A toneless theory of 2-and-a-half tonemes in Gbè

A Toneless Theory of 2-and-a-Half Tonemes in Gbè*

Victor Manfredi

Abstract

1. Destroying the toneme in order to save it

[O]ne group of language learners in Africa asked a trained linguist to come and try to “get rid of tone” in the local language. (Welmers 1973, 77)

In its half century of existence, phonemic tone notation has missed many chances to upgrade from raw data to descriptive adequacy. In Yorùbá, to capture distributional asymmetries with respect to H and L (Bámgbọ̀se 1965, Oyeláràn 1970), Akinlabi (1985) proposed to eliminate the M toneme, but tonal underspecification fell out of mainstream favor due to technical glitches: it blurs autosegmental geometry and needs ad hoc scales of markedness in order to be emulated by output filter procedures (Pulleyblank 1983; 2004, 417f). Full specification fares no better: early hopes to find Greenbergian “universals of tone rules” (Hyman & Schuh 1974) crashed on the fact that “observed patterns of [tone] alternation... are typically random and arbitrary” (Clements & al. 2010, 20). In sum, specified tones are both too abstract, and at the same time not abstract enough, to express linguistically significant generalizations.

How did tonology get bogged down in this quagmire?1 Minimal lexical contrasts of perceived pitch (F0), first noted in colonial research (Jones & Woo 1912, Jones & Plaatje 1916), were codified as “tonemes” by a mid-century middle-American behaviorist who trained an anticommunist missionary brigade (Pike 1948, cf. Calvet 1981). Retooled as generative “autosegments” (Goldsmith 1976) in Building 20, MIT’s “magical incubator” of Cold War spinoffs (Penfield 1997), tonemes should have been summarily dismissed by the critique of inductive discovery procedures (Halle 1959, Chomsky 1964). Instead, the more coherent alternative of pitch accent (McCawley 1965, 1970, 1978, Clark 1978) was shunned beyond the pale (Clements & Goldsmith 1980, Poser 1984, Hyman 2009), conveniently enough, avoiding arduous reanalysis of decades worth of impressionistic tonal data compiled by legions of semiamateur Bible scribes (cf. Williamson 2002, Epps & Ladley 2009). To further compound the formal inconsistencies, tones and accents were blended together nonrestrictively, whether in ToBI transcription (Pierrehumbert 1980, Goldsmith 1978, Breen & al. 2012) recapping Pike (1945) or in the parallel representational tiers of “laboratory phonology” (Clements 1990, Ladd 1996).

But the toneme has worse faults than nontrivial redundancy (Dilley 2005). Belying rapid coverage of the nonwestern world, better studied languages yielded diminishing returns. In Japanese, “spare tone” needs nonlinear, “context-dependent” interpolation (Pierrehumbert & Beckman 1988, 34, 52f, cf. Haraguchi 1988, 134-38, Akinlabi & Liberman 2001, 16f). In Kinande-Luyiira, binary H/L contrasts of nominal roots are unrecoverable without invoking ‘global’ rules, diacritic ternary H/L/∅ oppositions or...

2. Tones in the Saussurean gulf

In Vietnamese and nearby languages, minimal lexical F0 contrasts emerged from historic differences in consonant phonation (Haudricourt 1954, Matisoff 1973), and similar effects hold synchronically in Korean (Kim & Duanmu 2004). Some of these patterns may reduce to shared laryngeal gestures (Halle & Stevens 1971, 208f., Kaye & al. 1990, 216, Cyran 2014, 9f.), but M~L alternations of the Gbè cluster of Benue-Kwa (Niger-Congo) go further to implicate categorial structures of morphosyntax.³

In Pécígbè, a NW Èwè variety (Anser 1961, cf. Westermann 1930, Capo 1991), a nominal stem takes either L or LH (a lexical choice) if the onset is a voiced obstruent, otherwise M or H. The initial vowel if any (another lexical choice) is always a- and its F0 is similarly predictable: M before a sonorant, otherwise L, never H.⁴

Stahlke (1971) observes that three subcases of the M~L alternation converge on one syntactic slot. (i) The L that follows a stem-initial voiced obstruent is absent stem-terminally, whether the nominal is opaque or transparently compounded:⁵

(ii) A transitive non-H verbroot is pronounced M iff the direct object’s first onset is a sonorant, otherwise L, (3a). (iii) A pitch drop occurs between a transitive H-bearing verbroot and a consonant-initial direct object unless the onset is a voiced obstruent, falling to the same M or L that would begin a vowel-initial counterpart, (3b).⁶

Unifying these contexts, Stahlke posits a segmentally null (floating) L to the left of a consonant-initial nominal, triggering the same phonation rules that apply with an initial vowel. But what are these rules and why do they care about this position? A tonal framework necessarily assumes that phonation and tones can be distinguished analytically/on a priori grounds:

[C]onsonants affect tone but tone does not affect consonants. Thus… consonants interfare with natural tonal assimilations.

