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We analyse renegotiation in a hidden action principal-agent model. Contract renegotiation
offers are made by the agent. A refinement is imposed on the principal’s beliefs: if precisely one
action is optimal with respect to both the principal’s and the agent’s contracts, the principal
believes that that action has been taken. With the refinement imposed, perfect-Bayesian equilibrium
allocations are identical to the second best in the classical principal-agent model without renegotia-
tion. When renegotiation is led by the agent and when equilibria satisfy the refinement, equilibrium
allocations are ex ante efficient.

1. INTRODUCTION

Incentive contracting is a common mechanism for promoting ex ante investments and for
avoiding ex post opportunistic behaviour in a long-term or continuing economic relation-
ship. The classical principal-agent model (Holmstrom (1979), Grossman and Hart (1983))
is a natural framework for this class of problem. In such a model, a risk-averse agent
performs an action on behalf of a risk-neutral principal; the agent’s action is unobservable
and affects the principal’s revenue in a random fashion. The derivation and characteriza-
tion of efficient compensation schemes have been the major focus in the principal-agent
literature. Generally, the incentives to motivate a costly action from the agent take the
form of “profit sharing:” the agent’s reward is made contingent on his random perform-
ance outcomes.

Recently, economists have questioned the classical model’s implicit assumption that
contracting parties can commit to a compensation scheme or a contract. The point is the
following. Because the agent’s action is unobservable and has uncertain consequences, the
provision of incentives by a compensation scheme imposes risks on the agent. But contract-
ing parties may realize that incentives are unnecessary after some point, and may attempt
to repeal the inefficient components of a contract in time before its final execution. For
example, when they know that the agent’s action has already been taken but that its
outcome is still uncertain, they may renegotiate the contract. A rational agent, however,
anticipates such renegotiation at the outset. Therefore, his action decision will be based on
the expected revised contract. Thus, a primary consideration is the possibility of contract
renegotiation.

In a recent paper, Fudenberg and Tirole (1990) model renegotiation as the principal’s
lack of commitment to a contract. In their paper, a contract consists of a menu of compen-
sation schemes, one for each possible action. The principal may propose an alternative
contract after the agent has completed his unobservable action but before the action’s
uncertain consequence is realized; this new contract may replace the earlier one if both
agree. After renegotiation but still before the action’s result is known, the agent must pick
a scheme from the agreed contract.
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Fudenberg and Tirole show that in equilibrium either the agent chooses the least-
cost action or he chooses an action according to the realization of a probability distribution
on the set of actions. In other words, when the principal can make renegotiation offers,
the set of implementable actions becomes smaller: a costly action with probability one is
not implementable.'

This result can be explained as follows. If in equilibrium the agent has performed an
action with probability one, then at the renegotiation stage the principal must offer a full
insurance compensation scheme. Hence, when choosing among his actions, the agent
expects that he will be fully insured. This implies that if in equilibrium the agent takes an
action with probability one, it must be the least-cost action. A non-degenerate probability
distribution on actions may be implementable because the principal need not make a full
insurance renegotiation offer in that situation. If the agent picks an action according to
some distribution, actions in the distribution support then determine the agent’s possible
preferences towards compensation schemes—his “types”—at renegotiation. When uncer-
tain about the agent’s actual action and hence his preference, at renegotiation the principal
can offer a menu of compensation schemes with dissimilar risk characteristics to screen
the different types of the agent. Therefore, incentives for costly actions remain.

Fudenberg and Tirole also show that for some agent utility functions, a contract
offering a higher rent to the agent expands the set of implementable action distributions.
It is then possible that in equilibrium the agent earns rents above his reservation utility.
In summary, Fudenberg and Tirole’s results stand in contrast to those in models without
renegotiation: in the classical principal-agent model the principal need never consider
random actions and the agent never obtains more than his reservation utility when his
utility function is separable with respect to income and effort.

In this paper, we investigate renegotiation in the principal-agent model when the
agent, rather than the principal, proposes the renegotiation contract; otherwise, our model
is essentially similar to the Fudenberg-Tirole model. In particular, a contract in this paper
is also defined as a menu of compensation schemes. We find that under a belief restriction
the equilibrium allocation is identical to that in the classical principal-agent model without
renegotiation. When renegotiation offers are made by the agent, not only can costly actions
arise in equilibrium, but equilibria satisfying a refinement must be second best.

The pair of models in Fudenberg and Tirole (1990) and here illustrate the lack of
robustness in renegotiation procedures: different extensive forms of renegotiation in the
principal-agent model yield entirely different equilibrium allocations. On the positive side,
however, our result indicates that the incentive-efficient allocation of the classical principal-
agent model is still the contracting outcome when the agent makes renegotiation offers
and when equilibria satisfy a belief refinement. In situations where the principal can
credibly refrain from making contract revision proposals, the standard principal-agent
model is applicable regardless of renegotiation.

What explains the second-best result when the agent, instead of the principal, makes
renegotiation offers? Observe that in the Fudenberg-Tirole analysis, at renegotiation the
principal’s belief about the agent’s action must remain identical to her initial belief. By
contrast, in our model, at renegotiation the principal’s belief can depend on the agent’s
new contract offer. For example, suppose the principal initially proposes an incentive
contract. Then the principal can believe that the agent has taken an inferior action if she

1. Ma (1991) considers multi-period contracts. In that model renegotiation occurs after an output has
been observed in the first period, The paper shows that implementing a costly action with probability one is
still feasible, but due to binding renegotiation-proof constraints the second best cannot be achieved.
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receives a full insurance new proposal from the agent, and she may indeed reject it.
Anticipating a rejection of his renegotiation offer, the agent chooses a costly action.

Although this argument might also imply a multiplicity of equilibrium allocations in
our model, there actually exists a second-best unique equilibrium allocation if the princi-
pal’s belief satisfies the following restriction: when the principal’s initial contract and the
agent’s renegotiation contract support the same, unique best action for the agent, then
the principal must believe that the agent has performed this action. Thus the principal
believes that certain weakly dominated strategies are never used by the agent: the agent
proposing a contract that supports the same, unique best action as the principal’s initial
contract, but not taking this action is weakly dominated.

Two other recent papers have studied contract renegotiation in the principal-agent
framework. Hermalin and Katz (1991) consider renegotiation after some signal about the
agent’s action becomes known to the principal and the agent; the information from this
signal, however, is non-verifiable, and hence the initial or renegotiation compensation
schemes cannot be based on it. Most strikingly, when this signal takes the form of the
agent’s actual action, Hermalin and Katz prove that the first best may be achieved through
renegotiation whether the principal or the agent makes the renegotiation offer. More
generally, they show that renegotiation can be used to exploit the non-verifiable informa-
tion from this signal to improve the welfare of the contracting parties. In our model, the
principal receives no new signal about the agent’s action at the renegotiation stage apart
from the inference she draws from the agent’s offer.

Matthews (1993) studies the same problem as in this paper, except that a contract in
his model consists of a single compensation scheme, rather than a menu, so equilibria in
this paper are excluded in his analysis. Nevertheless, the second best is achieved if equilibria
satisfy a belief restriction. In Matthews’s construction of the equilibrium, the principal’s
initial contract sells the entire production process to the agent—a sales contract—at a
price that gives the principal her second-best payoff. In equilibrium the agent offers the
second-best compensation scheme at renegotiation, which is then accepted by the principal.

