
Lecture 3: Asymptotic Notation 
 

1. Introduction: Remember we wish to determine mathematically the quantity of resource 
needed by an algorithm as a function of the size of the instances. Because there is no 
standard computer to which all measurements of computing time night refer, we shall be 
content to express the time taken to within a multiplication constant.  
We introduce the asymptotic notation, which per unit substantial simplifications, even 
when we are interested in meaning something were in a tangible, like number of times a 
given instruction is executed in a program. This notation deals with functions in the limit. 
 

2. Notation for “the order of”:  
Let t(n): N → R+, where R+ is the set of all nonnegative real numbers, and you may think 
of n as a size of an instance on which a given algorithm is required to perform and t(n) as 
representing the quantity of a given resource spent on that instance by a particular 
implementation of this algorithm. 
 
For example: it could be that the implementation of this algorithm spends t(n) µs in the 
worst case on an instance of size n, or perhaps t(n) represent the amount of storage. t(n) = 
27n2 + (355/113)n + 12 and let also f: N → R+ such that f(n) = n2 we say that t(n) is in the 
order of f(n) if t(n) is bounded above by a positive real multiple of f(n) for all sufficiently 
large n. t(n)≤c.f(n) ∀n≥no  
 
For instance, it is clear that n≤n2 ∀n≥1, therefore: n≥1 
 t(n) = 27n2+ (355/113)n + 12 
 t(n) ≤ 27n2+ (355/113)n + 12 
 t(n) = 42 (16/113)n2 = 42 (16/113) f(n) 
 
Taking c = 42 (16/113) (or anything larger) and no ≥ 1, we conclude that t(n) is in the 
order of f(n). We could have chosen: c=28 and no = 6 
 t(n) ≤ 28f(n) ∀n≥6 
This shows a trade off, between c and no that is quite common. 
So if an instance takes t(n) µs in the worst case to solve we simplify by saying that the 
time is in the order of n2. Naturally, there is no point stating that we are talking about the 
order of n2 µs, since this differs from n2 years by only a constant factor. Therefore we are 
entitled to assert that the algorithm itself takes a time of the order of n2 or more simply it 
takes “quadratic time”. 
 
Notation for the order of: O(f(n)) big Oh! of f(n) 
 
O(f(n)) = {t: N→ R+| ∃c∈R+, ∀n∈N, t(n)≤c.f(n)} 
 
So t(n) ∈ O(f(n)) and the traditional t(n) = O(f(n)) (one way equalities, as they used to be 
called). A lot of misuse happens with this notation, like when t(n) is negative as when t(n) 
is not defined for some values of n. 
In other terms t(n) ∈ O(f(n)) if 0≤t(n)≤c.f(n) ∀n≥no regardless of what happens to t & f 
when n≤no. 



 
Example: n3-3n2-n-8 ∈O(n3) even though n3-3n2-n-8<0 when n≤3 
 
The threshold is of ten useful to simplify arguments, but it is never necessary when we 
consider strictly positive functions. t(n) ∈ O(f(n)), t(n) ≤ c.f(n) ∀n≥no and t(n) ≤ b f(n) 
where b = max{t(n)/f(n) 0≤n≤no} 
� t(n) ≤ a f(n), ∀n≥0 and a = max{b,c} (remember only when t(n), f(n) are strictly 
positive functions). 
 
A useful tool for proving that one function is in the order of another is: THE MAXIMUM 
RULE.  

 
 Let, f, g: N→ R+ the max, rule says that: O( f(n) + g(n)) = O(max (f,g)) 
 

Example: Consider an algorithm that proceeds in 3 steps: initialization, processing, 
finalization for the sake of argument assume that these steps take O(n2), O(n3), O(n.log n) 
respectively. 
 
From the maximum rule it is immediate that:  
O(n2 + n3 + n.logn) = O(max(n2 + n3 + n.log n)) = O(n3) 
 
Proof of the maximum rule: 
Observe that, f(n) + g(n) = min (f(n),g(n)) + max (f(n)+g(n)) and 0 ≤ min (f(n),g(n)) ≤ 
max (f(n),g(n)). 
(1) It follows that: max(f(n),g(n)) ≤ f(n) + g(n) ≤ 2 max(f(n), g(n))  
Now: t(n)∈O(f(n) + g(n)) � t(n) ≤ c(f(n)+g(n)) for large n using (1) t(n)≤2.c. 
max(f(n),g(n)) which means that t(n) is bounded by a constant 2.c. 
→ t(n) ∈O(max(f(n),g(n))) 

 
 Beware of the following misuse: 
 
 O(n) = O(n+n2-n2) = O(max(n,n2,-n2) = O(n2)  
   
 Incorrect use because of an infinitely negative function  

  
The maximum rule tells us that if t(n) is a complicated function such as t(n) = 12n3logn – 
5n2 + log2n + 36 and if f(n) is the most significant term of the t(n) discarding the 
coefficient f(n) = n3logn then: O(t(n)) = O(f(n)) which allows for dramatic yet automatic 
simplifications in asymptotic notation. 
 
Note the following: 
O(t(u)) = O(max(12n3logn, -5n2, log2n, 36) = O(12n3logn) = O(n3logn) IS WRONG! 