[Hyman 1973, 171, emphasis original]

[C]onsonants interfere with natural tone rules…

(Hyman & Schuh 1974, 106).

If this claim is not circular, it’s a promise to demonstrate the existence of tone rules independent of phonation. But if such evidence is not eventually forthcoming, the only remaining possibility within the reach of standard generative phonology is to conclude that “tone behaves like a segmental feature” (Leben 1973, 126).

Currently however the choices look different. For “OT”⁷, formerly phonological distinctions dissolve in the welter of e-language output, a big-data manifold that “integrates linguistic change with phonetics, phonological
theory and sociolinguistics, resolutely rejecting even the least vestige of any Saussurian gulf between them” (Kiparsky 2016, 464).

By contrast, an i-language perspective gives abstract analyses like Saussure’s (1879) decomposition of Indo-European ablaut into schwa plus a laryngeal on-/off-glide. The conceptual distance from Jakobsonian features is illustrated by Verner’s Law, a rule of Proto-Germanic that blocked voicing of an inherited voiceless spirant after an accented vowel. Generative phonology can express this as coarticulation, spreading a laryngeal feature from a vowel to a following continuant (Calabrese & Halle 1998, 59f., Iverson & Salmons 2003). Treated as assimilation, Verner joins other apparent counterexamples to Hyman’s claim that “tone does not affect consonants” (cf. Maddieson 1974b, Poser 1981) but the progress is pyrrhic, because if tone-voicing causality is truly bidirectional contra Hyman, then the autonomy of tone vis-a-vis phonation is undermined. Instead, the Saussurean/i-language take on Verner denies that any assimilation is involved and instead treats intervocalic voicing as lenition:

> The segmental properties do not play any role because the triggering factor is purely positional… It is therefore inconsistent to say that a process is an instance of lenition but in fact involves the transmission of some property from an item to another. (Scheer 2015, 228)

Then the crux of the matter is how to define “position” — the lenition context. If tones are phonemes not positions their relevance to Verner is less clear, but if tones are positions they’re not paradigmatic phonemes, and tonology is out of business.

Handling tones as autonomous phonological units, Hyman infers a “tendency of L-H to become M-H” (1973, 168) but notices that this “natural rule” of “vertical tonal assimilation” is blocked in Gbé either by a preceding voiced obstruent, cf. à-tá à-tí (1a), or by an intervening nonsonorant regardless of voice, cf. à-tí (1b). In general:

L becomes M before a H if 1) any intervening consonant is a sonorant, and 2) the L syllable does not begin with a voiced obstruent. If there is no intervening consonant, i.e. there is an underlying LH (rising tone) sequence in the same syllable, this LH is modified to a MH rise unless the syllable which it is in begins with a voiced obstruent…

(Hyman 1973, 170)

The proximity of this rule — scarcely shorter than the paradigms to be explained — matches, point for point, an intrinsically stated mechanism of laryngeal interference:

> [B]oth voiceless and voiced obstruents exert a lowering influence on preceding vowels… [whereas] voiceless obstruents have a raising effect and voiced obstruents a lowering effect on the F0 of following vowels. (1973, 169, original italics)

For all its richness, the foregoing formula must be supplemented by “a rule of L-spreading that depends on consonant type” to ensure that à-ñúù ‘dog’ contrasts prosodically with à-tí ‘tree’ (1b), and the new sub-domain must exclude sonorants, because the assumed underlying form of ‘bee’ is à-ñúí sonorants like ny are normally a permissive context for “natural horizontal assimilation” (1973, 165f.). But to add the anti-sonorant restriction guaranteeing the opaque outcome a-ñúí (1b), application of horizontal L-spreading must be bled by vertical L-H raising: “tone spreading applies only to a phonetic L-H sequence” (1973, 172, original italics). And if this condition is not theory-internal (circular), it can only be justified on grammar-external grounds:

Thus in Standard Èwè, tone spreading applies only to a phonetic… L-H sequence. It has not yet reached phonetic M-H sequences. (1973, 170, second italics added)

Reducing extrinsic order to an uncompleted grammaticalization cline predicts that the opaque rule interaction will wither away someday, because “Bleeding order tends to be minimized” (Kiparsky 1968, 199). But even if this Godot does eventually arrive, the mystery will persist why both of the “natural” tone rules (L-spreading, L-H raising) should be restricted to a grammatical (non-“natural”) context – the same context that hosts an otherwise unmotivated pitch drop (3b). Nor does the treatment of L-raising as assimilation address the regular stem-medial appearance of M instead of L in compounds like niis-fle-ga (2), an environment with no raising trigger at hand. And the stem-medial absence of a supposedly natural phonation effect can’t be brushed off as a local quirk of Gbé, because the same synchronic limitation also holds in far-flung Tibetan, Korean and Wu Chinese (Duanmu 1992, Kim & Duanmu 2004, 62, 89).

In sum, saving the toneme by dumping the competence/performance distinction into Kiparsky’s “Saussurean gulf” doesn’t make any of these problems disappear. The remaining possibility is to throw the tonal baggage overboard instead. Consider how.

3. The remaining possibility

What matters seems to be… whether the tone is ‘level’, ‘above-level’ or ‘below-level’. (Siertsema 1958, 583)

No low tone: L is not present in Yorùbá nuclei; what has hitherto been considered as the perception of [L] is in fact the perception of a prosodic constituent. (Harrison 2000, 599)
In Hyman’s account of Gbè consonant-tone effects reprised above, the extrinsic ordering of vertical before horizontal tone assimilation contradicts a declared doctrine of his own contemporaneous handbook: “In a stress language prominence is syntagmatic; in a tone language prominence is paradigmatic.” (1975, 229, italics original)

Taken at face value, a syntagmatic rule like Hyman’s “horizontal assimilation” should refer to non-tonal entities, such as Akinlabi & Liberman’s (2001) “tonal complexes” which ascribe branching structure to both \(H \) and \(L \) to rescue Yorùbá’s underspecified \(M \) from Pulleyblank’s methodological critiques.\(^{13}\) Similar results can be had from less extraordinarymetrical formats: headed trees (Liberman 1975, 49, Giegerich 1985, 3) alias “register tones” (Clements 1981), bracketed projections of the timing skeleton (Halle & Vergnaud 1987, Idsardi 1992) or “flat/lateral” CVCV strings respecting “interconstituent government” (Kaye & al. 1990, 210, Scheer 2004, 2013).\(^{14}\)

Without some independent support, foot structure by any other name would be little more than a \(\text{pêš (deus) ex máchíná} \) descending to save tonology from itself. Fortunately, however, motivation is at hand. The following sample of West African languages divides by a cluster of cues diagnosing a \([s w] \) trochaic type, with iambic \([w s] \) as the unmarked default.

\[\text{(4a) automatic raising of phrase-initial} \ L \ \text{foot in Akan} \]
\[\text{(4b) automatic H-spreading onto} \ L \ \text{foot in Hausa} \]
\[\text{(4c) some downsteps unrecoverable to latent} \ L \ \text{foot in Gbè} \]
\[\text{(4d) no foot structure in Èdo and Igbo} \]

The respective clustering of trochaic properties of primary language data, as compiled in (4), can be compared to the bootstrappable correlates of the so-called iambic-trochaic law in languages which—unlike Benue-Kwa—pronounce moraic (quantity sensitive) stress (Allen 1975, 78, Hayes 1985, 438, Ramus & al. 1999).\(^{21}\)

As illustrated in the Appendix, initial \(L \) is much nearer in pitch to the following \(H \) in Èdo and Igbo than it is in Akan, Hausa, Gbè or Yorùbá (4a).\(^{22}\) Yorùbá fails (4a) for independent reasons noted below, but trochaic footing of Yorùbá is still required by the cue of automatic \(H \)-spread (4b) assuming that “spreading does not cross metrical constituents” [sc feet] (Manfredi 1991, 71), treating \(L \) as a foot-initial adjunct, cf. (5). Yorùbá presents a second trochaic cue (4c) with cases of unrecoverably elided \(L \).\(^{23}\) (4c) rests on two premises: (i) tone terracing (alias automatic downstep) is a right-branching cascade (Manfredi 1979, Huang 1980, Clements 1981) and (ii) in a head/complement structure, the head is obligatory, the non-head optional. For iambic feet, a downstep caused by an empty \([w] \) between two \([s] \) terminals would be anti-cyclic (Liberman 1975, 200), hence it follows as a theorem that only trochaic feet can encode unerived downsteps.