In the next two sections we lay out the classical principal-agent model and the renegoti-
ation model. The analysis is in Section 4. The bulk of the paper focuses on the case where
the agent can choose between two actions. We then discuss how the result can be gen-
eralized when the agent has an arbitrary, finite number of actions. Conclusions are drawn
in Section 5.

2. THE PRINCIPAL-AGENT MODEL

In this section we describe a standard contracting model. The principal has a stochastic
production process which requires the agent’s effort or action. This action is unobservable
to the principal. Initially, we assume that the agent can choose between two effort levels,
e; and e,, with e; <e,. This assumption simplifies presentation; we later discuss extensions
to the case of an arbitrary, finite number of effort levels. Each action determines a distinct
probability distribution on a vector of » possible revenues (R;, ..., Ry, ..., R,)=R. The
vector (7(e;), . - ., u(e:), . . ., wa(e;)) =I1(e;) denotes the probability distribution induced
on R by effort ¢;, i=1, 2.

The principal is risk neutral, and has a payoff equal to the realized revenue less
any transfer to the agent. The agent’s utility function is additively separable with
respect to money and effort; he is risk averse with respect to money. If the agent
receives a monetary income I from the principal and expends effort e, his utility is
U(I)—G(e), where U is strictly increasing and strictly concave, and G is strictly
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increasing. Finally, the agent’s reservation utility from not participating is normalized
at zero.

If the agent’s effort were observable, the principal would bear all the risks. However,
if it is not, the agent will provide the least effort when all risks are absorbed by the
principal. To motivate the agent to perform a costly action, appropriate incentives must
be provided through a compensation scheme.

The earlier principal-agent literature has studied contracting outcomes when contract
renegotiation is ruled out; see Holmstrom (1979) and Grossman and Hart (1983). In these
papers, an incentive scheme specifies a transfer v, from the principal to the agent contingent
on revenue R,. A scheme v=(v,..., Us,..., U,) is said to implement action e; if given
the scheme, action e; maximizes the agent’s expected utility and gives him at least the
reservation utility. An incentive-efficient scheme for action e; is a scheme that implements
e; at minimal cost to the principal.

Formally, the incentive-efficient scheme for e;, v™ = (v}¥), solves Programme P(e;):
Choose v, h=1,...,n, to

minimize Y, 7,(e;) vy
subject to
2 wn(e)U(vn) = G(e) 2 Y. mn(e) Ulvn) = G(e),  i#), ()
Y. (e U(vy) — G(e;) 20, (2

where the summation operator here and throughout the paper applies toindex 2=1, . . ., n.
Programme P(e;) and subsequent programmes in the paper are assumed to possess solu-
tions. The objective function in P(e;) is the principal’s expected cost from the contract.
Constraint (1) is the incentive constraint; it ensures that e; is a best action. Constraint (2)
guarantees the agent his reservation utility. Because the agent’s attitude towards risk is
independent of his action due to the separable utility function, random compensations are
never optimal. Therefore v, is assumed non-random. (Formal proofs that stochastic v,’s
are suboptimal can be found in Holmstrom (1979) and Arnott and Stiglitz (1988).)

We discuss some properties of v'*. By the strict concavity of U, the incentive-efficient
scheme v"* must be unique.” The reservation utility (2) must bind. If the incentive constraint
(1) does not bind, then the incentive-efficient scheme for e; achieves first-best risk sharing.
Clearly (1) does not bind for e, since it is the least-cost action. Hence v'* consists of a
constant wage. The incentive constraint (1) often binds for the incentive-efficient scheme
for e,; Proposition 3 in Grossman and Hart (1983) gives conditions for this.> However,
our results do not rely on incentive constraints being binding; even the full insurance
property of v'* is not used for the proofs.

The principal’s expected utilities from implementing actions with incentive-efficient
schemes are

Y mu(e)[Ry—vi¥]. 3)

An allocation is defined as a probability distribution on the agent’s actions and compensa-
tion schemes. The seond-best allocation in the classical principal-agent model is the action

2. The uniqueness property only applies to transfers that are paid with strictly positive probability under
action e;. Transfers that never occur under ¢; can be specified arbitrarily, provided the reservation and incentive
constraints hold. The nature of this uniqueness property applies to all solutions of optimization programmes in
this paper. The uniqueness of incentive-efficient schemes is most easily derived by the Grossman-Hart method
of transforming the minimization instrument from dollars to utilities: with the transformation, the programme
becomes the minimization of a strictly convex function subject to a set of linear constraints.

3. Roughly, these conditions say that (1) binds if II(e,) and II(e,) have identical supports.
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and its incentive-efficient scheme that maximizes the principal’s expected utilities (3). We
assume that the principal prefers implementing e, to e;:

Y wu(e)[Ry— va*] <Y, male)[ Ry — vi*]. 4

Then the expression on the right hand side of (4) is the principal’s second-best payoff. We
call [e,; v°*] the second-best allocation. With (4) and absent contract renegotiation, the
principal proposes incentive scheme v°*, the agent performs action e, and is compensated
according to v**. For future use we let

a=Y mye)[Ri—vi*] and B=Y mi(e)[Ry—v3*].

For the renegotiation model, we need to extend the standard approach to include
random actions and their implementation. In this paper, a contract is defined as a menu
containing an arbitrary, finite number of compensation schemes. To implement random
actions, the principal initially proposes a contract, then the agent picks an action according
to a probability distribution on his set of available actions. Next, the agent selects one of
the schemes from the contract. Finally, the principal’s revenue is realized, and the agent
is compensated according to the scheme he has selected from the contract.

To study incentive-efficient contracts for random actions, first note that the number
of schemes in the contract can be taken as the number of actions available to the agent.
Hence, consider contract {¢/, i=1, 2}, where v'=(v},) and v}, is the agent’s compensation
if he picks scheme i/ and the revenue becomes R,. We say that an agent is type e; when
he has chosen action e;. Without loss of generality, v' is a most preferred scheme in {v', v*}
for a type e; agent, i=1, 2. A contract {v'} implements action e, with probability p, 0<p <1,
if given {v'}, choosing actions e, and e, with probabilities 1 — p and p is optimal* and gives
the agent at least his reservation utility. An incentive-efficient contract for action e, with
probability p is a contract that implements e, with probability p at minimal cost to the
principal. So an incentive-efficient contract for e, with probability p, 0<p <1, is a solution
to Programme P(e,, p): Choose v},, h=1,...,n,i=1, 2, to

minimize Y (1—p)7,(e)v)+ Y prule) v
subject to
Y. e U(vs) — Gler) =Y, mu(e2) U(v) — G(ez) 20, (%)
Y U 2y mie)Uvh),  i,j=1,2,i#). (6)

The objective function is the principal’s expected cost under the contract {v', v*} when
the agent picks action e, with probability p and a type e; agent selects v’ from the contract.
Constraint (6) says that a type e; agent will not gain by selecting scheme ¢/, i #j. Constraint
(5) ensures that the agent is indifferent between actions e, and e,, and obtains his reserva-
tions utility.

Proposition 0. For any p, 0<p <1, and incentive-efficient contract for action e, with
probability p is {v'*, V¥ }, where v'™* is an incentive-efficient scheme for action e;, i=1, 2.

For completeness, a proof of this proposition is provided in the Appendix.’ The
incentive-efficient implementation of random actions is achieved simply by pairing together

4. The agent must be indifferent between e, and e-.
S. Lemma 2.1 in Fudenberg and Tirole (1988) stated the same result.
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Principal chooses between C and D.
Principal proposes contract C. C
Agent selects a
e scheme from D.

Agent selects a

Agent chooses an action. scheme from C.