 Just because it doesn’t use the max rule property. 
 But the following is ok: 

O(t(n)) = O(11n3logn+ n3logn-5n2+log2n+36)  
= O(max(11n3logn, n3logn-5n2, log2n, 36)) 



= O(11n3logn) = O(n3logn) 
This is ok despite the fact that n3logn-5n2, is negative for some n and 36 is larger then 
n3logn for some n. 
 
Another observation is that it is unnecessary to specify the base of the logarithm just 
because logan=loga b�logb n so O(loga n) = O(logb n) also: 
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The base of the logarithm can't be ignored when it is smaller than 1, or when it is not a 
constant as in: )(loglog nOn

n
≠ or when the logarithm is in the exponent as in 

)2()2( loglog nn ba OO ≠ . 
 
The notation "∈O" is reflexive and transitive and obviously not symmetric, but anti-
symmetric, which provides a way to define a partial order on functions and consequently 
on the relative efficiency of different algorithm to solve a given problem. 
 
How can we prove that a given t(n) is not in the order of f(n)? The simplest way is to use 
contradiction. 
 

Example: Let 3

1000
1

)( nnt = and 2)( nnf =   

For n<106, t(n) < f(n) you may believe that t(n) ∈O(f(n)), where c=1. Of 
course it is not and let's prove by assuming that t(n) ∈O(f(n)) → ∃c, such 
that t(n) �c.f(n) ∀n�no which means: 

cncnn 623 101000
1000

1 ≤→≤ which clearly shows a contradictions. 

 
Another more powerful tool to prove that show functions are in the order of others or the 
opposite is the limit rule which states that: 
 
Given arbitrary ƒ, g: ℵ→ℑ+ 
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 then ƒ(n) ∈O(g(n)) and g(n) ∉O(f(n)) 
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)(
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n

 then ƒ(n) ∉O(g(n)) and g(n) ∈O(f(n)) 

 
Examples: Given ƒ(n)=log n, g(n)= n  determine the relative order of these functions. 
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3. The Omega and Theta Notation: 
 

We saw before that insert and sort algorithms take a time in O(n2) and we mentioned that 
some other take time in O(n.log n). Of course it is very easy to show that n.log n∈O(n2) or 
even in O(n3). This is confusing at first, but remember the fact that the O notation is designed 
solely to give upper bounds on the amount of resources required. Thus we need a dual 
notation for the lower bounds, which is Ω notation. 
 
Let t(n), f(n): ℵ→ℑ+ 
 t(n) ∈Ω (f(n)) if ∃d∈ℑ+-{0}, ∀n≥no such that t(n) ≥d f(n). 
  

 Ω(f(n))={t: ℵ→ℑ+|∃d∈ℑ+,*,
∞
∀ n∈ℵ, t(n) ≥d f(n)} 

 
Duality: t(n) ∈ Ω(f(n)) ⇔ f(n) ∈O(t(n)) 
 
Then why Ω? 
 
It seems more natural to say: "An algorithm takes s time in Ω(n2)" that to say "n2 is in O of 
the time taken by the algorithm". 
 
When we analyze the behavior of an algorithm, we are happiest if its execution time is 
bounded simultaneously both above and below by possible different positive and real 
multiples of the same function. For this reason we introduce θ(n). We say that t(n) is in the 
theta of f(n) or the t(n) is in the exact order of f(n) denoted: 
 
 t(n) ∈θ(f(n)) 
 
if t(n) ∈ O(f(n)) and t(n) ∈ Ω(f(n)) 

θ(f(n))= O(f(n)) ∩ Ω(f(n)) or  

θ (f(n))={t: ℵ→ℑ+|∃c,d∈ℑ+,*,
∞
∀ n∈ℵ, df(n)� t(n) �c f(n)} 

 
 
 
 
 
 
 
 
 



 
To summarize: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example of manipulating asymptotic notation, 
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Now prove that "Ω" direction. Notice ik � (n/2)k whenever i ≥ 	n/2
, and the number of 
integers between 	n/2
 and n inclusive is greater than n/2. Therefore, provided that n≥1 
(which implies 	n/2
  ≥ 1), 
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A function ƒ is b-smooth if (besides non-decreasing) it satisfies the condition: 
 

ƒ

Ω(ƒ), functions that grow at 
least as fast as ƒ. 

O(ƒ), functions that grow no 
faster than ƒ. 

θ(ƒ), functions that grow at that 
same rate as ƒ. 



ƒ(bn) ∈ O(ƒ(n)) or in other words, there exists a constant c (depending on b) such that ƒ(bn) 
�cƒ(n) ∀n≥no a function is smooth if it is b-smooth for very integer b≥2. 
 
Example of smooth function: 
 Log n, n.log n, n2 or any polynomial where the leading coefficient is positive.  

However, fast growing functions like nlogn, 2n, n! are not smooth because 
)(
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unbounded. 
 