Granting Yorùbá as trochaic, there are multiple reasons not to analyze Yorùbá \(L \) as metrically weak: not only does it spread to a local \(H \) (Ward 1952, 54) as noted above, it also replaces \(M \) in vowel elision (Báñígbose 1965, 23) and raises a locally preceding \(H \) (Láníran 1992, 176f). Given strong \(H \) and weak \(M \) and constrained to binary feet, the only solution for strong \(L \) is left-adjunction to the head of the foot:

\[\text{(5) } \]

The template in (5) fits two additional facts that lie beyond the reach of tonal analysis: the pitch excursion for \(LH \) is deeper than for \(HL \) (Manfredi 1995, 175) and stranded \(L \) systematically fails to parse before a complement phrase (Déchaine 2001).

Although (4) refers just to F0 restrictions, there’s no reason to exclude phonation as evidence for footing. Encouragingly, Harris argues for trochaic feet in Ibibio based not on pitch but on the distribution of root-initial onsets (2004, 120-28). His finding supports (4) if Èfik-Ibibio and Igbo are prosodically isomorphic (Green 1949).\(^{24}\)

Displaying neither the strong \(L \) cues of Yorùbá nor any of the trochaic cues in (4), Gbè is parsed by default in iambic feet [\(ws \)] corresponding respectively to \(L \) and \(H \) F0 spans, leaving unfooted rimes with neutral F0 alias \(M \). Thus Gbè is not the prosodic mirror image of Yorùbá, and taxonomic \(M \) has different metrical status in the two languages—unfooted in Gbè, \(w \) in Yorùbá—despite its elsewhere distribution in both.

If Gbè is iambic, foot-initial \(w \) maps to the CV skeleton at “the beginning of the word” to spell out the DP phase at PF (Lowenstamm 1999, cf. Scheer 2012, 2014).\(^{25}\) The left edge of the domain is the closed-class item identified by Stahlke: the traditional “noun prefix” which is underlingly
toneless i.e. incapable of bearing accent, and empty also segmentally, apart from epenthetic a- arbitrarily attached to some lexical items. A current label for this slot is “little n” (Lowenstamm 2007). The other lexically arbitrary choice is whether an accent (s) is prelinked to the root (v).

(7) \[\begin{array}{c}
\text{DP} \\
\text{np} \\
\phi \\
(V^-) \\
\text{CV} \\
\text{n} \\
(\text{s}) \\
[w...]
\end{array} \]

 frase structure

In order to obtain the surface forms in (1) - (3) from (7), it’s enough that \(w \) denotes a sternohyoid laryngeal gesture with predictably diverse realization on vowels versus consonants (Halle & Stevens 1971, Nissenbaum & al. 2002). The paradigms follow if:

(9)a. Phrase initial \(w \) is checked by a root-initial sonorant, leaving the string completely unbootted as \(M \) (\(a-wy \) ‘dress’) unless an accent is prelinked to the root (\(a-nt \) ‘bee’).
b. Absent a root-initial sonorant, \(w \) links to \(n \) and is realized as \(L \) on the initial vowel if any (\(a-st \) ‘market’, \(a-it \) ‘tree’), spreading to the root if the onset is a voiced obstinate (\(g \) ‘money’, \(a-g \) ‘palm-fruit’), \(n \) ‘child’, \(a-n \) ‘dog’).
c. Nonsegmental \(n \) is footed as a last resort (\(k-x \) ‘he saw the yam’ etc.).
d. Stem-internal \(w \) is not expected (2) because footing applies to phases.

Q.e.d.

4. External evidence

Rouget considers Gungè drummed surrogate speech as evidence for the “perception if not mental representation” of spoken pitch:

[Les énoncés tambourinés peuvent être à bon droit considérés comme traduisent la manière dont les locuteurs ressentent, sinon conçoivent, en tout cas interprètent le système des tons tel qu’il fonctionne lorsqu’ils parlent. (1964, 3)]

Unlike the Yoruba \(dün-dün \) tradition, where linguistic \(F_0 \) maps iconically to musical pitch (Adégbolá 2003), Gungè percussionists distinguish the three tonal outcomes of speech with three distinct attacks on the drumhead based on place and manner of articulation (Rouget 1964, 9f., cf. 1965, 1975, 224).