Agent proposes contract D.

FIGURE 1: Game I

the incentive-efficient scheme for actions in the support of the distribution. Although
Programme P(e,, p) for incentive-efficient contracts of random actions has considered
only non-degenerate distributions by restricting p strictly between 0 and 1, Proposition 0
holds for the two limits of p=0 and p=1 as well: both e, and e, are optimal actions given
contract {v'*, v”*}, and v™* is incentive-efficient for e;. Also, Proposition 0 extends to the
case of an arbitrary, finite number of actions: an incentive-efficient contract for a distribu-
tion on a finite number of actions consists of incentive-efficient schemes for actions in the
distribution support.

Since the incentive-efficient contract for random actions is independent of the agent’s
probability distribution on actions, the expected cost of implementing e, with probability
p is a weighted average of the cost of implementing action e, and action e, with weights
1—p and p respectively. Thus, the principal’s payoff is monotonic in p. In the standard
analysis, the principal need never consider implementing random actions, and generically
will strictly prefer a non-random action.

3. A RENEGOTIATION MODEL

We now describe the contract renegotiation game. Initially the principal proposes a con-
tract C. If the agent accepts C, he chooses an unobservable action from the set {e;, e, }.
Also, the agent may propose another contract D. Without knowing the agent’s action,
the principal then chooses between contracts C and D. Next, the agent picks a compensa-
tion scheme from the contract chosen by the principal. A revenue then becomes realized
and the transfer is executed according to the scheme selected by the agent. In this game,
renegotiation is conducted under imperfect information (since the principal never observes
the agent’s action), and is led by the party with superior information (the agent).

Two extensive forms can be defined for the renegotiation game. These extensive
forms, Games I and II, are illustrated® in Figures 1 and 2. Obviously they have the
same normal form; the only difference between them is the timimg of the agent’s
action and his contract counter-proposal. In Game I the agent’s contract renegotiation
offer is made after he has chosen an action; in Game II the agent announces a
contract and then picks an action.” Notice that in both games the principal observes
the agent’s contract counteroffer but not his action, and the agent chooses an action

6. For brevity, both the agent’s option of not participating and the execution of transfers after the agent
has selected the final scheme have been left out in the figures.

7. There is a third extensive form in which the agent picks an action and a contract simultaneously, but
this is equivalent to Game 1.
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nt selects a
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D Agent selects a
scheme from C

Agent chooses an action.
FIGURE 2: Game II

before the principal selects the final contract. One can identify subgames defined by
the principal’s contract C in both games; these are the only subgames in Game I. But
in Game II one can identify another class of subgames—those defined by the pair
ofljycontracts (C, D) announced by the two parties.

It is well known that perfect-Bayesian equilibria (see Fudenberg and Tirole (1991)
for a definition) are not robust to “irrelevant” transformations of the game tree; see for
example Kohlberg and Mertens (1986). The sets of perfect-Bayesian equilibria in Games
I and II need not be identical. In Game II, because of the existence of subgames defined
by (C, D), perfect-Bayesian equilibria are identical to subgame-perfect equilibria and
require that the agent’s action and the principal’s contract choice be mutual best responses
for any given pair of contracts (C, D). However, perfect-Bayesian equilibria in Game I
do not require this. For an arbitrary C, any perfect-Bayesian equilibrium in subgame C
in Game II is a perfect-Bayesian equilibrium in subgame C in Game I, but the converse
is not true.?

We use Game I for two reasons. In the next section we will show that there is a
unique equilibrium allocation when perfect-Bayesian equilibria in Game I satisfy a belief
restriction. This restriction is implied by perfect-Bayesian equilibria in Game II. Because
any perfect-Bayesian equilibrium in Game II is a perfect-Bayesian equilibrium in Game
I, the (unique) allocation in equilibria satisfying the refinement in Game I must be the
unique perfect-Bayesian equilibrium allocation in Game II. Thus, with the refinement
imposed, our results are independent of the choice of the particular extensive form. Second,
Game I is more in line with the Fudenberg-Tirole (1990) model where the renegotiation
contract is proposed by the principal after an action has been chosen.

At the renegotiation stage, our model fits exactly an “informed-principal” model by
Maskin and Tirole (1992). But our entire game is actually richer because of the stages
before renegotiation. This leads to two differences between the informed-principal game
and ours. First, the informed-principal model is one of incomplete information—the party
who possesses private information at the start of the game (the principal in their model)
proposes contracts. Our model is one of imperfect information—the agent learns his
private information (his choice of an unobservable action) during the play of the game.
Different efficiency concepts should be applied to games with different information struc-
tures. This point has been made by Holmstrom and Myerson (1983) (especially p. 1807).

8. Consider a given equilibrium in Game II; this equilibrium specifies the principal’s and the agent’s moves
for all subgames (C, D). To construct a perfect-Bayesian equilibrium in Game I, one simply uses the same
equilibrium strategies for the perfect-Bayesian equilibrium, and defines the principal’s beliefs to be the agent’s
equilibrium actions for all subgames (C, D) in Game II. Perfect-Bayesian equilibria in Game I need not be
subgame-perfect equilibria in Game II; examples are some of the equilibria in Proposition 1.
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Results in the informed-principal model are related to weakly interim and interim
efficiencies,’ the relevant efﬁmency notions in games of incomplete information. In our
model, the appropriate concept is ex ante efficiency, which corresponds to our definitions of
incentive-efficient contracts for actions and the second-best allocation. An interim efficient
allocation is generally ex ante inefficient. So, even if equilibria in the informed-principal
model lead to interim efficient allocations, ex ante efficiency in our model does not immedi-
ately follow. Second, in our model the uninformed player’s belief is generated endo-
genously. With this richer structure our analysis can be based on ex ante considerations:
at the renegotiation (interim) stage of our game, players’ beliefs can still depend on the
(ex ante) properties of the status quo contracts. This is infeasible in the informed-principal
model, since ex ante preferences are not defined for each player and the status quo contract
is exogenous.

4. ANALYSIS

A contract in the renegotiation game consists of a finite menu of compensation schemes
from which the agent can choose. The principal’s strategy is an initial contract offer C,
and a rule that specifies the probability of accepting the agent’s contract D. Given any
initial contract C and the agent’s proposal D, the principal’s belief structure is a probability
distribution on the set of actions. The agent’s strategy consists of a choice of action
and a contract proposal as a function of the principal’s initial contract, and a choice
of compensation scheme from any contract. Given a perfect-Bayesian equilibrium, an
equilibrium allocation is defined by the agent’s equilibrium actions(s), and the agent’s
equilibrium reward scheme(s).

In the literature, the notion of “renegotiation-proof” contracts has been used.
Although we do not need to appeal to it directly, and in fact we need to consider contracts
that are not renegotiation-proof, the next proposition can be related to the concept of
“weakly renegotiation-proof contracts”, due to Maskin and Tirole (1992, p. 24). To re-
phrase their concept here, we say that a contract C is weakly renegotiation-proof if there
exists an equilibrium in subgame C in which either the agent proposes C again or his
counteroffer is rejected. Our first result characterizes equilibria when the principal proposes
the contract C°={v'*, v**}, and shows that C° is weakly renegotiation-proof and that
the second-best allocation [e,; v°*] is an equilibrium allocation.

Proposmon 1. Consider the subgame defined by the principal’s initial contract

O={v'*, v**}. For any p, 0<p<1, there is a perfect-Bayesian equilibrium in subgame C°
in whzch the agent proposes C°, performs actions e, and e, with probabilities (1 —p) and p
respectively, and is compensated according to v™* when he picks action e;, i=1, 2. That is,
contract C° is weakly renegotiation-proof.

