1) True or false?

- a. $n^2 = O(n^3)$ b. $2n^2 + 1 = O(n^2)$ c. $\sqrt{n} = O(\log n)$ d. $\log n = O(\sqrt{n})$ e. $\log n + \sqrt{n} = O(n^2)$ f. $\log n = O(n^{-1/2})$ g. $\log n = O(1/n)$ h. $\log (n+3) = q(\sqrt{n})$ i. $n + \sqrt{n} = \Omega(n^2 - n)$
- 2) How much time does the following "algorithm" require as a function of n?

$$l \leftarrow 0$$

for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n^2 do
for $k \leftarrow 1$ to n^3 do
 $l \leftarrow l+1$

Express your answer in q notation in the simplest possible form. You may consider that each individual instruction (including loop control) is elementary.

3) How much time does the following "algorithm" require as a function of n? *l* ← 0
for *i* ← 1 to *n* do
for *j* ← 1 to *i* do
for *k* ← *j* to *n* do *l* ← *l* + 1

Express your answer in \boldsymbol{q} notation in the simplest possible form. You may consider that each individual instruction (including loop control) is elementary.