Strikingly in this translation table, drummed \(L \) and \(M \) don’t form a natural class, although tonal phonology would have expected them to share some feature in order to capture the fact that they undergo productive alternations. Instead, drummed \(L \) and \(M \) are specified precisely opposite in terms of both of the production features. The same features define \(M \) as unmarked, consistent with an Akinlabean underspecification analysis as rescued by metrical feet. Acoustic observations are less clear, but Rouget finds that “les variations d’intensité sont beaucoup plus caractéristiques des faits d’accentuation et d’intonation que des faits de ton” (1975, 225).³⁷

Appendix: comparing the relative pitch of initial \(L \) in LHL

\[
\text{Scattergram for columns: } X_1 - X_2
\]

not raised: Akan (Dolphyne 1994, 5)
not raised: Gùngbè (Fréchet 1990, 16-18, annotated)

not raised: Hausa (Hombert 1974, 173, cf. Hodge & Hause 1944)

not raised: Yorùbá (Lání.ran 1992, 63)

raised: Èdò ènìgbéè [LH! LL] ‘lineage heads’ (Èwuarè 2016, 0’38”)
N.b. downstep before L, derived from deleted L, blocks H>L spread (Ámoyo 1983, 186)

raised: Ìgbo ìnyoghóònyo [LLHLL] ‘dizziness, foolishness’

References

Ájáyí, J. [1960]. How Yorùbá was reduced to writing. Odu [Ìbàdàn] 8, 49-58.

Breen, M. & al. [2012]. Inter-transcriber reliability for two systems of prosodic annotation: ToBI (Tones and Break Indices) and RaP (Rhythm and Pitch). Corpus Linguistics & Linguistic Theory 8, 277-312. speechlab.cas.msu.edu/PDF/Breen, Dilley, Kraemer, & Gibson 2012.pdf.

Dediu, D. & D. Ladd. [2007]. Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASIP and Microcephalin. PNAS 104, 10944-49.

Everett, C. & al. [2015]. Climate, vocal folds and tonal languages; connecting the physiological and geographic dots. *PNAS* 112, 1322-27.

Évuare II, Ehened Erediauwa. [2016]. The Òmo N’Oba of Benin Empire Òba Èvuwèrè II Speech on 2/12/2016. www.youtube.com/watch?v=dEp ccTLI8Y.

Kühnlein, B. [2016]. Contrastive foot structure in Franconian tone-accent dialects. Phonology 33, 87-123.

———. [2015]. Climate alert! The future’s getting more tonal every day. people.bu.edu/unmanfre/SaveTheTones.pdf.

———. [1970]. Some tonal systems that come close to being pitch accent systems but don’t quite make it. Chicago Linguistic Society 6, 526-32.

1. This question is necessary—apologies to the editors—because research paradigms are not immune to zeitgeist (Kuhn 1962), and when something is thoroughly lost, we can't neglect any avenue of recovery: ilúkún ní ì ṣ è mi lúṣìkùnú ní (Owomoyé 2005, 373).

3. Benue-Kwa, alias Tano-Congo (Stewart 1983, 20) and East Volta-Congo, is a "dialect cluster" (1995 & seqq.). In Gùngbè some tokens of the initial vowel are pronounced [o] (Fréchet 1994, 32). In (1a), nominals that deaccented constituent:

4. Fréchet (1994, 39) cites analogous forms in Gùngbè; further variations across the branches of standard Niger-Congo (Greenberg 1963). To refine this historical restructuring in certain lexicalized expressions, whose stem-initial syllable should be reckoned to the head of the clausal constituent:

6. Data in the left column of (3b), omitted by Ansre, are supplied by Stahlke (1971, 161f).

8. Eventually the offgrid components were attested in inscriptions of extinct Anatolian languages (Kurylowicz 1935), but in 1879 they were completely abstr. Saussure's ablat theory implicitly inspired Government Phonology (Kaye & al. 1985). On the e-language/i-language distinction, see Chomsky (1986).

9. For example, the t of Sanskrit pithā ‘father’ and bhrīd tār ‘brother’ receives divergent treatment in the Germanic cognates, as (d < t) and /dr/ (spelled Ы) respectively (Collinge 1985, 205). But the rule also applies in root-initial position—a clue that footing is responsible rather than progressive assimilation, cf. discussion below.