Proof. First, from Proposition 0 and inequality (6), it is optimal for a type e; agent
to pick v™* from the contract C°= {v'*, v**}. Second, consider any contract renegotiation
offer from the agent, D= {w', w?, ..., w*}, where w'=(w}) pays the agent wj contingent
on revenue R,. Define kp(i) =min[argmax, ), 7,(e;) UWw), k=1,..., K]; that is kp(i) is
the smallest index of a type e; agent’s most preferred schemes in D. We now construct an

9. A contract is weakly interim efficient if (i) it induces truth-telling for the agent, and (ii) there exists no
other Pareto-dominating (among all types of agent) contract satisfying (i) that the principal prefers regardless
of her belief. The definition of interim efficiency is well known; see Holmstrom and Myerson (1983).
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equilibrium in which the agent proposes D= C°, performs action e, with probability p,
and selects v* from C° if he has performed e;.

We start by describing the agent’s equilibrium strategy. In subgame C°, he takes
action e, with probability p and offers D= C°. When choosing among schemes in C°, he
picks scheme v™* if he has taken action e;. If he is to choose a scheme from any other
contract D= {w', w’, ..., w*}, he picks w** if he has taken action e, i=1, 2.

Next, we describe the principal’s strategy in subgame C°={0v'*, v**}. We begin by
describing the principal’s belief on the agent’s action for any renegotiation offer D=
{w',w?, ..., w*}. First, compute the set of best actions under D. That is, for any contract
D, define the set

¥(D) = {e;:ie argmax; Y, mx(e) Uwi*Y’) — G(e))}.

If ¥(D) = {e,}, the principal believes that the agent has selected action ¢;, i=1, 2. If ¥(D) =
{e1, e2}, the principal believes that the agent has chosen e, with probability p. In words,
if given D the agent has a unique best action, the principal believes that this action has
been taken. If given D the agent is indifferent between e, and e,, the principal believes
that action e, has been taken with probability p, where 0<p<1.

Given this system of beliefs and the agent’s strategy, the principal chooses between
contracts C° and D to maximize her utility. If ¥(D)= {e;}, then select C° (or reject D) if
and only if

Y. mi(e)vit <3 malewi®. %)
If ¥(D)={e, e,}, then select C° (or reject D) if and only if
(1-p) wle)vi* +pru(e2)vi* < (1= p)mu(e)wi? ™ + pri(ex) wi>®. 6

We now verify that these strategies and beliefs form a perfect-Bayesian equilibrium
in subgame C°. Clearly the principal’s strategy is optimal given her beliefs and the agent’s
strategy in subgame C°. The agent’s selection rule from any contract is also optimal. If
the agent offers D= C°, performing e, with probability p is optimal, since given C° he is
indifferent between both actions and attains his reservation utility.

It remains to show that the agent cannot gain by proposing D # C°. These are two
possibilities: (a) e; is the unique best action given D, and (b) both actions are optimal
given D. Consider case (a). Since the agent can always obtain his reservation utility by
proposing C°, we can assume that his optimal action given D is worth at least the reserva-
tion utility. By assumption e¢; is the unique best action, we have

Y. 2u(e) UMW) — G(e) 2. mu(e)) Uwi??) = Gley).

k()

Also, a type e; agent prefers scheme w**? to scheme w*>®, Hence

S 7e)Uwir?) 25 7a(e) Ui,

These two inequalities imply that w*?” satisfies the incentive constraint (1) and the reserva-
tion utility constraint (2) in programme P(e;). Hence (7) must hold; the principal will
reject D. It follows that the agent cannot gain by proposing such a contract. For case (b)
we can use the same argument as in case (a) to conclude that {w*>™", w*?®} satisfies all
the constraints in programme P(e;, p). Therefore (8) must hold. Again, the principal will
reject D. In sum, the agent cannot gain by offering D#C°. |

The intuition for Proposition 1 is this. C° is an incentive-efficient contract for any
action when a type e; agent chooses v™* from it. When she receives a renegotiation offer,
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the principal believes that the agent has taken an optimal action relative to the new
contract. She rejects it if her utility from it is less than that from C°. But this means the
principal will only accept a renegotiation contract when it is incentive-efficient and Pareto
superior to C°. Hence if the principal accepted the renegotiation offer, the agent had to
receive less than his expected utility from C°.

Proposition 1 shows that any probability distribution on actions can be part of a
perfect-Bayesain equilibrium in subgame C°. The second-best allocation [e,; v**] is an
equilibrium allocation (when p=1). Existence of a perfect-Bayesian equilibrium in the
entire Game I is also established. The principal’s equilibrium expected utility is bounded
by her expected utility in the second-best allocation. For p =1, the continuation equilibrium
in subgame C° gives her this expected utility. Thus, given this continuation equilibrium,
it is a best response for the principal to propose C° in Game I. It follows that Game I
possesses a perfect-Bayesian equilibrium.

Proposition 1 contrasts with the Fudenberg-Tirole (1990) result that equilibrium
action must be random when the principal makes renegotiation offers. Although the agent’s
expected utilities are identical in all the equilibria in Proposition 1, the principal strictly
prefers the second-best equilibrium. The contribution of this paper is to show that with a
belief restriction the second best is the unique equilibrium allocation in the whole game.

Before continuing, we introduce a belief restriction:

A Refinement. Suppose the principal initially proposes contract C, and
later the agent proposes an alternative contract D. Suppose the agent has an
identical unique best action given C or D. Then the principal must believe with
probability one that the agent has taken this action.

The interpretation of this belief restriction is as follows. Suppose the agent responds
to the principal’s contract C by proposing contract D. For each of these contracts, action
e; and a choice of the most preferred scheme from the contract are the only optimal moves
for the agent.'® What should the principal believe? Notice that e; is the agent’s best action
independent of the principal’s choice of contracts. The refinement insists that the principal
must believe that e; has been taken. Formally it says the principal does not believe that
the agent uses certain weakly dominated strategies. Proposing contract D against C and
taking an action other than e; is a weakly dominated strategy in the renegotiation game."'
One can also adopt a “forward induction” interpretation for this refinement. If in subgame
C the agent had intended to perform e;#e;, he would not have proposed a contract D
where e; was sub-optimal under either C or D. Thus, by proposing D, he signals that his
action must be e;.

Notice that the refinement does not refer to any equilibrium; it is based on a domi-
nance comparison. The refinement is only applicable to a subset of all contract pairs. It
places no restriction on the principal’s belief either when there are multiple best actions
given a contract, or when best actions under the principal’s and the agent’s contracts are
not identical. Equilibria described in Proposition 1 satisfy the refinement vacuously, since
under C° the agent is indifferent between his actions.

The refinement is implied by perfect-Bayesian (or subgame-perfect) equilibria in Game
II. Consider a subgame in Game II defined by contracts C and D. Our refinement then
translates to the requirement that when there is a unique action that strictly dominates

10. That is, from notation in the proof of Proposition 1, we have ¥(C)=¥(D)={e;}.
11. Tt is a strictly dominated strategy in the subgame defined by C.
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other actions in subgame (C, D), the principal believes that the agent will take such an
action in subgame (C, D). Clearly this must be true in a Nash equilibrium in subgame
(C, D).

