
Lecture 4: Analysis of Algorithms 
 

1. Introduction: An essential tool to design an efficient and suitable algorithm is the 
"Analysis of Algorithms". There is no magic formula it is simply a matter of 
judgment, intuition and experience. Nevertheless, theses are some basic techniques 
that are often useful, such as knowing how to deal with control structures and 
recursive equations. 

2. Control Structures Analysis: Eventually analysis of algorithms proceeds from the 
inside out. Determine fist, the time required by individual instructions, then combine 
these tines according to the control systems that combine the instructions in the 
program. 
2.1. Sequencing: Let P1 and P2 be two fragments of an algorithm. They way be single 

instruction. They maybe single instructions or complicated sub-algorithms. Let t1 

and t2 be the times taken by P1 and P2. t1 and t2 may depend on various 
parameters, such as the instance size. The sequencing rule says that the time 
required to compute “P1 and P2” is simply t1 + t2. By the maximum rule, this time 
is in θ(max(t1, t2)). Despite its simplicity, applying this rule is sometimes less 
obvious than it may appear. It could happen that one of the parameters that 
control t2 depends on the results of the computation performed P1. 

2.2. “For” Loops: They are the easiest loops to analyze. 
For i ← 1 to m do P(i) 
By a convention we’ll adopt: m=0 means P(i) is not executed at all, (not an 
error). P(i) could depend on the size. Of course, the easiest case is when it 
doesn’t. Let t be the time required to compute P(i) and the total time required is 
l=mt. Usually this approach is adequate, but there is a potential pitfall: We didn’t 
consider the time for the “loop control”. After all our for loops is shorthand for 
something like the following while loop. 
 i ← 1 
 while i ≤ m do 
  P(i) 
  i ←i + 1 
In the worst situations it is reasonable to count the test i ≤ m at unit cost and the 
same thing with the instructions i ←i + 1 and the sequencing operations “go to” 
implicit in the while loop. Let “c” be the upper bound on the time required by 
each of the operations: 

  l  ≤ c  for i ←1 
+ (m+1)c  tests i ≤ m 
+ mt  execution of P(i) 
+ mc  execution of i ←i + 1 
+ mc  sequencing operations 

l  ≤ (t+3c)m+2c 
This time is clearly bounded below by mt. If c is negligible compared to t, our 
previous estimate that l is roughly equal to mt is justified. 
 
The analysis of for loop is more interesting when the time t(i) required for P(i) 
runs as a function of I and or also on size n.  



So: for i ←1 to m do P(i) takes a time given by, �t(i) (ignoring the time taken by 
the loop control). 
 
Example: Computing the Fibonacci Sequence, 
 
 Function Fibitir(n) 

 i ←1, for j ←0 
for k ←1 to n do 
 j ←i+j, j ←i-j 
return j 

 
If we count all arithmetic operations at unit cost, the instructions inside the “for” 
loop take constant time. Let this time be bounded by the same constant c. Not 
taking control loop into account, the time taken by the “for” loop is bounded by: 
nc, we conclude that the algorithm takes a time in O(n). Similar, reasoning yields 
that this time is in Ω(n), thus θ(n).  
This is not reasonable. j ←i+j is increasingly expensive each time around the 
loop. To know the approximate time, we need to know the length of the integers 
involved at any given kth

 trip around the loop. j and i are respectively kth and k-1st 
values of the Fibonacci sequence, sometimes denoted fk anf fk-1 where fk can be 
expressed as: 
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When k is large, 
k^

Φ is negligible and fk ≈φk and the size of fk is in the order of k. 
Thus: fk ∈θ(k) and the kth iteration takes a times θ(k-1) + θ(k), which is of course 
θ(k). 
 
Let c be a constant such that this time is bounded above by ck for all k≥1. If we 
again neglect the time required by the loop control, for the instructions before and 
after the loop we conclude: 
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Similar reasoning yields that this time is in Ω(n2) and therefore it is in θ( n2). And 
this shows the crucial difference whether or not we count arithmetic operations at 
unit cost. 
 



2.3. Recursive Calls: 
The analysis of recursive algorithms is straight forward to a certain point. Simple 
inspection of the algorithm often gives rise to a recurrence equation that “mimics” 
the flow of control in the algorithm. General techniques on how to solve or how to 
transform the equation into simpler non-recursive equations will be seen later. 
 

2.4. “While” and “Repeat” loops: 
Theses two types of loops are usually harder to analyze than “for” loops because 
there is no obvious a priori way to know how many times we shall have to go 
around the loop. The standard technique for analyzing these loops is to find a 
function of the variables involved where value decreases each time around. To 
determine how many times the loop is repeated, however, we need  to understand 
better how the value of this function decreases. An alternative approach to the 
analysis of “while” loops consist of treating them like recursive algorithms. We 
illustrate both techniques with the same example, The analysis of  “repeat” loops 
is carried out similarly.  
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