Exercises: 
 
(1) Show that: logn! ∈θ(nlogn) 
 

log n! = log n+ log (n-1)+…+log 2+ log 1 
log n! ≤ log n + log n +…+ log n=n⋅log n 
 
we conclude the logn! ∈ O(n⋅log n) 
 

Now: log n+ log (n-1)+…+log 2+ log 1 ≥ log n +…+ 
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 By mathematical induction we can prove that if n ≥ 4  
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Thus log n+ log (n-1)+…+log 1 ≥ ¼ n log n for n ≥ 4 therefore 
log n! ∈ Ω(( ¼⋅    n⋅log n) 
 
It follows that logn! ∈ θ(n⋅log n) 

  
(2) Find a theta notation in terms of n for the number of times the statement x← x+1 is 

executed. 
i. For i←1 to n do 

ii.   For j←1 to n do 
iii.     x←x+1  

 
first i set to 1, j runs from 1 to 1, thus line iii is executed one time, next i is set to 2, j 
runs from 1 to 2, line iii is executed 2 times and so on. 
 
 1 + 2 +…+ n = θ(n2) 

 
(3) Same question as in (2) 

 



1. j←n      
2.   while j≥1 do   Let t(n) be the number of this we execute  
3.     begin   x←x+1 the fist time we get to the body of       
4.    for i←1 to j do  the while loop, the statement x←x+1 is 
5.     x←x+1  executed n times. Thus: t(n) ≥n, t(n) ∈ Ω (n)   
6.     j ←�j/2� then j is �j/2� which executes x←x+1 at  
7.    end    most n/2 times and so on if m after k times. 
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(4) Which of the following statements are true? Prove your answers: 

1. n2 ∈ O(n3)   True n2≤c⋅n3 → 1≤c⋅n, C=1 no=1 

2. n2 ∈ Ω(n3)  False n2≥c⋅n3 → c⋅n≤1 →c? 
n
1

none ∃ 

3. 2n ∈ θ(2n+1) True 11 222
2
1

2 ++ ≤⋅= nnnn or  c=1 ∀n & 12
4
1

2 +≤ nn  c= ¼ ∀n 

4. n!∈ θ((n+1)!) False n(n-1)…2x1 ≤ c (n+1)n (n-1)…2x1� 1 ≤ c(n+1) ≤ 2cn→ n! 
∈ O((n+1)) but does n! ∈ Ω((n+1)) 1≥c(n+1) 

5. Prove: f(n) ∈ O(n) → [f(n)]2 ∈ O(n2) 
     f(n) ∈ O(n) → f(n) ≤ c⋅n → 
     [f(n)]2 ∈ O(n2) → [f(n)]2 ≤ c2⋅n2 = d⋅ n2→ [f(n)]2∈ O(n2) 

 
6. Prove that: 2f(n) ∈ O(2n) Does not necessarily follow from f(n) ∈ O(n).  

Well let's find a counter example, let a be an integer greater than 1, where f(n)=a⋅n. It 
is obvious that f(n) ∈ O(n), but yet 2f(n)= 2an=(2a)n which is not O(2n). 

 
7. Prove that: θ(n-1) + θ(n) ⊆ θ(n) 

If f(n) ∈ θ(n-1) and g(n) ∈ θ(n) then there exists a ,b ,c and d, n1 & n2 such that 
a(n-1) ≤ f(n) ≤ b(n-1)   ∀n≥n1 
cn ≤ g(n) ≤ dn   ∀n≥n2 

let h(n) = f(n) + g(n) and no= max(n1, n2). 
 
Obviously h(n) = f(n) + g(n) ≤ b(n-1) +dn ≤ (b+d)n ∀n≥no which proves that 
h(n)∈O(n). Also: h(n) = f(n) + g(n) ≥ a(n-1) +cn ≥ cn which proves that h(n)∈ Ω(n) 
and therefore h(n)∈θ(n)→ θ(n-1) +θ(n) ⊆ θ(n). actually this result can be generalized 
to equality i.e. we can easily show that: θ(n) ⊆ θ(n-1) +θ(n). 

 



Let again h(n)∈θ (n) and also f(n) = g(n)= )(
2
1

nh . Obviously: f(n)∈θ (n), g(n)∈θ(n) 

and f(n)∈θ (n-1)  
 
h(n) = f(n) + g(n) )∈θ (n-1) + θ (n) which proves that θ(n) ⊆ θ(n-1) +θ(n) and 
therefore θ(n) = θ(n-1) +θ(n).  
 
On the other hand: It is not true that θ(n) = θ(n-1) - θ(n) and a very simple counter 
example: n- (n-1) =1 ∉θ(n). 
 

 
8. Prove that 	log n
∈ O(n).  

For values like 1 (and other small values) it appears like 	log n
 ≤ n. Does it still hold 
for large values of n? Yes. Let's prove it by induction. It's true for the base n=1, and 
assume that it holds for n-1  
i.e  	log (n-1)
 ≤ n-1 (*) For n>1, n≤ 10n-10=10(n-1) 
 

→ 	log n
 ≤ 	log 10(n-1)
 = 	log (n-1)
 + log 10 
→ 	log n
 ≤ 	log (n-1)
 + 1 
         ≤ (n-1) + 1 using the assumption (*) 
                   = n, have we consider c=no=1 
 
 

 
 
 