Our goal is to show that equilibria satisfying the refinement must lead to a second-
best allocation. We first show that in the subgame defined by an appropriate perturbation
of C°, the principal’s payoff in any perfect-Bayesian equilibrium satisfying the refinement
is smaller than, but arbitrarily close to, her second-best payoff.

We use a contract that provides strict incentives for the agent to perform e,, C*=
{v'*, x°}, indexed by £>0, where x°=(xj) solves the following programme: Choose
ap,h=1,...,n,to

minimize Y w,(ez)an
subject to
Y mi(ex) Ulan) — G(ez) 2 Y. mu(er) Ulan) — G(er) + 26, ©)
Y. wu(ex) Ular) — G(ey) 2 &. (10)

At a solution, the reservation utility constraint (10) must bind. From this, (9), (6), and
Y. mu(e)) U(vi¥) = G(e;) we know that for contract C° a type e, [resp. type e;] agent strictly
prefers scheme v'* [resp. x°]:

Y mie)) U(vy*) = G(er) > G(e)) — 2y mwa(e)) U(xh),
Y w(e) UGxi) = G(e) + £> Y. ma(e2) Uwi*) 2 Y, male2) U(vr*).

In contract C° the agent obtains utility € [resp. zero] by performing e, [resp. ei]. As ¢
tends to zero, x° tends to v**, and contract C° tends to contract C° in Proposition 1. We
now analyse equilibria in subgame C°.

Proposition 2. In any perfect-Bayesian equilibrium in subgame C°, the agent must
choose e, with positive probability.

Proof. The agent’s equilibrium expected utility in subgame C® must be at least ¢,
because he can always offer C° again and perform e,. Suppose the proposition is false;
that is, suppose that in a perfect-Bayesian equilibrium in subgame C° the agent chooses
action e, with zero probability. First, if in equilibrium the principal always picks C*, then
from action e, the agent gets ). 7,(e1) U(vy*) — G(e;) =0< ¢. This is a contradiction. Hence,
in equilibrium the agent must offer a contract D# C® with positive probability and the
principal must accept it with positive probability.

Recall that given e, the principal’s payoff from C° must be @, since selecting v'* from
C® is a type e, agent’s unique best move. Therefore given e, her payoff from accepting the
renegotiation contract D must be at least . In equilibrium the agent selects among some
schemes in contract D. At least one of these equilibrium schemes in D gives the principal
at least a; otherwise she would not accept D. So, without loss of generality, let w' in
contract D be chosen by the agent with positive probability, and given action e, scheme
w' let the principal obtain at least a. Furthermore the agent’s equilibrium expected utility
from w' must be at least &. These arguments imply that e, cannot be a best action given
D: the agent’s expected utility from w' and e, is

Y. wu(e) Uwi) — G(er) 2 £>0,
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which says w' strictly satisfies the reservation utility constraint (2) in programme P(e,).
Recall that a is the principal’s payoff from the solution to Programme P(e;). So when
the principal obtains at least @ from scheme w' and action e;, scheme w' must violate the
incentive constraint (1) in Programme P(e;). Hence e, cannot be an optimal action given
D. But e, is the unique best action given contract C°. So independent of the principal’s
choice of contract, e, is sub-optimal. We conclude that in an equilibrium in subgame C*
the agent cannot take e, with positive probability. This is a contradiction. ||

Define 6(¢) by 6(&) =) ma(e2)(Rn—x5). Thus, 8(¢) is the principal’s payoff under
contract C° when the agent takes action e,. Recall B is the principal’s second-best payoff.
From the definition of x*, we have 6(¢&) < for £>0, and lim,_, 6(&) = .

What is the agent’s maximum equilibrium expected utility in subgame C*? Which
contract will achieve this? If the agent’s offer is always rejected, then his equilibrium
expected utility is €. But the agent may improve his welfare by offering a contract accept-
able to the principal. From Proposition 2 we know that action e, must be an optimal action
given the equilibrium contract. Furthermore, if the principal believes with probability ¢,
that the agent type’s is ¢;, i=1, 2, then her “reservation payoff” is the expected utility she
can obtain from contract C°, ¢,a+ ¢,6(¢). The agent’s alternative contract must offer
the principal at least this reservation utility.

The above discussion suggests that we should look for schemes that maximize the
agent’s expected utility subject to the constraints that e, is a best action, and that the
principal obtains at least her reservation utility. Since we only know that e, must be an
optimal action given the equilibrium contract, we must consider separately equilibria where
e, is always performed, and where e, is chosen with probability p, 0<p<1.

In equilibrium, the agent makes some contract counter-proposal. It is convenient to
consider two possibilities: either this counter-proposal is always accepted by the principal,
or it is accepted by the principal with positive probability less than one. Let us consider
the first case. Suppose that e, is always performed, consider Programme P(¢): Choose aj,
h=1,...,n,to

maximize Y 7,(e,) U(a,) — G(ez)
subject to
Y. wu(e2) Ulan) — G(e2) 2 Y, miler) Ulan) — Gle), an
Y. wu(e)an <y, ma(ex)xy . (12)

Constraint (11) says that e, is a best action, and constraint (12) says the principal weakly
prefers scheme () to x° given e,. By the strict concavity of U, the solution to P(¢) is
unique. At a solution constraint (12) binds. Let y*=(y}) be the solution. Denote the
optimized value of the objective function of Programme P(&) by y(¢g). Hence, y(&)=
Y mi(e2) U(y5) — G(ey) 2 €.'* Observe that y(¢) is an upper bound on the agent’s expected
utility in equilibria with e, always performed.

Now we turn to equilibria in which e, is taken with positive probability p < 1. Clearly,
in these equilibria the agent must be indifferent between his actions, and the principal
must weakly prefer accepting the agent’s offer. So consider the following: Choose aj, i=
,2,h=1,...,n,to

maximize Y w,(e,) U(a}) — G(e2)

12. It is clear that y(&) > ¢ and y®#x® if and only if constraint (9) binds at a solution to that programme.



CHING-TO ALBERT MA RENEGOTIATION IN AGENCY CONTRACTS 121

subject to
Y. wi(e) Ulan) — Gle) =Y. mi(e2) Ulaz) — Gle), 13)
Y mle)Ua) 2y mle)Uldh),  i,j=1,2,i#], (14)
Y (1-p) ma(e)an+ prrh(ez)af, =Y ({1-p) muer)vr* + Y pru(e)xs. (15)

Constraint (14) says that a type e; agent selects scheme a'; constraint (13) ensures that
the agent is indifferent between actions. Finally, constraint (15) states that the principal
weakly prefers {a',a’} to {v', x°}. Again, (15) must bind at a solution; the proof of
Proposition 0 in the Appendix can be modified to verify this. The strict concavity of U
implies that the solution, {z', z°}, is unique. Denote by x(p, e) the value of the objective
function at {z', 2’}; that is, x(p, €)=Y mi(e2) U(z;) — G(e;) is an upper bound on the
agent’s expected utility if in equilibrium e, is performed with probability p.

Clearly, if x(p, €)<¢, then choosing e, with probability p cannot be part of an
equilibrium since the agent’s equilibrium expected utility in C° is at least €. So if there is
an equilibrium in which e, is chosen with probability p <1, then we must have x(p, &) 2 €.

Lemma 1. Suppose p<1 and x(p, €)= &, then k(p, €) <y(¢).

