As
¢ — 0, the discretized window function converges on to the window function
constructed on the continuous axis, while for larger values of ¢ the discrepancy
grows larger. Nevertheless, for any value of ¢, the discretized window function
always stays scale-invariant, as can be seen by visually comparing the shapes
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of the window functions at s; and sy in figure 3. Now, it is straight forward to
construct scale-invariant window functions of different shapes by taking linear
combinations of discretized Wy 3y, analogous to the construction in figure 2.

Implementing this construction on a discretized spatial axis as a neural net-
work has a tremendous resource conserving advantage. Since at each s, the win-
dow function Wiy ) coarse grains the input around a past time of k/bs, the
maximum past timesscale represented by the memory system is inversely re-
lated to minimum value of s. The geometric distribution of the s values on the
discretized axis implies that if there are N nodes spanning the spatial axis for
T(7, s), it can represent the coarse grained past from timescales proportional to
(14c)™. Hence exponentially distant past can be represented in a coarse grained
fashion with linearly increasing resources.

6 Discussion and Conclusion

The formulation presented here starts from a convolution memory model (eq. 1)
and derives the form of the scale-invariant window functions (or the kernels)
that can be constructed from a space-time local mechanism. Interestingly, by
simply postulating a kernel of the form of eq. 7, Tank and Hopfield have demon-
strated the utility of such a memory system in temporal pattern classification
[15]. In general, a convolution memory model can adopt an arbitrary kernel,
but it cannot be mechanistically constructed from a space-time local differential
equation, which means a neural network implementation need not exist. How-
ever, the Gamma-memory model [17] shows that linear combinations of Gamma
kernels, functionally similar to eq. 7, can indeed be mechanistically constructed
from a set of differential equations.

The construction presented here takes a complementary approach to the
Gamma-memory model by requiring scale invariance of the window function
in the forefront and then imposing a space-time local differential equation to
derive it. This sheds light on the connectivity between neighboring spatial units
of the network that is required to generate a scale invariant window function,
as described by the second part of the two step process (eq. 11). Moreover, the
linearity of the two step process and its equivalence to the Laplace and Inverse
Laplace transforms makes the memory representation analytically tractable.

Theoretically, the utility of a scale invariantly coarse grained memory hinges
on the existence of scale free temporal fluctuations in the signals being encoded
[13]. Although detailed empirical analysis of natural signals is needed to confirm
this utility, preliminary analysis of time series from sunspots and global tem-
perature show that such a memory system indeed has a higher predictive power
than a conventional shift register [13]. The predictive advantage of this memory
system can be understood as arising from its intrinsic ability to wash out non-
predictive stochastic fluctuations in the input signal from distant past and just
represent the predictively relevant information in a condensed form. Finally, the
most noteworthy feature is that a memory system with N nodes can represent
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information from exponentially past times proportional to (14 ¢)". In compari-
son to a shift register with /N nodes which can accurately represent a maximum
past time scale proportional to IV, this memory system is exponentially resource
conserving.
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