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Abstract

How realistic is it to adopt a quantum random walk model to account for decisions involving

two choices? Here, we discuss the neural plausibility and the effect of initial state and boundary

thresholds on such a model and contrast it with various features of the classical random walk

model of decision making.
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One-dimensional drift-diffusion models have been very successful in accounting for

two crucial features of two-choice decision-making tasks, namely the decision accuracy

and the decision latency. At a mechanistic level, these models can be implemented as a

set of accumulators working in parallel, each gathering noisy evidence as a function of

time. When the sum of evidences in all accumulators reaches a threshold boundary, a

decision will be made. There are significant neural signatures in the brain for the process

of evidence accumulation and the existence of a decision threshold. For example, when

monkeys perform a perceptual decision task to infer the direction of motion of random

dots, the LIP (lateral intraparietal area) is known to accumulate the evidence provided by

the MT (middle temporal) cortex, and the decision moment synchronizes with the time at

which the firing rate of the LIP neurons reach a threshold value (Gold & Shadlen, 2007).

Fuss and Navarro (2013) have proposed an interesting alternative to this classical deci-

sion mechanism. Instead of having the accumulators simply interact additively with each

other, they consider the CCP (cooperative and competitive decision process) model where

the accumulators can either cooperate with or inhibit each other. In summary, if the path

of evidence accumulation in an accumulator shifts direction R times, then that accumula-

tor is assigned a complex value of iR, which determines the extent of cooperation of that

accumulator with others. The crucial feature of the CCP model is that the rate of
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evidence accumulation toward the boundary is directly proportional to time, as opposed

to the classical diffusion model where it is proportional to square root of time. In effect,

the CCP model could lead to quicker and more efficient decision making.

1. Neural plausibility

There are, however, some issues in understanding how the brain could implement the

CCP model. Consider two accumulators that follow the exact same evidence path up to

some time t0, beyond which they deviate. According to the CCP model, the two accumu-

lators should cooperate until t0 and then stop cooperating at the next instant. Clearly, this

cannot be achieved by simple excitatory and inhibitory connections between groups of

neurons representing the two accumulators, because this would require the synaptic

weights to drastically (but precisely) vary in time depending on the activity history of the

accumulators. It appears that any plausible implementation of the CCP model would

require each accumulator to provide a four-way output (corresponding to +1, +i, �1, �i)
in which only one of the four can be active at any moment, depending on the number of

direction shifts in the activity history of that accumulator. This can potentially be realized

as a winner-take-all competition among four output neurons associated with each accumu-

lator. The momentary change in the evidence of each accumulator can then be used to

bias the competition among the corresponding four neurons so as to have the appropriate

neuron win the competition. Once this is achieved, the activity of each of the four neu-

rons must be separately gathered from all the accumulators, and a global pairwise inhibi-

tion needs to be performed—the global outputs corresponding to +1 and �1 should

inhibit each other and the global outputs corresponding to +i and �i should inhibit each

other. Such a network relies on extremely fine-tuned connectivity, raising concerns on its

neural plausibility.

2. Initial state of the random walk

Let us now ignore the concern of neural plausibility and simply focus on the utility of

quantum random walks in modeling the process of decision making. Fuss and Navarro

(2013) point out that the CCP model can be reduced to a problem of quantum random walk.

So, for the purposes of computing decision accuracies and decision latencies, it is sufficient

to simulate quantum random walks without invoking the parallel array of accumulators.

Quantum random walk involves a two-component spinor function (fR(x, t), fL(x, t)) that

deterministically evolves (see eq. 23 and 24 in Fuss & Navarro, 2013) as a function of time

over a one-dimensional evidence space x, from an initial state at t = 0. At any instant, the

spinor function gives the probability amplitude for various evidence values x. The quantum

random walk moves the probability density toward the left and right boundaries in a bimodal

fashion, which is qualitatively very different from the unimodal evolution of probability

density in classical random walks (see Fig. 7 and 8 in Fuss & Navarro, 2013).
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The only degree of freedom available in modeling the decision process as a quantum

random walk is the choice of the initial state (fR(x, 0), fL(x, 0)). Fuss and Navarro (2013)

take the initial state to be (U(x), e�ihU(x)), where h is a free parameter ranging between

0 and 2p, and
ffiffiffi

2
p

UðxÞ is the initial probability density over evidence space. We shall

refer to this as model 1. When h = p/2 or 3p/2, the probability density symmetrically

moves toward the two boundaries in an unbiased fashion, and when h = 0 or p, the prob-

ability density preferentially moves toward one of the boundaries with maximum bias

(Kempe, 2003). The top row of Fig. 1 shows the probability density over evidence space

after 100 steps of quantum walk starting from an initial Gaussian probability distribution

(shown in gray) with a mean evidence at x = 0 and a variance of 4. For any value of h,
we see two probability peaks—one in the left and one in the right of the initial probabil-

ity peak. For all practical purposes, the entire probability lies within these two peaks with

apparently negligible probability in between them. For illustration, let us take the right

boundary at x = 100 as the correct decision boundary and the left boundary at x = �100

as the error decision boundary. The ratio of the right peak to the sum of right and left

peaks gives an estimate of the decision accuracy. In the unbiased case (h = p/2), this
ratio is 0.5, and hence the decision accuracy is 50%. Interestingly, in the case of maxi-

mum bias (h = 0), there is a significant nonzero probability under the left peak leading to

an accuracy of only 85%—the maximum accuracy that can be achieved in this model. In

the simple classical case of Bernoulli random walk, the parameter q (that denotes the

probability of moving in the right) can be varied between 0 and 1 to achieve any accu-

racy between 0% and 100%. But in model 1, there is a constraint on the maximum accu-

racy (85%) that can be achieved. This seems like an unnecessary constraint that can be

eliminated by considering a different parameterization for the initial state.