Proof. By hypothesis x(p, €)= ¢ and the agent is indifferent between the actions,
so we know that ¥ m,(e,) U(z;) — G(e)) 2 £>0. Moreover, from (13) and (14), we have
Y (e U(zn) — G(e)) 2 Y. maler) U(z}) — G(e,). So scheme z' satisfies all constraints in the
programme for the incentive-efficient contract for action e;, P(e;). However, z' makes the
reservation utility constraint (2) in P(e,) slack. Hence given e, scheme z' gives the principal
less than a:

Y m(en)zi> Y wuler)vi*.
Since (15) must hold as an equality at the solution {z', z*}, it follows that
Y mu(e2)zi <Y wa(e)xs.
From this inequality, and the fact that (13) and (14) imply
Y. mi(e)) U(z3) — G(e) 23, ma(e) Uzi) — Glen),

we know that z° satisfies all constraints in programme P(&). However, z* makes constraint
(12) slack, and therefore cannot be a solution to that programme. It follows that

k(p, €)=Y mi(e) U(zi) — G(ex) <Y mi(ex) U(¥i) — G(ex) =v(8). |

Intuitively, for each action we find the incentive-efficient scheme when the principal’s
status quo contract is C°= {v'*, x°}. The best incentive scheme for the agent is the one
for action e, with probability one. Contract {v' *, x*} would have been an incentive-efficient
contract for all actions, including random ones, if ¢ were zero. With a strictly positive &,
it is not incentive-efficient except for action e, . But the slacks in the contract {v'*, x°} are
at the scheme for action e,. The agent benefits most if these slacks are reduced and e, is
always performed. If he randomizes between actions, the principal’s expected cost of C*
becomes a weighted average of costs from an incentive-efficient scheme and an incentive-
inefficient one. The scheme »'* in C° then limits the amount of slack that can be reduced.
In sum, the Lemma says that in equilibria in which the agent’s contract is always accepted,
an upper bound for the agent’s expected utility is y(&). Moreover, since y® is a unique
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solution to P(g), the agent achieves y(&) only if he is compensated according to
scheme y°.

Let us turn to the second case; that is, equilibria in which the agent’s proposal is
accepted with positive probability less than one. Again, consider first those equilibria in
which the agent performs e, with probability one. Can the agent achieve an expected
utility higher than y(&)? Observe that y° is an incentive-efficient scheme for this action:
it maximizes the agent’s expected utility subject to the agent’s incentive and the principal’s
reservation utility constraints.

Suppose the agent proposes a contract D={w', ..., w*}, and without loss of gen-
erality assume that a type e; agent picks scheme (w;??) from D (where kp(i) is defined in
the proof of Proposition 1). Suppose the principal chooses between C° and D with probabil-
ity ¢ and 1 —q. Then she must be indifferent between x° and w**® so we have

Y wu(e)lgxi+ (1 —@)wiPP1<Y malex)xs,

which says that the principal’s reservation constraint (12) is satisfied by the stochastic
scheme that pays the agent according to x° and w**® with probabilities ¢ and 1—g¢
respectively.

From the agent’s point of view, the principal’s randomization over C* and D results
in a stochastic compensation scheme: with probability ¢ he will be compensated by x*,
and with probability 1—g by w*>®. Nevertheless, this stochastic scheme must satisfy his

incentive constraint (11) in Programme P(¢):
Y. #u(e)[qUxR) + (1 — ) Uwi*®)] = G(e2)
2y mi(en)lqU(vi*) + (1 - ) Uwi* )] - Ger)
2y mle)lqU(xi) + (1 - @) Uwi*®)] - Ge),

where the second inequality follows from the fact that v'* and w**” are most preferred
schemes for a type e, agent in C® and D, respectively.

But we know that stochastic schemes are incentive-inefficient, and therefore must give
less expected utility to the agent than the deterministic incentive scheme y° in Programme
P(¢). Intuitively, extraneous uncertainty has been created by the principal’s randomization.
Since the agent is risk averse, this can only diminish welfare. An analogous argument
applies to equilibria in which the agent chooses actions randomly; when the principal
randomizes over the choice of contracts, the agent’s expected utility must be less
than «(p, €). To conclude, in subgame C°, the agent’s equilibrium expected utility is at
most y(¢).

There may be many equilibria in subgame C°. For example, when «(p, €)= &, in one
equilibrium the agent chooses e, with probability p <1 and proposes {z', z*}, which will
be accepted by the principal. The agent’s choice can be supported as an equilibrium move.
If he proposes any other contract, the principal believes with probability one that action
e; has been taken. Thus, the agent cannot gain by deviating. But beliefs in this equilibrium
fail the refinement. Our main result is that in subgame C° in any equilibrium satisfying
the refinement the agent always takes action e, and is compensated according to y°.

Proposition 3. There exists a perfect-Bayesian equilibrium satisfying the refinement in
subgame C° with the following allocation: the agent always take e, and is compensated
according to y°; the principal’s and the agent’s equilibrium utilities are 5(€) and y(¢€),
respectively. Moreover, any perfect-Bayesian equilibrium satisfying the refinement in
subgame C¢ gives rise to this allocation.
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Proof. We begin by constructing such an equilibrium in subgame C°®. Consider a
contract D={w', ..., w*}; adopt the definition of k(i) as in the proof of Proposition 1.
The agent’s equilibrium strategy in subgame C® is to take action e, and propose a contract
D? with a single scheme y°: D*= {y®}. If the agent is to choose from contract C*, he picks
v'* [resp. x] if he is type e, [resp. e,]. If the agent is to choose from any other contract
such as D, he picks w*>?® if he is type e;. If the agent should take action e,, he would
propose D= {v'*}.

The principal’s equilibrium strategy is to accept the contract D°. On receiving a
proposal D from the agent, the principal believes that action e, has been taken if it is a
best action given D. Otherwise, she believes that action e, has been taken. Given the
agent’s strategy and the principal’s beliefs about the agent’s action, the principal accepts
the agent’s contract if her expected utility from any proposal is at least that from C°.
Clearly, the equilibrium play results in an allocation described by the proposition.

It is easy to verify that these strategies constitute a perfect-Bayesian equilibrium in
subgame C°. First, given the agent’s strategy and the principal’s belief, the principal’s
strategy is optimal. Constraint (12) and (%) being a solution to Programme P(¢) imply
that given e,, the principal is indifferent between D® and C°. Hence, accepting D° is
optimal. Moreover, the principal’s beliefs pass the refinement. Action e, is the unique best
action given C°. If action e, is also the unique best action given a counteroffer D, according
to the refinement, the principal believes that the action is e,. This is what the equilibrium
prescribes. Given the principal’s strategy, the agent’s strategy achieves his maximum equi-
librium expected y(¢) in subgame C®, and therefore is a best response.

It remains to be proven that with the refinement imposed, any perfect-Bayesian equi-
librium yields an allocation described in the proposition. We first demonstrate that the
agent can get as close to y(&) as he wishes. Let & >0 and consider scheme (z°*) that solves
the following programme: Choose a;, h=1,...,n, to

maximize Y w4(e2) U(ay) — G(e,)
subject to
Y. wh(e) Ulan) — G(ex) Y. mu(er) Ular) — G(er) + €, (16)
Y w(e)an <y, mu(ex)xr— €. 17)

Suppose the agent offer H® ={(zf)} against C°. From (16), for any & >0, the agent’s
unique best action given H* is e,. Given C° the agent’s unique best action is also e,. Thus
the refinement says that on observing H® in subgame C° the principal must believe that
the agent has chosen e,. Constraint (17) guarantees that given e, the principal strictly
prefers accepting H*. Hence the principal must accept H*. Since for & =0, (16) and (17)
are identical to (11) and (12), respectively, the agent’s expected utility from z* must tend
to y(¢) as &' tends to zero.