10. For this to work, Calabrese & Halle must equate "stress" to "High tone" as far as laryngeal articulation is concerned (1998, 60) while dismissing Kortlandt's idea that Indo-European roots contrasted in "tone" (1986, 159f., cf. Halle 1997, 310). The tonal view is more plausible if, as it seems, Verner's Law applied before Germanic accent shift potentiated Grimm's Law (Iverson & Salmons 2003, 71). Nissenbaum (2005) extends Halle-Stevens' framework to Japanese rendaku: lexical t is suppressed in the deaccented right branch of a nominal compound but remains laryngeally 'stable' as shown by the appearance of otherwise unexpected consonant voicing in the deaccented constituent:

11. As would have been expected in trademark "natural phonology" (Dressler 1984, 38f).

12. Pre-OT, a Saussurean Kiparsky treated historical data as "external" to grammar (1973, 87).

13. For Akinlabi & Liberman (2001, 18), both ũ and ķ have abstract branching structure.

14. Adopting linear ("string-based") as opposed to autosegmental representation doesn’t alter the conclusion that tone rules are computationally closer, within standard hierarchies of complexity, to syntax than segmental phonology is (Jardine 2016, 263, 276).

16. "I have not included Hausa among my ‘terraced level’ languages simply because Hausa has no contrast, at any point, between ‘same’ and ‘drop’ (Wellmers 1965, 57).

17. Gbèt (1997, 114; 1999, 18). Fréchet (1990) treats Gùngbè as trochaic but does not discuss the headedness cues in (4). In some phrasal contexts of ÀágĂ-Ewè, Clements observes emergent downstep and the raising of lexical M to superhigh pitch —effects which in taxonomic terms can only be understood as “a case of tone split” (1977, 178) but which seem less exotic as consequences of re-footing stray syllables from iambic (left-branching) prosody in right-branching phrases. Similar super-raising phenomena in Mawukakan (Mande, Niger-Congo) are convincingly analyzed in metrical terms by Bamba (1991).

18. t-deletion, which blocks t-spread (Bângbõsè 1966b), is productive and recoverable at phrase boundaries, as in these minimal contrasts where [] indicates the elided t syllable:

19. For this, see ‘stress’ in a laryngeal sense (Kortlandt 1977, 205). But the rule also applies in root-initial position—a clue that footing is responsible rather than progressive assimilation, cf. discussion below.
To my knowledge, Àkan, Hausa and Gbè lack comparable examples.

19. Ámayo’s pitch notation (e.g. 1983, 185) does not show initial L-raising, but Melzian pointedly apologises for a “simplification of tone marking” obscuring the fact that “[a] low tone is frequently raised before a high tone…” (1937, xiii). Cf. also Elugbe (1977).

20. The [+]' of (4b) is attested in many western Ígbo varieties (e.g. Hyman & Schuh 1974, 89).

21. Thanks to A. Nevins for this comparison.

22. The samples compared are not controlled and the generalization is stated informally but the contrast is undeniable.

23. Cf. note 17 above.

24. A conversation overheard in a quiet búkà in downtown Òweré (= colonial “Owerri”) in 1984 produced in me the uncanny impression that Ígbo was being spoken with non-Ígbo words, but my fellow diners’ eavesdropped language turned out to be Íbibio. A test for the phonation of trochaic footing can perhaps be devised in those Ígbo varieties with the richest consonantal inventories (Ladefoged & al. 1976).

25. The lexicalization of D in these ‘bare noun’ languages is arguably null but its referential content is reinforced peripheristically by adjoined, phrase-final appositive modifiers like lá in (1), as in Ajibọ́yé’s analysis of Yorùbá náà (2005, 218). Alternatively, Aboh generates ọ to the Ógbè counterpart of Èwè lá—directly in D (2004, 83), but then the only way to obtain observed linear orders like tòkò ọ to ‘the tables’ (2004, 77) from the assumed [tòkò ọ to [tòkò]] is by raising different cartographic layers by arbitrarily different types of linearization, whose status in minimalism is anyway unclear. Consistent Kaynean antisymmetric movements alias snowballs would have been expected to strand D in final position, giving ungrammatical *tòkò ọ to ọ to unless the last step is diacritically marked as SPEC-to-SPEC excorporation, and such a kludge merely restates the problem without added insight.

26. translation: Drummed utterances can rightly be held to express how speakers perceive, if not conceive, and in any event interpret, the system of tones in operation when they speak.

27. translation: variations of intensity are more typical of stress and intonation than they are of tone.