In model 1, the initial states of both fR and fL have equal probability amplitudes

of 1=
ffiffiffi

2
p

. A more general version of this model that allows for different initial probability

amplitudes could yield different asymptotic distributions. Let us consider the initial state

to be ð r
ffiffiffiffiffiffiffiffi

l2þr2
p U xð Þ; l

ffiffiffiffiffiffiffiffi

l2þr2
p U xð ÞÞ, where U(x) is the initial probability density over evidence

space, and l and r are real numbers. Assuming that the right boundary is the correct

boundary, let us fix r = 1 and treat l as a free parameter ranging between +1 and �1. We

shall refer to this as model 2. The bottom row of Fig. 1 shows the probability density

over evidence states for model 2 after 100 steps of quantum walk starting with the same

initial probability state as before. Note that for l = 0.4, the accuracy is practically 100%

and for l = �0.4, the accuracy is about 50%. Thus, model 2 does not face the constraint

faced by model 1.

3. Choice of boundary

Let us now focus on the choice of the decision boundary and demonstrate qualitatively

distinct behaviors with small and large boundaries. We previously observed that most of

the probability lies under the two peaks with practically no probability in between them.

This is, however, true only when the number of time steps is small. After a large number
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of time steps, both the peaks shrink in height and spread in width. In fact, it can be ana-

lytically shown that after a large number of time steps N, the probability distribution is

essentially a uniform distribution in the interval between x ¼ �N=
ffiffiffi

2
p

and x ¼ þN=
ffiffiffi

2
p

(Ambainis et al., 2001). Hence, it is incorrect to view the probability distribution as two

separate peaks after a large number of time steps. As the two peaks move in opposite

directions, it is easy to see that the overall variance of the probability distribution

increases proportional to N2. But it is rather subtle to realize that the variance of each

peak separately increases with N.
To quantify this, let us consider the case of h = p/2 in model 1 (top-left panel of

Fig. 1). Fig. 2 plots the variance of the probability distribution restricted to the positive

x-axis as a function of the number of time steps N, so that only the right peak is taken

into consideration. It is clear that the variance of the right peak increases linearly with N
for large N. This is a clear indication that for large N, the probability distribution indeed

becomes uniform. So, if we choose the decision boundary a to be very large, then the

probability of finding the evidence state at a after N time steps, pa(N), increases from 0

to a small value when N ¼ a
ffiffiffi

2
p

and then gradually decays off inversely proportional to

N . On the other hand, if we choose a to be small, then pa(¼ N) has a very narrow

Fig. 1. The probability distribution after 100 time steps. The initial state of probability distribution is shown

in gray. The top row shows model 1 for various values of h, and the bottom row shows model 2 for various

values of l.
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support near N ¼ a
ffiffiffi

2
p

. To give a quantitative perspective on the size of the boundary,

for the illustrations shown in Fig. 1 with initial Gaussian probability state of variance =

4, 50 is a small value for the boundary while 5000 is large. The choice of the boundary

thus plays a qualitatively more interesting role in quantum random walk models than in

the classical drift diffusion models.

4. Wave function collapse–decision mechanism

Finally, to fully validate a decision-making model, it is not sufficient to just account

for the probability distribution of decision latency and accuracy; we need a mechanistic

account of how the choice is made in each trial. In classical drift diffusion models, the

evidence moves toward only one of the boundaries in each trial and hence the choice in

each trial is straightforward. But in the CCP model and its simplified equivalent of quan-

tum walk model, the single-trial description is ignored and only the probability density

over evidence states is described. This could potentially be augmented with a separate

collapse mechanism which at each moment reads out the probability of the evidence state

being at either boundaries, and probabilistically generate one or none of the choices. Only

with such an augmentation can the CCP model be considered as a mechanistic account of

decision making.

Quantum physics faces a similar situation. The behavior of an electron in a given trial

can only be described probabilistically because its wave function as a whole is not mea-

surable. Any collapse mechanism that collapses the wave function in each trial is

believed to act instantaneously over all space leading to a tussle with Einstein’s Special

Relativity. This makes it impossible to provide a satisfactory collapse mechanism in

quantum physics. But the problem is much simpler for cognitive decision making. A spa-

tially local collapse mechanism can certainly be prescribed to augment the CCP model.

However, in light of existing neural signatures of evidence accumulation to a threshold
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Fig. 2. Variance of the probability distribution restricted to the positive evidence states for h = p/2 in model

1 is plotted as a function of the number of time steps.
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boundary (Gold & Shadlen, 2007), which supports classical drift diffusion models, the

plausible neural signatures of a collapse mechanism and the CCP model needs a lot of

scrutiny.
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