We now claim that in subgame C° in any equilibrium satisfying the refinement, the
agent’s equilibrium expected utility must be y(&). To the contrary, suppose that there is
an equilibrium in which the agent gets £ < y(¢). For strictly positive and sufficiently small
¢ the agent can guarantee a utility strictly bigger than ¢ by proposing H®. This contradicts
the assumption that the agent gets less than y(&) in an equilibrium. Because y° is the
unique solution to Programme P(¢), the agent must take action e, and be rewarded
according to y°. We conclude that in subgame C° the allocation in any equilibrium satisfy-
ing the refinement must be the one described in the proposition. ||
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In Proposition 3 we show how the principal can uniquely implement action e, at an
arbitrarily small extra cost, provided perfect-Bayesian equilibria satisfy the refinement. As
the paragraph preceding the proposition suggest, the refinement is necessary for the result.'

We can now prove that when perfect-Bayesian equilibria fulfill the refinement, equilib-
rium allocations must be second best. It is obvious that the principal’s equilibrium payoff
cannot be higher than B, her second-best expeted utility. Suppose in an equilibrium in the
contract renegotiation game the principal gets 77 < 8. Then there exists £ >0 and sufficiently
small such that in subgame C* her unique payoff in perfect-Bayesian equilibria satisfying
the refinement is 6(&)>n. Moreover, the agent must accept the contract C°® since in
perfect-Bayesian equilibria of subgame C°, he obtains more than his reservation utility.
This contradicts the assumption that 7 is an equilibrium payoff. Since [e,; v**] is the
unique allocation that gives the principal an expected utility B, this must also be the
allocation in every perfect-Bayesian equilibrium satisfying the refinement.

Theorem 1. In the contract renegotiation game where the agent makes renegotiation
offers, any perfect-Bayesian equilibrium satisfying the refinement leads to a second-best
allocation, i.e., an equilibrium allocation in the standard principal-agent model with contract
renegotiation disallowed.

In this paper the analysis concentrates on a particular subgame C°. We show that it
has a second-best equilibrium. In order to prove the theorem, we then analyse equilibria
when C° is slightly perturbed to C°. As we have discussed in the introduction, Matthews
(1993) studies the same problem, but a contract in his model is simply a single sharing
rule, not a menu. Thus subgames such as C° and C® in our model are excluded. Matthews
(1993) proves a similar result: when selling the entire production process to the agent at
a sufficiently high price is feasible, second-best allocations are the only equilibrium alloca-
tions, provided perfect-Bayesian equilibria pass a belief restriction (which is different from
ours). Matthews’s results imply that if a sales contract is feasible, there exist ex ante
efficient equilibria in our game different from those we have analysed."

We now discuss how our results can be generalized to the case of an arbitrary, finite
number of actions. Suppose there are m actions: e, ...,e;,...,en, and each of these
induces a distinct probability distribution I1(e;) on the revenue vector (Ry, ..., R,). The
utility costs of these actions to the agent are given by G(e;). We adopt:

Assumption. Each action, e;,i=1,...,m, is “strictly” implementable.'®
That is, fqr each ¢;, there is 6 >0 such that for all 0<&<§, there exists
(1, ..., Uk, ..., 0,) such that

Y e Uvh) —Ge) 2 Y, mu(e) Uwi) —Gle) te,  j#i. (18)

An incentive-efficient for action e; is a solution to the following programme: Choose
v, h=1,...,n,to

minimize Y 7,(e;)vx

13. Proposition 3 contrasts with a result in the informed-principal model. Proposition 11 in Maskin and
Tirole (1992) demonstrates that refinements such as Cho-Kreps, and Farrell-Grossman-Perry may rule out
interim inefficient equilibria in that model. Our refinement is weaker since it only uses a dominance argument,
and it rules out ex ante inefficient equilibria.

14. Since a contract may consist of a single scheme, equilibria in Matthews’s model are equilibria in ours.
A sales contract may not be feasible if the domain of the agent’s monetary utility function U is bounded below.

15. Proposition 2 and Corollary 2 in Hermalin and Katz (1991) characterize conditions on I(e;) and G(e;)
for which the set of inequalities in (18) admits a solution when ¢ is set at zero.
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subject to
Y 7i(e) Uwn) — Ge) 2 Y 7(e)Uwn) — Glep),  j=1,...,m, (19)
. mu(e) U(vr) — G(e;) 20. (20)

Let v™* = (v, ..., v’¥) be an incentive-efficient scheme for action e;. It is straightforward
to verify that inequality (20) must bind. Consider the set of incentive-efficient schemes,
V¥={v'*, ..., v™* ..., v"™}. Then v™ is a most preferred scheme in for a type e; agent
in V*, If he has taken action e;, we know from (20) that if he picks v™*, his expected
utility is zero. But none of the other schemes offer a higher expected utility. Consider
scheme v’*, j#i. Given v/*, ¢; is a best action, and from constraints (19), and constraint
(20) being binding, we see that

Y. wu(e) Uwi¥) — G(e;) 0.
A second-best action is given by e, where
Y mu(e)(Ry—vi¥) 2 Y, ma(e) (Ry— i), i=1,...,m.

A second-best allocation is defined by [e;; v™*]. For any given set of parameters, there may
be many second-best allocations. Nevertheless, our results apply to every second-best allo-
cation. Proposition 1 generalizes easily. According to Proposition 0, {v‘*, Al
is incentive-efficient for any random action. Consider the subgame defined by the contract
{v'*, LU L 0™ = C°. Any distribution on the agent’s action can be an equilibrium
action in subgame C°.

The construction of these equilibria closely resembles those in Proposition 1. For any
counter-proposal from the agent, D={w', ..., w*}, let kp(i) be the smallest index of a
type e; agent’s most preferred schemes in D. For any D, a type e; agent picks scheme
wo® Let (D) be the set of best actions with respect to D:

¥(D)={e;: ie argmax; Y ,(e,) Uwi*) - G(e),j=1,...,m.}.

The principal believes that the agent chooses his actions according an arbitrary distribution
on ¥(D). She rejects D if and only if D gives her less expected utility than C° according
to her beliefs. Using the argument in Proposition 1, one easily shows that any random
action is an equilibrium action in C°. Therefore, the seond-best allocation [e,; v°*] is an
equilibrium allocation.

To prove that every equilibrium allocation is second-best when equilibria satisfy the
refinement, first consider a scheme v°(€) that solves the following programme: for £>0,
choose vy, h=1,...,n,to

minimize Y 7,(es) vy
subject to
Y wule) U(vy) — G(es) 2 Y, mule;) U(vn) — Gle) + 26, i#s,
Y. wales) U(vn) — Gles) 2 &.

In this programme, the agent is given a strict incentive to perform e,; what is more,
a rent £>0 is guaranteed with this action.

Next, consider i#s, and for &>0, let v'(g;) be the solution to the following pro-
gramme: choose v, h=1,...,n, to

minimize Y, 4(e;)vy
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subject to
2 wle) U(vn) —G(e) 2Y mi(e)) U(vn) —Gley) + &1, i#,
Y. mu(e:) U(vn) — G(e;) 20.

Here, the agent strictly prefers to pick action e; given the scheme, but no rent is available
through v'(&)).

