MET CS566 HOMEWORK #6

1. Find the m matrix in the dynamic programming algorithm for iterated matrix products, $M_1 M_2 M_3 M_4 M_5$, and the dimensions of the matrices are given by the one-dimensional array d:

$$d = (8, 3, 2, 19, 18, 7)$$

2. The following algorithm is a divide-and-conquer algorithm for finding the maximum value in array $A[1..n]$.

 Function maximum(x, y)

 \[\{\text{return maximum in } A[x..y]\}\]
 1. if $y - x \leq 1$ then return $(\max(A[x], A[y]))$
 2. else
 3. \[\text{max1 } \leftarrow \text{maximum}(x, \lfloor(x + y) / 2 \rfloor)\]
 4. \[\text{max2 } \leftarrow \text{maximum}(\lfloor(x + y) / 2 \rfloor + 1, y)\]
 5. return$(\max(\text{max1}, \text{max2})$

 a. Give a recurrence equation for the worst-case number of comparisons used by $\text{maximum}(1, n)$, and solve this recurrence equation, (you may assume that n is a power of 2)

 b. What is the running time of $\text{maximum}(1, n)$? Explain briefly.

3. What is wrong with the following statement: "The algorithm for calculating the values of m in section 8.3 of my notes (pp. 120-127) has essentially to fill in the entries in just over half of an $n \times n$ table. Its execution time is clearly in $\Theta(n^2)$."