Furthermore, pick ¢;> 0 sufficiently small such that
Y wu(e) Ulwi) — G(e) < &, (21)
where w' solves the following programme: choose vy, k=1, ...,n, to

maximize ¥ 74(e;) U(vy) — G(e;)
subject to

Y. wu(e) U(vn) — G(e) 2 Y, ma(e;) U(vn) — Gle)), i#],
Y ma(e)(Ry—vi(€)) 2 Y. mal(e) (Ry—vy).

That is, w' represents the incentive-efficient scheme given ¢; and status quo scheme v'(¢;)
for the principal. Although w' may relax all the slacks in the incentive constraints, by
inequality (21) the original slack ¢; is so small that the agent’s gain in expected utility
must be less than ¢. For any £€>0, and for each i#s, an &; that satisfies the above
conditions must exist. To see this, suppose &;=0, then v'(&;) is simply an incentive-efficient
contract for action e; and v'(g;) =w', hence (21) is satisfied automatically. By continuity,
for ¢; sufficiently close to 0, inequality (21) will still be true.

Now consider a perturbation C°: C°={v'(g)),...,v'(&),...,v°(&),..., V" (&m)}.
Clearly, each ¢;, i#s, must go to zero as & goes to zero, and therefore C° tends to C° as
well. Thanks to ¢;>0 in the relaxation of the incentive constraints in the programme for
v'(&;), we can easily verify that a type e; agent will strictly prefer to pick scheme v'(¢;)
from C°. Similarly, a type e, agent will strictly prefer to pick scheme v°(&). Note that for
the case of only two actions in the earlier analysis, &, can simply be taken as zero, since
the incentive constraint in Programme P(e;) does not bind.

For i #s, although each of the incentive constraints for the programme that determines
v'(&;) has been slightly relaxed, the amount of slack &; has been chosen so small that even
if the agents is allowed to propose an alternative incentive-efficient scheme that completely
relaxes this slack (such as w'), he will gain by strictly less than &. Put differently, although
the scheme v'(¢&;) allows a slack to ensure that type e; must choose v'(&;) in contract C¥,
this slack is so small relative to & in the programme for v*(¢) that v'(¢;) is almost incentive-
efficient for action e;.

Finally, for the programme that determines v°(¢), both the incentive and reservation
utility constraints have been relaxed. Given v°(¢), the agent obtains ¢ by performing e;.
The important point, however, is that, by the construction of v'(&;)’s, none of the other
actions can allow the agent to achieve .

Observe that the agent cannot gain by randomizing between actions; if he did random-
ize over actions, then the principal’s status quo utility at renegotiation would be determined
by schemes with different amounts of slacks, and therefore by schemes with smaller
amounts of slacks than that in v°(¢). This implies that the agent’s equilibrium expected
would not be the maximum of all possible equilibria. Also, the agent cannot gain if
the principal randomizes between the contract C° and his proposal because extraneous
uncertainty is introduced.
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In an equilibrium in subgame C?, the agent must choose e, with strictly positive
probability, an extension of Proposition 2. Although contract C® is incentive-inefficient
generally and thus may be renegotiated to an incentive-efficient contract even if the agent
does not take action e,, the agent cannot obtain ¢ if he never takes action e;. The maximum
slack in C° resides in ¢°(¢). Thus, the maximum equilibrium expected utility the agent can
obtain through renegotiation is by taking action e, and proposing an incentive-efficient
contract that relaxes the maximum slack in C*. Furthermore, the refinement guarantees
that if the agent offers a contract with a single scheme which solves a programme similar
to P(¢€), the principal must accept it, allowing the agent to achieve his maximum expected
utility. By perturbing the contract C° slightly, the principal achieves the second best
approximately. It follows that in an equilibrium satisfying the refinement, the equilibrium
allocation must be second best.

5. CONCLUSIONS

In this paper we have analysed contract renegotiation in a principal-agent model. Contract
renegotiation offers are made by the agent. A refinement on the principal’s beliefs is
imposed: if exactly one action is optimal with respect to both the principal’s and the
agent’s contract, she believes that the agent has chosen it. With this refinement, perfect-
Bayesian equilibria give rise to allocations identical to the second best in the standard
principal-agent model without renegotiation. When renegotiation is led by the agent and
when equilibria satisfy the refinement, equilibrium allocations are ex ante efficient.

In the paper the principal is assumed risk neutral. This assumption is unimportant.
The theorem is true when the principal is risk averse. None of our results depends on the
particular insurance characteristic of incentive schemes. If the principal is risk averse, we
can simply replace the principal’s objective function in each optimization programme in
this paper by her utility function.

The results in Fudenberg and Tirole (1990) and here suggest that equilibrium alloca-
tions depend critically on the exact renegotiation mechanism. Future research to address
robustness issues seems necessary. It would be interesting to study game forms that permits
renegotiation offers to be made by both the principal and the agent. As an example, the
agent and the principal can be chosen to be the proposer with probabilities § and 1—6,
respectively. Then the second best is not an equilibrium allocation for 6 strictly less than
one. This is because the principal must offer a full insurance scheme at renegotiation if
she believes that a costly action has been taken with probability one. Because of this, the
agent will be rewarded according to a full insurance scheme with positive probability. So
the equilibrium allocation cannot be second best. However, we speculate that as 6
approaches one, there exist approximately second-best equilibria. The formal characteriza-
tion of equilibria and whether equilibrium refinements can rule out inefficient ones await
research.

The renegotiation models in Fudenberg and Tirole (1990) and in this paper use a
static production technology: revenues are realized only once. In dynamic models, the
agent’s action may induce revenues over many periods. Then there are many possible
dates for renegotiation. If renegotiation can only take place before any revenue is realized
and is led by the agent, results in this paper should apply. Analysis of the equilibria of
dynamic models when agent-led renegotiation occurs after some revenues have realized
requires further research.
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APPENDIX

Proof of Proposition 0. We begin by rewriting the programme for the optimal contract for action e, with
probability p: Choose v, h=1,...,n,i=1,2, to

minimize ¥, (1 —p) wi(er)vi+ Y prru(ex)vh

subject to
Y. (e U(vn) — Glen) 2 X malez) U(vr) — Gles), (22)
Y 7€) U(vi) — Glex) 2 Y, maler) U(vh) — Gley), (23)
¥ mu(e) U(vi) — G(ey) 20, (24)
Y. mu(e2) U(v3) — G(ez) 20, (25)
Y e U(vp) 2 Y, mu(en) U(vy), (26)
¥ ma(e2) U(vi) 2 Y. males) Ulvi). 27

Consider a relaxed programme in which (22), (23), (26) and (27) are replaced by
Y. (e U(v) — Gler) 2 Y, mu(ex) Uvr) — Gleo), (28)
Y. mu(e2) U(vi) — G(e2) 2 Y. maler) U(vi) — Glen). 29

Clearly, (28) is implied by (22) and (27), and (29) by (23) and (26). In the relaxed programme, the constraints
are (24), (25), (28) and (29). Notice that (28) and (24) [resp. (29) and (25)] are the incentive
and reservation utility constraints in the programme for the incentive-efficient scheme for action e, [resp. e,].
Moreover the objective fuction of the relaxed programme is a weighted average of the objective functions of
the programmes for the incentive-efficient contracts for actions e; and e,. Therefore x'* and x** solve the relaxed
programme if and only if they are the incentive-efficient schemes for e, and e,, namely v'* and v**.

Finally, we show that the solution to the relaxed programme satisfies the constraints of the original
programme. At a solution to the relaxed programme (24) and (25) must hold as equalities. Therefore (22) and
(23) are true. Constraints (24) and (25) holding as equalities and (29) together imply that (26) holds. A similar
argument establishes that (27) is also satisfied. ||
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